|
1
|
Vestad B, Llorente A, Neurauter A, Phuyal
S, Kierulf B, Kierulf P, Skotland T, Sandvig K, Haug KBF and
Øvstebø R: Size and concentration analyses of extracellular
vesicles by nanoparticle tracking analysis: A variation study. J
Extracell Vesicles. 6:13440872017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mathieu M, Martin-Jaular L, Lavieu G and
Théry C: Specificities of secretion and uptake of exosomes and
other extracellular vesicles for cell-to-cell communication. Nat
Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wortzel I, Dror S, Kenific CM and Lyden D:
Exosome-mediated metastasis: Communication from a distance. Dev
Cell. 49:347–360. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Meng X, Li X, Zhang P, Wang J, Zhou Y and
Chen M: Circular RNA: An emerging key player in RNA world. Brief
Bioinform. 18:547–557. 2017.PubMed/NCBI
|
|
6
|
Peng F, Gong W, Li S, Yin B, Zhao C, Liu
W, Chen X, Luo C, Huang Q, Chen T, et al: circRNA_010383 acts as a
sponge for miR-135a, and its downregulated expression contributes
to renal fibrosis in diabetic nephropathy. Diabetes. 70:603–615.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol
Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X,
Zhong J, Zhao Z, Zhao K, Liu D, et al: Circular RNA-encoded
oncogenic E-cadherin variant promotes glioblastoma tumorigenicity
through activation of EGFR-STAT3 signalling. Nat Cell Biol.
23:278–291. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao
L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The
landscape of circular RNA in cancer. Cell. 176:869–881.e13. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Su C, Han Y, Zhang H, Li Y, Yi L, Wang X,
Zhou S, Yu D, Song X, Xiao N, et al: CiRS-7 targeting miR-7
modulates the progression of non-small cell lung cancer in a manner
dependent on NF-κB signalling. J Cell Mol Med. 22:3097–3107. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J,
Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable
in exosomes: A promising biomarker for cancer diagnosis. Cell Res.
25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Johnstone RM, Adam M, Hammond JR, Orr L
and Turbide C: Vesicle formation during reticulocyte maturation.
Association of plasma membrane activities with released vesicles
(exosomes). J Biol Chem. 262:9412–9420. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cocucci E, Racchetti G and Meldolesi J:
Shedding microvesicles: Artefacts no more. Trends Cell Biol.
19:43–51. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bronson DL, Fraley EE, Fogh J and Kalter
SS: Induction of retrovirus particles in human testicular tumor
(Tera-1) cell cultures: An electron microscopic study. J Natl
Cancer Inst. 63:337–339. 1979.PubMed/NCBI
|
|
15
|
Akers JC, Gonda D, Kim R, Carter BS and
Chen CC: Biogenesis of extracellular vesicles (EV): Exosomes,
microvesicles, retrovirus-like vesicles, and apoptotic bodies. J
Neurooncol. 113:1–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ihara T, Yamamoto T, Sugamata M, Okumura H
and Ueno Y: The process of ultrastructural changes from nuclei to
apoptotic body. Virchows Arch. 433:443–447. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Milane L, Singh A, Mattheolabakis G,
Suresh M and Amiji MM: Exosome mediated communication within the
tumor microenvironment. J Control Release. 219:278–294. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pols MS and Klumperman J: Trafficking and
function of the tetraspanin CD63. Exp Cell Res. 315:1584–1592.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Janas T, Janas MM, Sapoń K and Janas T:
Mechanisms of RNA loading into exosomes. FEBS Lett. 589:1391–1398.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
D'Souza-Schorey C and Schorey JS:
Regulation and mechanisms of extracellular vesicle biogenesis and
secretion. Essays Biochem. 62:125–133. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hessvik NP and Llorente A: Current
knowledge on exosome biogenesis and release. Cell Mol Life Sci.
75:193–208. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sotelo JR and Porter KR: An electron
microscope study of the rat ovum. J Biophys Biochem Cytol.
5:327–342. 1959. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kowal J, Tkach M and Théry C: Biogenesis
and secretion of exosomes. Curr Opin Cell Biol. 29:116–125. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wollert T and Hurley JH: Molecular
mechanism of multivesicular body biogenesis by ESCRT complexes.
