Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
January-2023 Volume 62 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 62 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of m6A modification in oral cancer (Review)

  • Authors:
    • Huimin Liu
    • Yinyu Wang
    • Tianyi Xue
    • Zhijing Yang
    • Shaoning Kan
    • Ming Hao
    • Yang Gao
    • Dongxu Wang
    • Weiwei Liu
  • View Affiliations / Copyright

    Affiliations: Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China, Baicheng Medical College, Baicheng, Jilin 137000, P.R. China, Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, Jilin 130062, P.R. China, Center of Implant Dentistry, Stomatological Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 5
    |
    Published online on: November 11, 2022
       https://doi.org/10.3892/ijo.2022.5453
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Oral cancer is one of the highly malignant tumors with poor prognosis. The pathogenic mechanisms of oral cancer have remained to be fully elucidated and this brings significant challenges to the treatment. RNA modification is a common intracellular chemical modification that has been related to various pathological processes, such as blood diseases, immune system diseases and cancer. As the most common and abundant RNA modification in eukaryotic mRNA, N6‑methyladenosine (m6A) modification has a crucial role in several cancers, including oral cancer. m6A modification directly affects gene expression levels and regulates various physiological and pathological processes. It has been demonstrated that m6A modification may affect the proliferation, migration and invasion of oral cancer cells by regulating the level of m6A modification. In the present review, the effects of m6A modification on the proliferation and death of oral cancer cells, as well as the occurrence and development of oral cancer, were analyzed in order to provide a new target for treatment. Furthermore, the roles of m6A modification in chemotherapy resistance and potential immunotherapy were analyzed and new treatment ideas were provided.
View Figures

Figure 1

Figure 2

View References

1 

Chai AWY, Lim KP and Cheong SC: Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 61:71–83. 2020. View Article : Google Scholar

2 

Huo XX, Wang SJ, Song H, Li MD, Yu H, Wang M, Gong HX, Qiu XT, Zhu YF and Zhang JY: Roles of major RNA adenosine modifications in head and neck squamous cell carcinoma. Front Pharmacol. 12:7797792021. View Article : Google Scholar : PubMed/NCBI

3 

D'souza S and Addepalli V: Preventive measures in oral cancer: An overview. Biomed Pharmacother. 107:72–80. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S, Neskey DM, Zhao M, Ortega Alves MV, Chang K, Drummond J, et al: Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 3:770–781. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Mascolo M, Siano M, Ilardi G, Russo D, Merolla F, Rosa G and Staibano S: Epigenetic disregulation in oral cancer. Int J Mol Sci. 13:2331–2353. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Goldenberg D, Lee J, Koch WM, Kim MM, Trink B, Sidransky D and Moon CS: Habitual risk factors for head and neck cancer. Otolaryngol Head Neck Surg. 131:986–993. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Guha N, Warnakulasuriya S, Vlaanderen J and Straif K: Betel quid chewing and the risk of oral and oropharyngeal cancers: A meta-analysis with implications for cancer control. Int J Cancer. 135:1433–1443. 2014. View Article : Google Scholar

9 

Herrero R, Castellsagué X, Pawlita M, Lissowska J, Kee F, Balaram P, Rajkumar T, Sridhar H, Rose B, Pintos J, et al: Human papillomavirus and oral cancer: The International Agency for research on cancer multicenter study. J Natl Cancer Inst. 95:1772–1783. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Wang W: mRNA methylation by NSUN2 in cell proliferation. Wiley Interdiscip Rev RNA. 7:838–842. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Delaunay S and Frye M: RNA modifications regulating cell fate in cancer. Nat Cell Biol. 21:552–559. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Bonasio R, Tu S and Reinberg D: Molecular signals of epigenetic states. Science. 330:612–616. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Ling C and Rönn T: Epigenetics in human obesity and type 2 diabetes. Cell Metab. 29:1028–1044. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Barbieri I and Kouzarides T: Role of RNA modifications in cancer. Nat Rev Cancer. 20:303–322. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al: MODOMICS: A data-base of RNA modification pathways-2013 update. Nucleic Acids Res. 41(Database Issue): D262–D267. 2013. View Article : Google Scholar

16 

Wang T, Kong S, Tao M and Ju S: The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 19:882020. View Article : Google Scholar : PubMed/NCBI

17 

Liu ZX, Li LM, Sun HL and Liu SM: Link between m6A modification and cancers. Front Bioeng Biotechnol. 6:892018. View Article : Google Scholar : PubMed/NCBI

18 

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI

19 

Li X, Chen W, Gao Y, Song J, Gu Y, Zhang J, Cheng X and Ai Y: FTO regulates arecoline-exposed oral cancer immune response through PD-L1. Cancer Sci. 113:2962–2973. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Xu L, Li Q, Wang Y, Wang L, Guo Y, Yang R, Zhao N, Ge N, Wang Y and Guo C: m6A methyltransferase METTL3 promotes oral squamous cell carcinoma progression through enhancement of IGF2BP2-mediated SLC7A11 mRNA stability. Am J Cancer Res. 11:5282–5298. 2021.

