You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cocquerelle C, Mascrez B, Hétuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki H and Tsukahara T: A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 15:9331–9342. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : | |
|
Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7:e307332012. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmadov U, Bendikas MM, Ebbesen KK, Sehested AM, Kjems J, Broholm H and Kristensen LS: Distinct circular RNA expression profiles in pediatric ependymomas. Brain Pathol. 31:387–392. 2021. View Article : Google Scholar : | |
|
Smid M, Wilting SM, Uhr K, Rodríguez-González FG, de Weerd V, Prager-Van der Smissen WJC, van der Vlugt-Daane M, van Galen A, Nik-Zainal S, Butler A, et al: The circular RNome of primary breast cancer. Genome Res. 29:356–366. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Tan S, Liu WR, Lei Q, Qiao W, Wu Y, Liu X, Cheng W, Wei YQ, Peng Y and Li W: RNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinoma. Mol Cancer. 18:1342019. View Article : Google Scholar : PubMed/NCBI | |
|
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, et al: The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 10:1243–1260. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Oser MG, Niederst MJ, Sequist LV and Engelman JA: Transformation from non-small-cell lung cancer to small-cell lung cancer: Molecular drivers and cells of origin. Lancet Oncol. 16:e165–e172. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, D'Amico TA, DeCamp MM, Dilling TJ, Dobelbower M, et al: Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 15:504–535. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Schneider BJ, Ismaila N, Aerts J, Chiles C, Daly ME, Detterbeck FC, Hearn JWD, Katz SI, Leighl NB, Levy B, et al: Lung cancer surveillance after definitive curative-intent therapy: ASCO guideline. J Clin Oncol. 38:753–766. 2020. View Article : Google Scholar | |
|
Kristensen LS, Jakobsen T, Hager H and Kjems J: The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 19:188–206. 2022. View Article : Google Scholar | |
|
Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Misir S, Wu N and Yang BB: Specific expression and functions of circular RNAs. Cell Death Differ. 29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen I, Chen CY and Chuang TJ: Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA. 6:563–579. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer. 18:1162019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, Zhou J and Tang ZY: Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 39:202020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 19:1102020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y, Chen X, Chen Y, Xu C, Hu Y, et al: Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther. 30:1054–1070. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fanale D, Taverna S, Russo A and Bazan V: Circular RNA in exosomes. Adv Exp Med Biol. 1087:109–117. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S and Liu YS: Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther. 6:3832021. View Article : Google Scholar : PubMed/NCBI | |
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fei T, Chen Y, Xiao T, Li W, Cato L, Zhang P, Cotter MB, Bowden M, Lis RT, Zhao SG, et al: Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc Natl Acad Sci USA. 114:E5207–E5215. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Barrett SP, Wang PL and Salzman J: Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 4:e075402015. View Article : Google Scholar : PubMed/NCBI | |
|
Eger N, Schoppe L, Schuster S, Laufs U and Boeckel JN: Circular RNA splicing. Adv Exp Med Biol. 1087:41–52. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC and Rajewsky N: A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl). 95:1179–1189. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lu D and Xu AD: Mini review: Circular RNAs as potential clinical biomarkers for disorders in the central nervous system. Front Genet. 7:532016. View Article : Google Scholar : PubMed/NCBI | |
|
Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y and Abe H: Rolling circle translation of circular RNA in living human cells. Sci Rep. 5:164352015. View Article : Google Scholar : PubMed/NCBI | |
|
