1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar
|
2
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Desai K, McManus JM and Sharifi N:
Hormonal therapy for prostate cancer. Endocr Rev. 42:354–373. 2021.
View Article : Google Scholar
|
4
|
Teo MY, Rathkopf DE and Kantoff P:
Treatment of advanced prostate cancer. Annu Rev Med. 70:479–499.
2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lin SR, Mokgautsi N and Liu YN: Ras and
Wnt interaction contribute in prostate cancer bone metastasis.
Molecules. 25:23802020. View Article : Google Scholar :
|
6
|
Tan YT, Lin JF, Li T, Li JJ, Xu RH and Ju
HQ: LncRNA-mediated posttranslational modifications and
reprogramming of energy metabolism in cancer. Cancer Commun (Lond).
41:109–120. 2021. View Article : Google Scholar
|
7
|
Li S, Xie X, Peng F, Du J and Peng C:
Regulation of temozolomide resistance via lncRNAs: Clinical and
biological properties of lncRNAs in gliomas (Review). Int J Oncol.
61:1012022. View Article : Google Scholar
|
8
|
Yang G, Wu Y, Wan R, Sang H, Liu H and
Huang W: The role of noncoding RNAs in the regulation, diagnosis,
prognosis and treatment of osteosarcoma (Review). Int J Oncol.
59:692021. View Article : Google Scholar
|
9
|
Lv Y, Wang Z, Zhao K, Zhang G, Huang S and
Zhao Y: Role of noncoding RNAs in cholangiocarcinoma (Review). Int
J Oncol. 57:7–20. 2020.PubMed/NCBI
|
10
|
Sun X, Xin S, Zhang Y, Jin L, Liu X, Zhang
J, Mei W, Zhang B, Ma W and Ye L: Long noncoding RNA CASC11
interacts with YBX1 to promote prostate cancer progression by
suppressing the p53 pathway. Int J Oncol. 61:1102022. View Article : Google Scholar
|
11
|
Chen C, Tang X, Liu Y, Zhu J and Liu J:
Induction/reversal of drug resistance in gastric cancer by
non-coding RNAs (Review). Int J Oncol. 54:1511–1524. 2019.
|
12
|
Chen LJ, Wu L, Wang W, Zhai LL, Xiang F,
Li WB and Tang ZG: Long non-coding 01614 hyperactivates
WNT/β-catenin signaling to promote pancreatic cancer progression by
suppressing GSK-3β. Int J Oncol. 61:1162022. View Article : Google Scholar
|
13
|
Zhang M, Wu L, Wang X and Chen J:
LncKRT16P6 promotes tongue squamous cell carcinoma progression by
sponging miR-3180 and regulating GATAD2A expression. Int J Oncol.
61:1112022. View Article : Google Scholar :
|
14
|
Xie H, Zhao J, Wan J, Zhao J, Wang Q, Yang
X, Yang W, Lin P and Yu X: Long noncoding RNA AC245100.4 promotes
prostate cancer tumorigenesis via the microRNA1455p/RBBP5 axis.
Oncol Rep. 45:619–629. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huo W, Qi F and Wang K: Long noncoding RNA
BCYRN1 promotes prostate cancer progression via elevation of
HDAC11. Oncol Rep. 44:1233–1245. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang L, Han S, Jin G, Zhou X, Li M, Ying
X, Wang L, Wu H and Zhu Q: Linc00963: A novel, long non-coding RNA
involved in the transition of prostate cancer from
androgen-dependence to androgen-independence. Int J Oncol.
44:2041–2049. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bai M, He C, Shi S, Wang M, Ma J, Yang P,
Dong Y, Mou X and Han S: Linc00963 promote cell proliferation and
tumor growth in castration-resistant prostate cancer by modulating
miR-655/TRIM24 axis. Front Oncol. 11:6369652021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu CY, Wu KY, Lin TY and Chen CC: The
crosstalk of long non-coding RNA and MicroRNA in
castration-resistant and neuroendocrine prostate cancer: Their
interaction and clinical importance. Int J Mol Sci. 23:3922021.
View Article : Google Scholar
|
19
|
Zhang Y, Zhang J, Liang S, Lang G, Liu G,
Liu P and Deng X: Long non-coding RNA VIM-AS1 promotes prostate
cancer growth and invasion by regulating epithelial-mesenchymal
transition. J BUON. 24:2090–2098. 2019.PubMed/NCBI
|
20
|
Yin H, Zhang X, Yang P, Zhang X, Peng Y,
Li D, Yu Y, Wang Y, Zhang J, Ding X, et al: RNA m6A methylation
orchestrates cancer growth and metastasis via macrophage
reprogramming. Nat Commun. 12:13942021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sun J, Xiong Y, Jiang K, Xin B, Jiang T,
Wei R, Zou Y, Tan H, Jiang T, Yang A, et al: Hypoxia-sensitive long
noncoding RNA CASC15 promotes lung tumorigenesis by regulating the
SOX4/beta-catenin axis. J Exp Clin Cancer Res. 40:122021.