Nature. 464:864–869. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Frankel EB and Audhya A: ESCRT-dependent
cargo sorting at multivesicular endosomes. Semin Cell Dev Biol.
74:4–10. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Teo H, Perisic O, González B and Williams
RL: ESCRT-II, an endosome-associated complex required for protein
sorting: Crystal structure and interactions with ESCRT-III and
membranes. Dev Cell. 7:559–569. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schöneberg J, Pavlin MR, Yan S, Righini M,
Lee IH, Carlson LA, Bahrami AH, Goldman DH, Ren X, Hummer G, et al:
ATP-dependent force generation and membrane scission by ESCRT-III
and Vps4. Science. 362:1423–1428. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Odorizzi G, Babst M and Emr SD: Fab1p
PtdIns(3)P 5-kinase function essential for protein sorting in the
multivesicular body. Cell. 95:847–858. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hemler ME: Tetraspanin functions and
associated microdomains. Nat Rev Mol Cell Biol. 6:801–811. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jian X, He H, Zhu J, Zhang Q, Zheng Z,
Liang X, Chen L, Yang M, Peng K, Zhang Z, et al: Hsa_circ_001680
affects the proliferation and migration of CRC and mediates its
chemoresistance by regulating BMI1 through miR-340. Mol Cancer.
19:202020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Villarroya-Beltri C, Baixauli F,
Mittelbrunn M, Fernández-Delgado I, Torralba D, Moreno-Gonzalo O,
Baldanta S, Enrich C, Guerra S and Sánchez-Madrid F: ISGylation
controls exosome secretion by promoting lysosomal degradation of
MVB proteins. Nat Commun. 7:135882016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Cai H, Reinisch K and Ferro-Novick S:
Coats, tethers, Rabs, and SNAREs work together to mediate the
intracellular destination of a transport vesicle. Dev Cell.
12:671–682. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Barlowe C, Orci L, Yeung T, Hosobuchi M,
Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M and
Schekman R: COPII: A membrane coat formed by Sec proteins that
drive vesicle budding from the endoplasmic reticulum. Cell.
77:895–907. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Béthune J, Wieland F and Moelleken J:
COPI-mediated transport. J Membr Biol. 211:65–79. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stenmark H: Rab GTPases as coordinators of
vesicle traffic. Nat Rev Mol Cell Biol. 10:513–525. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hsu C, Morohashi Y, Yoshimura S,
Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M,
Möbius W, Rhee J, et al: Regulation of exosome secretion by Rab35
and its GTPase-activating proteins TBC1D10A-C. J Cell Biol.
189:223–232. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rothman JE: Mechanisms of intracellular
protein transport. Nature. 372:55–63. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hoshino A, Costa-Silva B, Shen TL,
Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di
Giannatale A, Ceder S, et al: Tumour exosome integrins determine
organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Su N, Hao Y, Wang F, Hou W, Chen H and Luo
Y: Mesenchymal stromal exosome-functionalized scaffolds induce
innate and adaptive immunomodulatory responses toward tissue
repair. Sci Adv. 7:eabf72072021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yamashita T, Takahashi Y, Nishikawa M and
Takakura Y: Effect of exosome isolation methods on physicochemical
properties of exosomes and clearance of exosomes from the blood
circulation. Eur J Pharm Biopharm. 98:1–8. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shin S, Park YH, Jung SH, Jang SH, Kim MY,
Lee JY and Chung YJ: Urinary exosome microRNA signatures as a
noninvasive prognostic biomarker for prostate cancer. NPJ Genom
Med. 6:452021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sun J, Lu Z, Fu W, Lu K, Gu X, Xu F, Dai
J, Yang Y and Jiang J: Exosome-derived ADAM17 promotes liver
metastasis in colorectal cancer. Front Pharmacol. 12:7343512021.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pastushenko I and Blanpain C: EMT
transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS,
Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted
exosomes promote metastasis and chemotherapy resistance by
enhancing cell stemness and epithelial-mesenchymal transition in
colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li X, Li K, Li M, Lin X, Mei Y, Huang X