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pamudurti NR, Patop IL, Krishnamoorthy A, Bartok O, Maya R, Lerner N, Ashwall-Fluss R, Konakondla JVV, Beatus T and Kadener S: circMbl functions in cis and in trans to regulate gene expression and physiology in a tissue-specific fashion. Cell Rep. 39:1107402022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Du WW, Xu J, Yang W, Wu N, Li F, Zhou L, Wang S, Li X, He AT, Du KY, et al: A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circ Res. 129:568–582. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : | |
|
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, Zhong J, Zhao Z, Zhao K, Liu D, et al: Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 23:278–291. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Chen B, Zhao J, Li Q, Chen S, Guo T, Li Y, Lai H, Chen Z, Meng Z, et al: HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv Sci (Weinh). 8:20017012021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ghafouri-Fard S, Dinger ME, Maleki P, Taheri M and Hajiesmaeili M: Emerging role of circular RNAs in the pathobiology of lung cancer. Biomed Pharmacother. 141:1118052021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jin M, Shi C, Yang C, Liu J and Huang G: Upregulated circRNA ARHGAP10 predicts an unfavorable prognosis in NSCLC through regulation of the miR-150-5p/GLUT-1 axis. Mol Ther Nucleic Acids. 18:219–231. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wei S, Zheng Y, Jiang Y, Li X, Geng J, Shen Y, Li Q, Wang X, Zhao C, Chen Y, et al: The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine. 44:182–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Y, Huang L, Tang H and Huang R: hsa_circRNA_012515 Is Highly expressed in NSCLC patients and affects its prognosis. Cancer Manag Res. 12:1877–1886. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Zhang S, Chen Z, He Z, Xu Y and Li Z: CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 10:8852019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 11:322020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Pei H, Liang H, Zhang Q, Wei L, Shi D, Chen Y and Zhang J: Construction and analysis of a circRNA-Mediated ceRNA network in lung adenocarcinoma. Onco Targets Ther. 14:3659–3669. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Y, Hua Q and Zhou Y: CircRNA has_circ_0006427 suppresses the progression of lung adenocarcinoma by regulating miR-6783-3p/DKK1 axis and inactivating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 508:37–45. 2019. View Article : Google Scholar | |
|
Wang L, Liang Y, Mao Q, Xia W, Chen B, Shen H, Xu L, Jiang F and Dong G: Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor receptor pathway. Cancer Sci. 110:2960–2972. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Andersen MH, Becker JC and Straten PT: Regulators of apoptosis: Suitable targets for immune therapy of cancer. Nat Rev Drug Discov. 4:399–409. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Teixeira JC, de Filippo C, Weihmann A, Meneu JR, Racimo F, Dannemann M, Nickel B, Fischer A, Halbwax M, Andre C, et al: Long-term balancing selection in LAD1 maintains a missense trans-species polymorphism in humans, chimpanzees, and bonobos. Mol Biol Evol. 32:1186–1196. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Roth L, Srivastava S, Lindzen M, Sas-Chen A, Sheffer M, Lauriola M, Enuka Y, Noronha A, Mancini M, Lavi S, et al: SILAC identifies LAD1 as a filamin-binding regulator of actin dynamics in response to EGF and a marker of aggressive breast tumors. Sci Signal. 11:eaan09492018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y: circ-ANXA7 facilitates lung adenocarcinoma progression via miR-331/LAD1 axis. Cancer Cell Int. 21:852021. View Article : Google Scholar | |
|
Sun Z: Circular RNA hsa_circ_0001588 promotes the malignant progression of lung adenocarcinoma by modulating miR-524-3p/NACC1 signaling. Life Sci. 259:1181572020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Xia W, Dong G, Xu W, Li M and Xu L: Cyclic RNA molecule circ_0007766 promotes the proliferation of lung adenocarcinoma cells by up-regulating the expression of Cyclin D1/CyclinE1/CDK4. Zhongguo Fei Ai Za Zhi. 22:271–279. 2019.In Chinese. PubMed/NCBI | |
|