View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Feng T, Wei D, Zhao J, Li Q, Guo P, Yang
X, Li M, Jiang Y and Luo Y: Construction of enzalutamide-resistant
cell model of prostate cancer and preliminary screening of
potential drug-resistant genes. Exp Bio Med (Maywood).
15:1776–1787. 2021. View Article : Google Scholar
|
24
|
Chen S, Zhou Y, Chen Y and Gu J: fastp: An
ultra-fast all-in-one FASTQ preprocessor. Bioinformatics.
34:i884–i890. 2018. View Article : Google Scholar :
|
25
|
Kim D, Langmead B and Salzberg SL: HISAT:
A fast spliced aligner with low memory requirements. Nat Methods.
12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liao Y, Smyth GK and Shi W: featureCounts:
An efficient general purpose program for assigning sequence reads
to genomic features. Bioinformatics. 30:923–930. 2014. View Article : Google Scholar
|
27
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The gene
ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
The Gene Ontology Consortium: The gene
ontology resource: 20 years and still GOing strong. Nucleic Acids
Res. 47:D330–D338. 2019. View Article : Google Scholar :
|
29
|
Kanehisa M: Post-Genome Informatics.
Oxford University Press; New York, NY: 2000
|
30
|
Cai C, Wang H, He HH, Chen S, He L, Ma F,
Mucci L, Wang Q, Fiore C, Sowalsky AG, et al: ERG induces androgen
receptor-mediated regulation of SOX9 in prostate cancer. J Clin
Invest. 123:1109–1122. 2013. View Article : Google Scholar :
|
31
|
Zhou C, Wang Z, Cao Y and Zhao L:
Pan-cancer analysis reveals the oncogenic role of
3-hydroxy-3-methylglutaryl-CoA synthase 1. Cancer Rep (Hoboken).
5:e15622021.
|
32
|
Yang M, Gallo-Ebert C, Hayward M, Liu W,
McDonough V and Nickels JT Jr: Human insulin growth factor 2 mRNA
binding protein 2 increases MicroRNA 33a/b inhibition of liver
ABCA1 expression and alters low-density apolipoprotein levels in
mice. Mol Cell Biol. 40:e00058–e00020. 2020. View Article : Google Scholar :
|
33
|
Xu K, Dai X, Wu J and Wen K:
N(6)-methyladenosine (m(6)A) reader IGF2BP2 stabilizes HK2
stability to accelerate the Warburg effect of oral squamous cell
carcinoma progression. J Cancer Res Clin Oncol. 148:3375–3384.
2022. View Article : Google Scholar
|
34
|
Xu Q, Chen K and Meng J: WHISTLE: A
functionally annotated high-accuracy map of human m(6)a
epitranscriptome. Methods Mol Biol. 2284:519–529. 2021. View Article : Google Scholar
|
35
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan
HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, et al: LncRNA DSCAM-AS1
interacts with YBX1 to promote cancer progression by forming a
positive feedback loop that activates FOXA1 transcription network.
Theranostics. 10:10823–10837. 2020. View Article : Google Scholar :
|
36
|
Wen S, Wei Y, Zen C, Xiong W, Niu Y and
Zhao Y: Long non-coding RNA NEAT1 promotes bone metastasis of
prostate cancer through N6-methyladenosine. Mol Cancer. 19:1712020.
View Article : Google Scholar :
|
37
|
Ghildiyal R, Sawant M, Renganathan A,
Mahajan K, Kim EH, Luo J, Dang HX, Maher CA, Feng FY and Mahajan
NP: Loss of long noncoding RNA NXTAR in prostate cancer augments
androgen receptor expression and enzalutamide resistance. Cancer
Res. 82:155–168. 2022. View Article : Google Scholar
|
38
|
Sun F, Wu K, Yao Z, Mu X, Zheng Z, Sun M,
Wang Y, Liu Z and Zhu Y: Long noncoding RNA LINC00963 induces NOP2
expression by sponging tumor suppressor miR-542-3p to promote
metastasis in prostate cancer. Aging (Albany NY). 12:11500–11516.
2020. View Article : Google Scholar
|
39
|
Zhao H, Dong H, Wang P and Zhu H: Long
non-coding RNA SNHG17 enhances the aggressiveness of C4-2 human
prostate cancer cells in association with β-catenin signaling.
Oncol Lett. 21:4722021. View Article : Google Scholar
|
40
|
Bai M, Lei Y, Wang M, Ma J, Yang P, Mou X,
Dong Y and Han S: Long Non-coding RNA SNHG17 promotes cell
proliferation and invasion in castration-resistant prostate cancer
by targeting the miR-144/CD51 Axis. Front Genet. 11:2742020.