21 

Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and eras. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Malbec L, Zhang T, Chen YS, Zhang Y, Sun BF, Shi BY, Zhao YL, Yang Y and Yang YG: Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Res. 29:927–941. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Saikia M, Fu Y, Pavon-Eternod M, He C and Pan T: Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA. 16:1317–1327. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, et al: The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature. 530:441–446. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Trixl L and Lusser A: The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA. 10. pp. e15102019, View Article : Google Scholar

26 

Zhong H, Tang HF and Kai Y: N6-methyladenine RNA modification (m6A): An emerging regulator of metabolic diseases. Curr Drug Targets. 21:1056–1067. 2020. View Article : Google Scholar

27 

Roundtree IA, Evans ME, Pan T and He C: Dynamic RNA modifications in gene expression regulation. Cell. 169:1187–1200. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS and Li B: New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond). 42:117–140. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Du Y, Hou G, Zhang H, Dou J, He J, Guo Y, Li L, Chen R, Wang Y, Deng R, et al: SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 46:5195–5208. 2018. View Article : Google Scholar : PubMed/NCBI

31 

van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M and Lafontaine DLJ: The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47:7719–7733. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar :

33 

Wang X, Huang J, Zou T and Yin P: Human m6A writers: Two subunits, 2 roles. RNA Biol. 14:300–304. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 534:575–578. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Zhou KI and Pan T: Structures of the m(6)A methyltransferase complex: Two subunits with distinct but coordinated roles. Mol Cell. 63:183–185. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Liu S, Li Q, Li G, Zhang Q, Zhuo L, Han X, Zhang M, Chen X, Pan T, Yan L, et al: The mechanism of m6A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene. Cell Death Dis. 11:9692020. View Article : Google Scholar

39 

Wang F, Zhu Y, Cai H, Liang J, Wang W, Liao Y, Zhang Y, Wang C and Hou J: N6-methyladenosine methyltransferase METTL14-mediated autophagy in malignant development of oral squamous cell carcinoma. Front Oncol. 11:7384062021. View Article : Google Scholar : PubMed/NCBI

40 

Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z and Zhao G: METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 18:1422019. View Article : Google Scholar : PubMed/NCBI

41 

Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, Li C, Sun L, Qin J, Xu T, et al: METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 19:1062020. View Article : Google Scholar : PubMed/NCBI

42 

Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, et al: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 18:1102019. View Article : Google Scholar : PubMed/NCBI

43 

Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W, Lu S, Xu D, Wu Y, Chen Q, et al: LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression. Oncogene. 39:5358–5372. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR and Qian SB: Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 526:591–594. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–1127. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Wu B, Su S, Patil DP, Liu H, Gan J, Jaffrey SR and Ma J: Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 9:4202018. View Article : Google Scholar : PubMed/NCBI

49 

He L, Li H, Wu A, Peng Y, Shu G and Yin G: Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 18:1762019. View Article : Google Scholar : PubMed/NCBI

50 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J and Wang X: HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther. 6:762021. View Article : Google Scholar

52 

Chen H, Yu Y, Yang M, Huang H, Ma S, Hu J, Xi Z, Guo H, Yao G, Yang L, et al: YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner. Cell Biosci. 12:192022. View Article : Google Scholar : PubMed/NCBI

53 

Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, et al: The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48:3816–3831. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Liu L, Wu Y, Li Q, Liang J, He Q, Zhao L, Chen J, Cheng M, Huang Z, Ren H, et al: METTL3 promotes tumorigenesis and metastasis through BMI1 m6A methylation in oral squamous cell carcinoma. Mol Ther. 28:2177–2190. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, et al: LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 18:1742019. View Article : Google Scholar : PubMed/NCBI

56 

Zhu F, Yang T, Yao M, Shen T and Fang C: HNRNPA2B1, as a m6A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma. Front Oncol. 11:7169212021. View Article : Google Scholar