Jiang W, Zhang C, Kang Y, Li G, Feng Y and Ma H: The roles and mechanisms of the circular RNA circ_104640 in early-stage lung adenocarcinoma: A potential diagnostic and therapeutic target. Ann Transl Med. 9:1382021. View Article : Google Scholar : PubMed/NCBI | |
|
Kahn M: Wnt signaling in stem cells and cancer stem cells: A tale of two coactivators. Prog Mol Biol Transl Sci. 153:209–244. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nusse R and Clevers H: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li O, Kang J, Zhang JJ, Wang J, Hu LW, Li L, Sun YY, Bai Y, Wei QQ, Yan YP and Yi X: Circle RNA FOXP1 promotes cell proliferation in lung cancer by regulating miR-185-5p/Wnt1 signaling pathway. Eur Rev Med Pharmacol Sci. 24:6767–6778. 2020.PubMed/NCBI | |
|
Foster R, Hu KQ, Lu Y, Nolan KM, Thissen J and Settleman J: Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol. 16:2689–2699. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Wang T, Lin X, Yue X, Wang Q, Wang G, Fu Q, Ai X, Chiang DY, Miyake CY, et al: Genetic deletion of Rnd3/RhoE results in mouse heart calcium leakage through upregulation of protein kinase A signaling. Circ Res. 116:e1–e10. 2015. View Article : Google Scholar : | |
|
Jiang W, He Y, Ma Z, Zhang Y, Zhang C, Zheng N and Tang X: hsa_circ_0008234 inhibits the progression of lung adenocarcinoma by sponging miR-574-5p. Cell Death Discov. 7:1232021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu C, Tian F, Liu J, Su M, Wu M, Zhu X and Qian W: Circular RNA cMras inhibits lung adenocarcinoma progression via modulating miR-567/PTPRG regulatory pathway. Cell Prolif. 52:e126102019. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Qiu T, Xuan Y, Liu A, Sun X, Huang Z, Su W, Du W, Yun T, Wo Y, et al: circFBXW7 attenuates malignant progression in lung adenocarcinoma by sponging miR-942-5p. Transl Lung Cancer Res. 10:1457–1473. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Eccles SA and Welch DR: Metastasis: Recent discoveries and novel treatment strategies. Lancet. 369:1742–1757. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan DF, Wang HR, Wang ZF, Liang GH, Xing WQ and Qin JJ: CircRNA CircZMYM4 inhibits the growth and metastasis of lung adenocarcinoma via the miR-587/ODAM pathway. Biochem Biophys Res Commun. 580:100–106. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kosfeld A, Brand F, Weiss AC, Kreuzer M, Goerk M, Martens H, Schubert S, Schäfer AK, Riehmer V, Hennies I, et al: Mutations in the leukemia inhibitory factor receptor (LIFR) gene and Lifr deficiency cause urinary tract malformations. Hum Mol Genet. 26:1716–1731. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Q, Wang C, Jin G, Gu D, Wang N, Song J, Jin H, Hu F, Zhang Y, Ge T, et al: LIFR functions as a metastasis suppressor in hepatocellular carcinoma by negatively regulating phosphoinositide 3-kinase/AKT pathway. Carcinogenesis. 36:1201–1212. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Z, Zhu X, Li Y, Liang M, Liu M, Liu Z, Qin L, Wu X, Du K, Liu L, et al: Circ-HMGA2 (hsa_circ_0027446) promotes the metastasis and epithelial-mesenchymal transition of lung adenocarcinoma cells through the miR-1236-3p/ZEB1 axis. Cell Death Dis. 12:3132021. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Y, Wang H, Chen B, Mao Q, Xia W, Zhang T, Song X, Zhang Z, Xu L, Dong G and Jiang F: circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression. Mol Ther Nucleic Acids. 23:355–368. 2020. View Article : Google Scholar | |
|
Huang Q, Guo H, Wang S, Ma Y, Chen H, Li H, Li J, Li X, Yang F, Qiu M, et al: A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell Death Dis. 11:10312020. View Article : Google Scholar : PubMed/NCBI | |
|
Lv X, Huang H, Feng H and Wei Z: Circ-MMP2 (circ-0039411) induced by FOXM1 promotes the proliferation and migration of lung adenocarcinoma cells in vitro and in vivo. Cell Death Dis. 11:4262020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Shu Y, Xu T, Zhu W, Qiu T, Li J, Zhang M, Xu J, Guo R, Lu K, et al: Microarray expression profiling and bioinformatics analysis of circular RNA expression in lung squamous cell carcinoma. Am J Transl Res. 10:771–783. 2018.PubMed/NCBI | |
|