View Article : Google Scholar
|
41
|
Jin Y, Cui Z, Li X, Jin X and Peng J:
Upregulation of long non-coding RNA PlncRNA-1 promotes
proliferation and induces epithelial-mesenchymal transition in
prostate cancer. Oncotarget. 8:26090–26099. 2017. View Article : Google Scholar
|
42
|
Cui Z, Gao H, Yan N, Dai Y, Wang H, Wang
M, Wang J, Zhang D, Sun P, Qi T, et al: LncRNA PlncRNA-1
accelerates the progression of prostate cancer by regulating
PTEN/Akt axis. Aging (Albany NY). 13:12113–12128. 2021. View Article : Google Scholar
|
43
|
Shi SJ, Zhang X, Han DH, Yang F, LI Y and
Wang LJ: Long non-coding RNA VIM-AS1 promote proliferation and
invasion of castrition-resistant prostate cancer C4-2 cells. Chin J
Cell Mol Imm. 36:1083–1088. 2020.
|
44
|
Gobel A, Riffel RM, Hofbauer LC and
Rachner TD: The mevalonate pathway in breast cancer biology. Cancer
Lett. 542:2157612022. View Article : Google Scholar
|
45
|
Laka K, Makgoo L and Mbita Z:
Cholesterol-lowering phytochemicals: Targeting the mevalonate
pathway for anticancer interventions. Front Genet. 13:8416392022.
View Article : Google Scholar
|
46
|
Wang IH, Huang TT, Chen JL, Chu LW, Ping
YH, Hsu KW, Huang KH, Fang WL, Lee HC, Chen CF, et al: Mevalonate
pathway enzyme HMGCS1 contributes to gastric cancer progression.
Cancers (Basel). 12:10882020. View Article : Google Scholar
|
47
|
Yao W, Jiao Y, Zhou Y and Luo X: KLF13
suppresses the proliferation and growth of colorectal cancer cells
through transcriptionally inhibiting HMGCS1-mediated cholesterol
biosynthesis. Cell Biosci. 10:762020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Walsh CA, Akrap N, Garre E, Magnusson Y,
Harrison H, Andersson D, Jonasson E, Rafnsdottir S, Choudhry H,
Buffa F, et al: The mevalonate precursor enzyme HMGCS1 is a novel
marker and key mediator of cancer stem cell enrichment in luminal
and basal models of breast cancer. PLoS One. 15:e02361872020.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Ashida S, Kawada C and Inoue K: Stromal
regulation of prostate cancer cell growth by mevalonate pathway
enzymes HMGCS1 and HMGCR. Oncol Lett. 14:6533–6542. 2017.PubMed/NCBI
|
50
|
Cheng Y, Meng Y, Li S, Cao D, Ben S, Qin
C, Hua L and Cheng G: Genetic variants in the cholesterol
biosynthesis pathway genes and risk of prostate cancer. Gene.
774:1454322021. View Article : Google Scholar
|
51
|
Xue ST, Zheng B, Cao SQ, Ding JC, Hu GS,
Liu W and Chen C: Long non-coding RNA LINC00680 functions as a
ceRNA to promote esophageal squamous cell carcinoma progression
through the miR-423-5p/PAK6 axis. Mol Cancer. 21:692022. View Article : Google Scholar :
|
52
|
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z,
Du H, Ren D, Dai Y and Peng X: m(6) A modification of lncRNA PCAT6
promotes bone metastasis in prostate cancer through
IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 11. pp.
e4262021, View Article : Google Scholar
|
53
|
Chen X, Xie R, Gu P, Huang M, Han J, Dong
W, Xie W, Wang B, He W, Zhong G, et al: Long noncoding RNA LBCS
inhibits self-renewal and chemoresistance of bladder cancer stem
cells through epigenetic silencing of SOX2. Clin Cancer Res.
25:1389–1403. 2019. View Article : Google Scholar
|
54
|
Li S, Wu Q, Liu J and Zhong Y:
Identification of Two m6A Readers YTHDF1 and IGF2BP2 as immune
biomarkers in head and neck squamous cell carcinoma. Front Genet.
13:9036342022. View Article : Google Scholar
|
55
|
Zhang Z, Xing Y, Gao W, Yang L, Shi J,
Song W and Li T: N(6)-methyladenosine (m(6)A) reader IGF2BP2
promotes gastric cancer progression via targeting SIRT1.
Bioengineered. 13:11541–11550. 2022. View Article : Google Scholar
|
56
|
Yao B, Zhang Q, Yang Z, An F, Nie H, Wang
H, Yang C, Sun J, Chen K, Zhou J, et al: CircEZH2/miR-133b/IGF2BP2
aggravates colorectal cancer progression via enhancing the
stability of m(6) A-modified CREB1 mRNA. Mol Cancer. 21:1402022.
View Article : Google Scholar
|
57
|
Liu Y, Shi M, He X, Cao Y, Liu P, Li F,
Zou S, Wen C, Zhan Q, Xu Z, et al: LncRNA-PACERR induces pro-tumour
macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2
in pancreatic ductal adenocarcinoma. J Hematol Oncol. 15:522022.
View Article : Google Scholar
|
58
|
Han L, Lei G, Chen Z, Zhang Y, Huang C and
Chen W: IGF2BP2 regulates MALAT1 by serving as an
N6-methyladenosine reader to promote NSCLC proliferation. Front Mol
Biosci. 8:7800892021. View Article : Google Scholar
|