57 

Huang GZ, Wu QQ, Zheng ZN, Shao TR, Chen YC, Zeng WS and Lv XZ: M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging (Albany NY). 12:11667–11684. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Wang F, Liao Y, Zhang M, Zhu Y, Wang W, Cai H, Liang J, Song F, Hou C, Huang S, et al: N6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma. Oncogene. 40:3885–3898. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Li X, Xie X, Gu Y, Zhang J, Song J, Cheng X, Gao Y and Ai Y: Fat mass and obesity-associated protein regulates tumorigenesis of arecoline-promoted human oral carcinoma. Cancer Med. 10:6402–6415. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Wang J, Qiao Y, Sun M, Sun H, Zie F, Chang H, Wang Y, Song J, Lai S, Yang C, et al: FTO promotes colorectal cancer progression and chemotherapy resistance via demethylating G6PD/PARP1. Clin Transl Med. 12:e7722022.PubMed/NCBI

62 

Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, He S and Shimamoto F: m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 19:32020. View Article : Google Scholar

63 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Wang Y, Zhu GQ, Tian D, Zhou CW, Li N, Feng Y and Zeng MS: Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer. BMC Cancer. 22:3162022. View Article : Google Scholar : PubMed/NCBI

65 

Guo Y, Wang R, Li J, Song Y, Min J, Zhao T, Hua L, Shi J, Zhang C, Ma P, et al: Comprehensive analysis of m6A RNA methylation regulators and the immune microenvironment to aid immunotherapy in pancreatic cancer. Front Immunol. 12:7694252021. View Article : Google Scholar : PubMed/NCBI

66 

Liu Z, Zhong J, Zeng J, Duan X, Lu J, Sun X, Liu Q, Liang Y, Lin Z, Zhong W, et al: Characterization of the m6A-associated tumor immune microenvironment in prostate cancer to aid immunotherapy. Front Immunol. 12:7351702021. View Article : Google Scholar : PubMed/NCBI

67 

Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V and Somasundaram K: Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 37:522–533. 2018. View Article : Google Scholar

68 

Small W Jr, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, Jhingran A, Kitchener HC, Mileshkin LR, Viswanathan AN and Gaffney DK: Cervical cancer: A global health crisis. Cancer. 123:2404–2412. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R, Wang YY and Zhe H: FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol Carcinog. 57:590–597. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Sheng H, Li Z, Su S, Sun W, Zhang X, Li L, Li J, Liu S, Lu B, Zhang S and Shan C: YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation. Carcinogenesis. 41:541–550. 2020. View Article : Google Scholar

71 

Ding RB, Chen P, Rajendran BK, Lyu X, Wang H, Bao J, Zeng J, Hao W, Sun H, Wong AH, et al: Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun. 12:30462021. View Article : Google Scholar : PubMed/NCBI

72 

Zhang P, He Q, Lei Y, Li Y, Wen X, Hong M, Zhang J, Ren X, Wang Y, Yang X, et al: m6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression. Cell Death Dis. 9:11692018. View Article : Google Scholar

73 

Jin S, Li M, Chang H, Wang R, Zhang Z, Zhang J, He Y and Ma H: The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer. 21:972022. View Article : Google Scholar

74 

Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C and Hu G: RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res. 41:62022. View Article : Google Scholar : PubMed/NCBI

75 

Hirayama M, Wei FY, Chujo T, Oki S, Yakita M, Kobayashi D, Araki N, Takahashi N, Yoshida R, Nakayama H and Tomizawa K: FTO demethylates cyclin D1 mRNA and controls cell-cycle progression. Cell Rep. 31:1074642020. View Article : Google Scholar : PubMed/NCBI

76 

Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al: The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 23:1369–1376. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Jiang F, Tang X, Tang C, Hua Z, Ke M, Wang C, Zhao J, Gao S, Jurczyszyn A, Janz S, et al: HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J Hematol Oncol. 14:542021. View Article : Google Scholar : PubMed/NCBI

78 

Han H, Fan G, Song S, Jiang Y, Qian C, Zhang W, Su Q, Xue X, Zhuang W and Li B: piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood. 137:1603–1614. 2021. View Article : Google Scholar

79 

Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Koren E and Fuchs Y: Modes of regulated cell death in cancer. Cancer Discov. 11:245–265. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Zhi Y, Zhang S, Zi M, Wang Y, Liu Y, Zhang M, Shi L, Yan Q, Zeng Z, Ziong W, et al: Potential applications of N6-methyladenosine modification in the prognosis and treatment of cancers via modulating apoptosis, autophagy, and ferroptosis. Wiley Interdiscip Rev RNA. 13. pp. e17192022, View Article : Google Scholar

82 

Wong RS: Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011. View Article : Google Scholar : PubMed/NCBI