Cheng Z, Yu C, Cui S, Wang H, Jin H, Wang C, Li B, Qin M, Yang C, He J, et al: circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun. 10:32002019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Shi J, Cheng C and Wang H: CircTIMELESS regulates the proliferation and invasion of lung squamous cell carcinoma cells via the miR-136-5p/ROCK1 axis. J Cell Physiol. 235:5962–5971. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao M, Cui S, Zhang L, Yu T, Zhang G, Li L, Cai Y, Jin C, Yang J, Wu S, et al: Benzo[a]pyrene diol epoxide-induced transformed cells identify the significance of hsa_circ_0051488, a ERCC1-derived circular RNA in pulmonary squamous cell carcinoma. Mol Carcinog. 60:684–701. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sabari JK, Lok BH, Laird JH, Poirier JT and Rudin CM: Unravelling the biology of SCLC: Implications for therapy. Nat Rev Clin Oncol. 14:549–561. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Zhang B, Yuan B, Chen C, Zhou Y, Zhang Y, Sheng Z, Sun N and Wu X: RNA-Seq profiling of circular RNAs in human small cell lung cancer. Epigenomics. 12:685–700. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Tao L, Xu Y, Li S, Yang W, Wang L and Zhu J: CircMYC promotes proliferation, migration, invasion and inhibits apoptosis of small cell lung cancer by targeting miR-145/matrix metallopeptidase 2 axis. Bioengineered. 13:10552–10563. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Li W, Chen N, Zhao H, Xu G, Zhao Y, Pan X, Zhang X, Zhou L, Yu D, et al: FLI1 exonic circular RNAs as a novel oncogenic driver to promote tumor metastasis in small cell lung cancer. Clin Cancer Res. 25:1302–1317. 2019. View Article : Google Scholar | |
|
Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL and Siegel RL: Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 69:363–385. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Joseph NA, Chiou SH, Lung Z, Yang CL, Lin TY, Chang HW, Sun HS, Gupta SK, Yen L, Wang SD and Chow KC: The role of HGF-MET pathway and CCDC66 cirRNA expression in EGFR resistance and epithelial-to-mesenchymal transition of lung adenocarcinoma cells. J Hematol Oncol. 11:742018. View Article : Google Scholar : PubMed/NCBI | |
|
Gerber DE and Schiller JH: Maintenance chemotherapy for advanced non-small-cell lung cancer: New life for an old idea. J Clin Oncol. 31:1009–1020. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Zheng X, Xu B, Chen L, Wang Q, Deng H and Jiang J: Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochem Biophys Res Commun. 508:527–535. 2019. View Article : Google Scholar | |
|
Feng B, Zhou H, Wang T, Lin X, Lai Y, Chu X and Wang R: Insights into circRNAs: Functional roles in lung cancer management and the potential mechanisms. Front Cell Dev Biol. 9:6369132021. View Article : Google Scholar : PubMed/NCBI | |
|
Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J and Johnson DH; Eastern Cooperative Oncology Group: Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 346:92–98. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Siddik ZH: Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene. 22:7265–7279. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wu Y and Xie S: CircPTK2 inhibits cell cisplatin (CDDP) resistance by targeting miR-942/TRIM16 axis in non-small cell lung cancer (NSCLC). Bioengineered. 13:3651–3664. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Q, Ji T, Ma Z, Tan Q and Liang J: Serum exosomes-based biomarker circ_0008928 regulates cisplatin sensitivity, tumor progression, and glycolysis metabolism by miR-488/HK2 axis in cisplatin-resistant nonsmall cell lung carcinoma. Cancer Biother Radiopharm. Mar 3–2021.Epub ahead of print. | |
|
Li X, Yang B, Ren H, Xiao T, Zhang L, Li L, Li M, Wang X, Zhou H and Zhang W: Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p. Cell Death Dis. 10:9532019. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Fan R and Xiao H: Circ_ZFR contributes to the paclitaxel resistance and progression of non-small cell lung cancer by upregulating KPNA4 through sponging miR-195-5p. Cancer Cell Int. 21:152021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Ni L, Zhao F, Dai X, Tao J, Pan J, Shi A, Shen Z, Su C and Zhang Y: Overexpression of hsa_circ_0002874 promotes resistance of non-small cell lung cancer to paclitaxel by modulating miR-1273f/MDM2/p53 pathway. Aging (Albany NY). 13:5986–6009. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Joshi M, Liu X and Belani CP: Taxanes, past, present, and future impact on non-small cell lung cancer. Anticancer Drugs. 25:571–583. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Liu X, Xu Y, Zhang K, Huang J, Pan B, Chen D, Cui S, Song H, Wang R, et al: TFAP2C-activated MALAT1 modulates the chemoresistance of docetaxel-resistant lung adenocarcinoma cells. Mol Ther Nucleic Acids. 14:567–582. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu W, Peng W, Sha H and Li J: Hsa_circ_0003998 promotes chemoresistance via modulation of miR-326 in lung adenocarcinoma cells. Oncol Res. 27:623–628. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng S, Wang C, Yan H and Du Y: Blocking hsa_circ_0074027 suppressed non-small cell lung cancer chemoresistance via the miR-379-5p/IGF1 axis. Bioengineered. 12:8347–8357. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mao Y and Xu R: Circular RNA CDR1-AS contributes to pemetrexed and cisplatin chemoresistance through EGFR/PI3K signaling pathway in lung adenocarcinoma. Biomed Pharmacother. 123:1097712020. View Article : Google Scholar | |
|
Zheng F and Xu R: CircPVT1 contributes to chemotherapy resistance of lung adenocarcinoma through miR-145-5p/ABCC1 axis. Biomed Pharmacother. 124:1098282020. View Article : Google Scholar : PubMed/NCBI | |
|
Mirski SE, Gerlach JH and Cole SP: Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res. 47:2594–2598. 1987.PubMed/NCBI | |
|
Desai A and Adjei AA: FGFR signaling as a target for lung cancer therapy. J Thorac Oncol. 11:9–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang B, Teng F, Chang L, Wang J, Liu DL, Cui YS and Li GH: Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer. Aging (Albany NY). 13:13264–13286. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Jiang Z, Xiao P, Li X, Chen Y, Tang H, Chai Y, Liu Y, Zhu Z, Xie Q, et al: Hsa_circ_0005576 promotes osimertinib resistance through the miR-512-5p/IGF1R axis in lung adenocarcinoma cells. Cancer Sci. 113:79–90. 2022. View Article : Google Scholar | |
|
Dai C, Ma Z, Si J, An G, Zhang W, Li S and Ma Y: Hsa_ circ_0007312 promotes third-generation epidermal growth factor receptor-tyrosine kinase inhibitor resistance through pyroptosis and apoptosis via the MiR-764/MAPK1 axis in lung adenocarcinoma cells. J Cancer. 13:2798–2809. 2022. View Article : Google Scholar : | |
|
Zhang CC, Li Y, Feng XZ and Li DB: Circular RNA circ_0001287 inhibits the proliferation, metastasis, and radiosensitivity of non-small cell lung cancer cells by sponging microRNA miR-21 and up-regulating phosphatase and tensin homolog expression. Bioengineered. 12:414–425. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Su Z, Sheng H, Li K, Yang B and Li S: Circ_0086720 knockdown strengthens the radiosensitivity of non-small cell lung cancer via mediating the miR-375/SPIN1 axis. Neoplasma. 68:96–107. 2021. View Article : Google Scholar | |
|
Li YH, Xu CL, He CJ, Pu HH, Liu JL and Wang Y: circ-MTDH.4/miR-630/AEG-1 axis participates in the regulation of proliferation, migration, invasion, chemoresistance, and radioresistance of NSCLC. Mol Carcinog. 59:141–153. 2020. View Article : Google Scholar | |
|
Zhang T, Wu DM, Luo PW, Liu T, Han R, Deng SH, He M, Zhao YY and Xu Y: CircNEIL3 mediates pyroptosis to influence lung adenocarcinoma radiotherapy by upregulating PIF1 through miR-1184 inhibition. Cell Death Dis. 13:1672022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Li H, Liu X, Li F, Chen W, Kuang Y, Zhao X, Li L, Yu B, Jin X and Li Q: CircZNF208 enhances the sensitivity to X-rays instead of carbon-ions through the miR-7-5p/SNCA signal axis in non-small-cell lung cancer cells. Cell Signal. 84:1100122021. View Article : Google Scholar | |
|
Horn L, Spigel DR, Vokes EE, Holgado E, Ready N, Steins M, Poddubskaya E, Borghaei H, Felip E, Paz-Ares L, et al: Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: Two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 35:3924–3933. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen SW, Zhu SQ, Pei X, Qiu BQ, Xiong D, Long X, Lin K, Lu F, Xu JJ and Wu YB: Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 20:1442021. View Article : Google Scholar | |
|
Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C and Zhou Y: N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar | |
|
Kumar S, Zeng Z, Bagati A, Tay RE, Sanz LA, Hartono SR, Ito Y, Abderazzaq F, Hatchi E, Jiang P, et al: CARM1 inhibition enables immunotherapy of resistant tumors by dual action on tumor cells and T cells. Cancer Discov. 11:2050–2071. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang LX, Gao J, Long X, Zhang PF, Yang X, Zhu SQ, Pei X, Qiu BQ, Chen SW, Lu F, et al: The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis. Mol Cancer. 21:1102022. View Article : Google Scholar : PubMed/NCBI | |
|
Memczak S, Papavasileiou P, Peters O and Rajewsky N: Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 10:e01412142015. View Article : Google Scholar : PubMed/NCBI | |
|
Ye D, Gong M, Deng Y, Fang S, Cao Y, Xiang Y and Shen Z: Roles and clinical application of exosomal circRNAs in the diagnosis and treatment of malignant tumors. J Transl Med. 20:1612022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HH, Zhang TN, Wu QJ, Huang XM and Zhao YH: Circular RNAs in lung cancer: Recent advances and future perspectives. Front Oncol. 11:6642902021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Ma C, Qiu J, Feng X and Yang K: Identification of circRNA_001846 as putative non-small cell lung cancer biomarker. Bioengineered. 12:8690–8697. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Best MG, Sol N, In 't Veld SGJG, Vancura A, Muller M, Niemeijer AN, Fejes AV, Tjon Kon Fat LA, Huis In 't Veld AE, Leurs C, et al: Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell. 32:238–252.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
D'Ambrosi S, Visser A, Antunes-Ferreira M, Poutsma A, Giannoukakos S, Sol N, Sabrkhany S, Bahce I, Kuijpers MJE, Oude Egbrink MGA, et al: The analysis of platelet-derived circRNA repertoire as potential diagnostic biomarker for non-small cell lung cancer. Cancers (Basel). 13:46442021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu ZQ, Zhou SL, Li J, Zhou ZJ, Wang PC, Xin HY, Mao L, Luo CB, Yu SY, Huang XW, et al: Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology. 72:906–922. 2020. View Article : Google Scholar | |
|
Lu GJ, Cui J, Qian Q, Hou ZB, Xie HY, Hu W, Hao KK, Xia N and Zhang Y: Overexpression of hsa_circ_0001715 is a potential diagnostic and prognostic biomarker in lung adenocarcinoma. Onco Targets Ther. 13:10775–10783. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang ZY, Gao XH, Ma MY, Zhao CL, Zhang YL and Guo SS: CircRNA_101237 promotes NSCLC progression via the miRNA-490-3p/MAPK1 axis. Sci Rep. 10:90242020. View Article : Google Scholar : PubMed/NCBI | |
|
Hong Y, Si J, Xiao B, Xiong Y, Dai C, Yang Y, Li S and Ma Y: circ_0000567/miR-421/TMEM100 axis promotes the migration and invasion of lung adenocarcinoma and is associated with prognosis. J Cancer. 13:1540–1552. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Luo YH, Yang YP, Chien CS, Yarmishyn AA, Ishola AA, Chien Y, Chen YM, Huang TW, Lee KY, Huang WC, et al: Plasma level of circular RNA hsa_circ_0000190 correlates with tumor progression and poor treatment response in advanced lung cancers. Cancers (Basel). 12:17402020. View Article : Google Scholar : PubMed/NCBI | |
|
Feng D, Xu Y, Hu J, Zhang S, Li M and Xu L: A novel circular RNA, hsa-circ-0000211, promotes lung adenocarcinoma migration and invasion through sponging of hsa-miR-622 and modulating HIF1-α expression. Biochem Biophys Res Commun. 521:395–401. 2020. View Article : Google Scholar | |
|
Xu Y, Yu J, Huang Z, Fu B, Tao Y, Qi X, Mou Y, Hu Y, Wang Y, Cao Y, et al: Circular RNA hsa_circ_0000326 acts as a miR-338-3p sponge to facilitate lung adenocarcinoma progression. J Exp Clin Cancer Res. 39:572020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Li M and Lian R: Depleting hsa_circ_0000567 suppresses acquired gefitinib resistance and proliferation of lung adenocarcinoma cells through regulating the miR-377-3p/ZFX axis: An in vitro and in vivo study. Histol Histopathol. 37:637–654. 2022.PubMed/NCBI | |
|
Zuo Y, Shen W, Wang C, Niu N and Pu J: Circular RNA Circ-ZNF609 promotes lung adenocarcinoma proliferation by modulating miR-1224-3p/ETV1 signaling. Cancer Manag Res. 12:2471–2479. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Yue W, Li L, Li S, Gao C, Si L, Qi L, Cheng C, Lu M, Chen G, et al: Circular RNA hsa-circ-000881 suppresses the progression of lung adenocarcinoma in vitro via a miR-665/PRICKLE2 axis. Ann Transl Med. 9:4982021. View Article : Google Scholar : PubMed/NCBI | |
|
Mao Y and He JX, Zhu M, Dong YQ and He JX: Circ0001320 inhibits lung cancer cell growth and invasion by regulating TNFAIP1 and TPM1 expression through sponging miR-558. Hum Cell. 34:468–477. 2021. View Article : Google Scholar | |