83 

Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 18:462019. View Article : Google Scholar : PubMed/NCBI

84 

Rebucci M, Sermeus A, Leonard E, Delaive E, Dieu M, Fransolet M, Arnould T and Michiels C: miRNA-196b inhibits cell proliferation and induces apoptosis in HepG2 cells by targeting IGF2BP1. Mol Cancer. 14:792015. View Article : Google Scholar : PubMed/NCBI

85 

Mizushima N and Levine B: Autophagy in human diseases. N Engl J Med. 383:1564–1576. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Amaravadi RK, Kimmelman AC and Debnath J: Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Ferro F, Servais S, Besson P, Roger S, Dumas JF and Brisson L: Autophagy and mitophagy in cancer metabolic remodelling. Semin Cell Dev Biol. 98:129–138. 2020. View Article : Google Scholar

90 

Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol Cancer. 19:122020. View Article : Google Scholar : PubMed/NCBI

91 

Chen Y and Gibson SB: Three dimensions of autophagy in regulating tumor growth: Cell survival/death, cell proliferation, and tumor dormancy. Biochim Biophys Acta Mol Basis Dis. 1867:1662652021. View Article : Google Scholar : PubMed/NCBI

92 

Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Li T, Wang Y, Xiang X and Chen C: Development and validation of a ferroptosis-related lncRNAs prognosis model in oral squamous cell carcinoma. Front Genet. 13:8479402022. View Article : Google Scholar : PubMed/NCBI

94 

Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X and Liu C: The role of necroptosis in cancer biology and therapy. Mol Cancer. 18:1002019. View Article : Google Scholar : PubMed/NCBI

95 

Pasparakis M and Vandenabeele P: Necroptosis and its role in inflammation. Nature. 517:311–320. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Li J, Huang S, Zeng L, Li K, Yang L, Gao S, Guan C, Zhang S, Lao X, Liao G and Liang Y: Necroptosis in head and neck squamous cell carcinoma: Characterization of clinicopathological relevance and in vitro cell model. Cell Death Dis. 11:3912020. View Article : Google Scholar : PubMed/NCBI

97 

Shi J, Liu Z and Xu Q: Tumor necrosis factor receptor-associated factor 6 contributes to malignant behavior of human cancers through promoting AKT ubiquitination and phosphorylation. Cancer Sci. 110:1909–1920. 2019.PubMed/NCBI

98 

Lan H, Liu Y, Liu J, Wang X, Guan Z, Du J and Jin K: Tumor-associated macrophages promote oxaliplatin resistance via METTL3-mediated m6A of TRAF5 and necroptosis in colorectal cancer. Mol Pharm. 18:1026–1037. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI

100 

Yue E, Tuguzbaeva G, Chen X, Qin Y, Li A, Sun X, Dong C, Liu Y, Yu Y, Zahra SM, et al: Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma. Phytomedicine. 56:286–294. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Wu L, Liu G, He YW, Chen R and Wu ZY: Identification of a pyroptosis-associated long non-coding RNA signature for predicting the immune status and prognosis in skin cutaneous melanoma. Eur Rev Med Pharmacol Sci. 25:5597–5609. 2021.PubMed/NCBI

102 

Deshpande A, Sicinski P and Hinds PW: Cyclins and cdks in development and cancer: A perspective. Oncogene. 24:2909–2915. 2005. View Article : Google Scholar : PubMed/NCBI

103 

Thakur C and Chen F: Connections between metabolism and epigenetics in cancers. Semin Cancer Biol. 57:52–58. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Xu T, Zhang W, Chai L, Liu C, Zhang S and Xu T: Methyltransferase-like 3-induced N6-methyladenosine upregulation promotes oral squamous cell carcinoma by through p38. Oral Dis. Sep 3–2021.Epub ahead of print. View Article : Google Scholar

105 

Zhao W, Cui Y, Liu L, Ma X, Qi X, Wang Y, Liu Z, Ma S, Liu J and Wu J: METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-Myc stability via YTHDF1-mediated m6A modification. Mol Ther Nucleic Acids. 20:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Ai Y, Liu S, Luo H, Wu S, Wei H, Tang Z, Li X, Lv X and Zou C: METTL3 intensifies the progress of oral squamous cell carcinoma via modulating the m6A amount of PRMT5 and PD-L1. J Immunol Res. 2021:61495582021. View Article : Google Scholar : PubMed/NCBI

107 

Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar

108 

Trédan O, Galmarini CM, Patel K and Tannock IF: Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 99:1441–1454. 2007. View Article : Google Scholar : PubMed/NCBI