|
Shen HY, Shi LX, Wang L, Fang LP, Xu W, Xu JQ, Fan BQ and Fan WF: Hsa_circ_0001361 facilitates the progress of lung adenocarcinoma cells via targeting miR-525-5p/VMA21 axis. J Transl Med. 19:3892021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu T, Qiu T, Han B, Wang Y, Sun X, Qin Y, Liu A, Ge N and Jiao W: Circular RNA circCSNK1G3 induces HOXA10 signaling and promotes the growth and metastasis of lung adenocarcinoma cells through hsa-miR-143-3p sponging. Cell Oncol (Dordr). 44:297–310. 2021. View Article : Google Scholar | |
|
Zhou H, Huang X, Yang X, Jiang F, Shao F, Shi W, Huang K, Pan J, Zhang Y, Chen J and Wang Y: CircRAPGEF5 promotes the proliferation and metastasis of lung adenocarcinoma through the miR-1236-3p/ZEB1 axis and serves as a potential biomarker. Int J Biol Sci. 18:2116–2131. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cao L, Zhou X, Ding X and Gao D: Knockdown of circ-PVT1 inhibits the progression of lung adenocarcinoma and enhances the sensitivity to cisplatin via the miR-429/FOXK1 signaling axis. Mol Med Rep. 24:6842021. View Article : Google Scholar : | |
|
Yao Y, Hua Q, Zhou Y and Shen H: CircRNA has_circ_0001946 promotes cell growth in lung adenocarcinoma by regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 111:1367–1375. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Guo T, Chen W, Lin Z, Ye M and Pan X: CircMMD_007 promotes oncogenic effects in the progression of lung adenocarcinoma through microRNA-197-3p/protein tyrosine phosphatase non-receptor type 9 axis. Bioengineered. 13:4991–5004. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wan J, Ding G, Zhou M, Ling X and Rao Z: Circular RNA hsa_circ_0002483 promotes growth and invasion of lung adenocarcinoma by sponging miR-125a-3p. Cancer Cell Int. 21:5332021. View Article : Google Scholar : PubMed/NCBI | |
|
Li H and Liu L: Zinc moderates circular RNA CircFOXP1 expression in order to regulate ferroptosis during lung adenocarcinoma. Chem Biol Interact. 352:1097602022. View Article : Google Scholar | |
|
Wang HL, Wang HR, Liang Y, Hu AN, Enguita FJ, Zhou XG and Dong J: Hsa_circ_0006571 promotes spinal metastasis through sponging microRNA-138 to regulate sirtuin 1 expression in lung adenocarcinoma. Transl Lung Cancer Res. 9:2411–2427. 2020. View Article : Google Scholar | |
|
Yang Y, Fan X, Nie Y, Liu D, Zhu D, Wu K, Zhang Y, Li W, Tian X, Wang H and Fan Y: CircTUBGCP3 facilitates the tumorigenesis of lung adenocarcinoma by sponging miR-885-3p. Cancer Cell Int. 21:6512021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma D, Liu H, Qin Y, Li D, Cui Y, Li L, He J, Chen Y and Zhou X: Circ_0007142/miR-186/FOXK1 axis promoted lung adenocarcinoma progression. Am J Transl Res. 12:4728–4738. 2020.PubMed/NCBI | |
|
Zhang B, Chen M, Jiang N, Shi K and Qian R: A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma. Cancer Biol Ther. 20:1127–1135. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen M, Huang X, Li L, Huang M, Cai R and Liao X: A regulatory axis of circ_0008193/miR-1180-3p/TRIM62 suppresses proliferation, migration, invasion, and Warburg effect in lung adenocarcinoma cells under hypoxia. Med Sci Monit. 26:e9229002020.PubMed/NCBI | |
|
Wang M, Ma M, Yang Y, Li C, Wang Y, Sun X, Wang M, Sun Y and Jiao W: Overexpression of hsa_circ_0008274 inhibited the progression of lung adenocarcinoma by regulating HMGA2 via sponging miR-578. Thorac Cancer. 12:2258–2264. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Xu S, Chen S, Zong Z, Han X, Zhao Y and Shang H: CircPUM1 promotes the malignant behavior of lung adenocarcinoma by regulating miR-326. Biochem Biophys Res Commun. 508:844–849. 2019. View Article : Google Scholar | |
|
Wang X, Zhu X, Zhang H, Wei S, Chen Y, Chen Y, Wang F, Fan X, Han S and Wu G: Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma proliferation. Biochem Biophys Res Commun. 496:1069–1075. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X, Han S and Wu G: hsa_circ_0013958: A circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 284:2170–2182. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zan SJ, Zhao Y, Fang T and Chen K: Expression of circular RNA hsa_circ_0014130 in lung adenocarcinoma cell lines and its effect on proliferation and invasion of lung adenocarcinoma cell line. Zhonghua Bing Li Xue Za Zhi. 48:934–939. 2019.In Chinese. PubMed/NCBI | |
|
Yao Y, Zhou Y and Hua Q: circRNA hsa_circ_0018414 inhibits the progression of LUAD by sponging miR-6807-3p and upregulating DKK1. Mol Ther Nucleic Acids. 23:783–796. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ying X, Zhu J and Zhang Y: Circular RNA circ-TSPAN4 promotes lung adenocarcinoma metastasis by upregulating ZEB1 via sponging miR-665. Mol Genet Genomic Med. 7:e9912019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Su S, Ye D, Yu Z, Lu W and Liu L: Hsa_circ_0020850 promotes the malignant behaviors of lung adenocarcinoma by regulating miR-326/BECN1 axis. World J Surg Oncol. 20:132022. View Article : Google Scholar : PubMed/NCBI | |
|
Xin T, Li S, Zhang Y, Kamali X, Liu H and Jia T: circRNA Hsa_circ_0020850 silence represses the development of lung adenocarcinoma via regulating miR-195-5p/IRS2 axis. Cancer Manag Res. 12:10679–10692. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Li H, Lu C, Zhang F, Wang H, Lu X and Zhang G: Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis. Biol Chem. 399:1457–1467. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Wang P, Sui X, Ding F, Liu L, Gao Z and Cheng Z: Circular RNA circABCC4 regulates lung adenocarcinoma progression via miR-3186-3p/TNRC6B axis. J Cell Biochem. 121:4226–4238. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Zhang Y, Ding X, Ren Y, Wei B, Lin Z, Nie Y and Fan Y: Construction and analysis of the ceRNA network hsa_circ_0031968/miR-3611/GCG in lung adenocarcinoma. Ann Transl Med. 9:17572021. View Article : Google Scholar | |
|
Wang Y, Ren F, Sun D, Liu J, Liu B, He Y, Pang S, Shi B, Zhou F, Yao L, et al: CircKEAP1 suppresses the progression of lung adenocarcinoma via the miR-141-3p/KEAP1/NRF2 axis. Front Oncol. 11:6725862021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q and Sun Y: Circular RNA cMras suppresses the progression of lung adenocarcinoma through ABHD5/ATGL axis using NF-κB signaling pathway. Cancer Biother Radiopharm. Aug 19–2020.Epub ahead of print. | |
|
Sui MH, Zhang WW, Geng DM and Sun DJ: CircPRKCI regulates proliferation, migration and cycle of lung adenocarcinoma cells by targeting miR-219a-5p-regulated CAMK1D. Eur Rev Med Pharmacol Sci. 25:1899–1909. 2021.PubMed/NCBI | |
|
Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T, et al: The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Res. 78:2839–2851. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Ma Y, Zhang H, Lu QJ, Yang L, Jiang GN and Liao WL: HMGA2 regulates circular RNA ASPH to promote tumor growth in lung adenocarcinoma. Cell Death Dis. 11:5932020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wo Y, Lu T, Sun X, Liu A, Dong Y, Du W, Su W, Huang Z and Jiao W: Circ-AASDH functions as the progression of early stage lung adenocarcinoma by targeting miR-140-3p to activate E2F7 expression. Transl Lung Cancer Res. 10:57–70. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Zhang G, Qiu H, Yu H and Yuan W: The novel circular RNA circ-CAMK2A enhances lung adenocarcinoma metastasis by regulating the miR-615-5p/fibronectin 1 pathway. Cell Mol Biol Lett. 24:722019. View Article : Google Scholar : | |
|
Gao N and Ye B: Circ-SOX4 drives the tumorigenesis and development of lung adenocarcinoma via sponging miR-1270 and modulating PLAGL2 to activate WNT signaling pathway. Cancer Cell Int. 20:22020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Lv X, Zeng L, Li W, Zhong Y, Yuan J, Deng S, Liu B, Yuan B, Chen Y, et al: CircPVT1 promotes proliferation of lung squamous cell carcinoma by binding to miR-30d/e. J Exp Clin Cancer Res. 40:1932021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Xu C, Wang C, Gong W, Zhang K, Chen Q, Zhou S and Qi T: Circ-PAX2 promotes proliferation and metastasis by absorbing miR-186 in lung cancer cells. Int J Clin Exp Pathol. 11:3793–3801. 2018.PubMed/NCBI | |
|
Yu M, Tian Y, Wu M, Gao J, Wang Y, Liu F, Sheng S, Huo S and Bai J: A comparison of mRNA and circRNA expression between squamous cell carcinoma and adenocarcinoma of the lungs. Genet Mol Biol. 43:e202000542020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang W, Yang Y, Wu J, Niu Y, Yao Y, Zhang J, Huang X, Liang S, Chen R, Chen S and Guo L: Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling. Cell Death Differ. 27:1709–1727. 2020. View Article : Google Scholar |