109 

Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Shriwas O, Priyadarshini M, Samal SK, Rath R, Panda S, Das Majumdar SK, Muduly DK, Botlagunta M and Dash R: DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m6A-demethylation of FOXM1 and NANOG. Apoptosis. 25:233–246. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Bellmunt J, Powles T and Vogelzang NJ: A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now. Cancer Treat Rev. 54:58–67. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, Agrawal K, Gonzalez GM, Wang Y, Patel SP and Rana TM: ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 117:20159–20170. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Chen J, Lu T, Zhong F, Lv Q, Fang M, Tu Z, Ji Y, Li J and Gong X: A signature of N6-methyladenosine regulator-related genes predicts prognoses and immune responses for head and neck squamous cell carcinoma. Front Immunol. 13:8098722022. View Article : Google Scholar

114 

Shu CW, Weng JR, Chang HW, Liu PF, Chen JJ, Peng CC, Huang JW, Lin WY and Yen CY: Tribulus terrestris fruit extract inhibits autophagic flux to diminish cell proliferation and metastatic characteristics of oral cancer cells. Environ Toxicol. 36:1173–1180. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Kumar VB, Lin SH, Mahalakshmi B, Lo YS, Lin CC, Chuang YC, Hsieh MJ and Chen MK: Sodium danshensu inhibits oral cancer cell migration and invasion by modulating p38 signaling pathway. Front Endocrinol (Lausanne). 11:5684362020. View Article : Google Scholar : PubMed/NCBI

116 

Balaji S, Terrero D, Tiwari AK, Ashby CR Jr and Raman D: Alternative approaches to overcome chemoresistance to apoptosis in cancer. Adv Protein Chem Struct Biol. 126:91–122. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Luo R, Xie L, Lin Y, Shao J and Lin Z: Oxymatrine suppresses oral squamous cell carcinoma progression by suppressing CXC chemokine receptor 4 in an m6A modification decrease dependent manner. Oncol Rep. 48:1772022. View Article : Google Scholar

118 

Gong J, Wang C, Zhang F and Lan W: Effects of allocryptopine on the proliferation and epithelial-mesenchymal transition of oral squamous cell carcinoma through m6A mediated hedgehog signaling pathway. J Environ Pathol Toxicol Oncol. 41:15–24. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu H, Wang Y, Xue T, Yang Z, Kan S, Hao M, Gao Y, Wang D and Liu W: Roles of m<sup>6</sup>A modification in oral cancer (Review). Int J Oncol 62: 5, 2023.
APA
Liu, H., Wang, Y., Xue, T., Yang, Z., Kan, S., Hao, M. ... Liu, W. (2023). Roles of m<sup>6</sup>A modification in oral cancer (Review). International Journal of Oncology, 62, 5. https://doi.org/10.3892/ijo.2022.5453
MLA
Liu, H., Wang, Y., Xue, T., Yang, Z., Kan, S., Hao, M., Gao, Y., Wang, D., Liu, W."Roles of m<sup>6</sup>A modification in oral cancer (Review)". International Journal of Oncology 62.1 (2023): 5.
Chicago
Liu, H., Wang, Y., Xue, T., Yang, Z., Kan, S., Hao, M., Gao, Y., Wang, D., Liu, W."Roles of m<sup>6</sup>A modification in oral cancer (Review)". International Journal of Oncology 62, no. 1 (2023): 5. https://doi.org/10.3892/ijo.2022.5453
Copy and paste a formatted citation
x
Spandidos Publications style
Liu H, Wang Y, Xue T, Yang Z, Kan S, Hao M, Gao Y, Wang D and Liu W: Roles of m<sup>6</sup>A modification in oral cancer (Review). Int J Oncol 62: 5, 2023.
APA
Liu, H., Wang, Y., Xue, T., Yang, Z., Kan, S., Hao, M. ... Liu, W. (2023). Roles of m<sup>6</sup>A modification in oral cancer (Review). International Journal of Oncology, 62, 5. https://doi.org/10.3892/ijo.2022.5453
MLA
Liu, H., Wang, Y., Xue, T., Yang, Z., Kan, S., Hao, M., Gao, Y., Wang, D., Liu, W."Roles of m<sup>6</sup>A modification in oral cancer (Review)". International Journal of Oncology 62.1 (2023): 5.
Chicago
Liu, H., Wang, Y., Xue, T., Yang, Z., Kan, S., Hao, M., Gao, Y., Wang, D., Liu, W."Roles of m<sup>6</sup>A modification in oral cancer (Review)". International Journal of Oncology 62, no. 1 (2023): 5. https://doi.org/10.3892/ijo.2022.5453
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team