and Yang H: Chemoresistance transmission via exosome-transferred
MMP14 in pancreatic cancer. Front Oncol. 12:8446482022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hisakane K, Seike M, Sugano T, Yoshikawa
A, Matsuda K, Takano N, Takahashi S, Noro R and Gemma A:
Exosome-derived miR-210 involved in resistance to osimertinib and
epithelial-mesenchymal transition in EGFR mutant non-small cell
lung cancer cells. Thorac Cancer. 12:1690–1698. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye
M, He X, Zhang F and Han J: Exosome-mediated transfer of
lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast
cancer. Int J Oncol. 53:1013–1026. 2018.PubMed/NCBI
|
|
48
|
Zhang Z, Xing T, Chen Y and Xiao J:
Exosome-mediated miR-200b promotes colorectal cancer proliferation
upon TGF-β1 exposure. Biomed Pharmacother. 106:1135–1143. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Deng M, Yuan H, Liu S, Hu Z and Xiao H:
Exosome-transmitted LINC00461 promotes multiple myeloma cell
proliferation and suppresses apoptosis by modulating microRNA/BCL-2
expression. Cytotherapy. 21:96–106. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang P, Zhou H, Lu K, Lu Y, Wang Y and
Feng T: Exosome-mediated delivery of MALAT1 induces cell
proliferation in breast cancer. Onco Targets Ther. 11:291–299.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li X, Chen C, Wang Z, Liu J, Sun W, Shen
K, Lv Y, Zhu S, Zhan P, Lv T and Song Y: Elevated exosome-derived
miRNAs predict osimertinib resistance in non-small cell lung
cancer. Cancer Cell Int. 21:4282021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Song Z, Mao J, Barrero RA, Wang P, Zhang F
and Wang T: Development of a CD63 aptamer for efficient cancer
immunochemistry and immunoaffinity-based exosome isolation.
Molecules. 25:55852020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jing X, Xie M, Ding K, Xu T, Fang Y, Ma P
and Shu Y: Exosome-transmitted miR-769-5p confers cisplatin
resistance and progression in gastric cancer by targeting CASP9 and
promoting the ubiquitination degradation of p53. Clin Transl Med.
12:e7802022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Han L, Shi WJ, Xie YB and Zhang ZG:
Diagnostic value of four serum exosome microRNAs panel for the
detection of colorectal cancer. World J Gastrointest Oncol.
13:970–979. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Greene J, Baird AM, Casey O, Brady L,
Blackshields G, Lim M, O'Brien O, Gray SG, McDermott R and Finn SP:
Circular RNAs are differentially expressed in prostate cancer and
are potentially associated with resistance to enzalutamide. Sci
Rep. 9:107392019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Patop IL, Wüst S and Kadener S: Past,
present, and future of circRNAs. EMBO J. 38:e1008362019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wilusz JE: A 360° view of circular RNAs:
From biogenesis to functions. Wiley Interdiscip Rev RNA.
9:e14782018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lu Z, Filonov GS, Noto JJ, Schmidt CA,
Hatkevich TL, Wen Y, Jaffrey SR and Matera AG: Metazoan tRNA
introns generate stable circular RNAs in vivo. RNA. 21:1554–1565.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kun-Peng Z, Xiao-Long M, Lei Z, Chun-Lin
Z, Jian-Ping H and Tai-Cheng Z: Screening circular RNA related to
chemotherapeutic resistance in osteosarcoma by RNA sequencing.
Epigenomics. 10:1327–1346. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bach DH, Lee SK and Sood AK: Circular RNAs
in Cancer. Mol Ther Nucleic Acids. 16:118–129. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Barrett SP and Salzman J: Circular RNAs:
Analysis, expression and potential functions. Development.
143:1838–1847. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li X, Yang L and Chen LL: The biogenesis,
functions, and challenges of circular RNAs. Mol Cell. 71:428–442.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong
F, Ren D, Ye X, Li C, Wang Y, et al: Circular RNAs function as
ceRNAs to regulate and control human cancer progression. Mol
Cancer. 17:792018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zang J, Lu D and Xu A: The interaction of
circRNAs and RNA binding proteins: An important part of circRNA
maintenance and function. J Neurosci Res. 98:87–97. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yu CY, Li TC, Wu YY, Yeh CH, Chiang W,
Chuang CY and Kuo HC: The circular RNA circBIRC6 participates in
the molecular circuitry controlling human pluripotency. Nat Commun.
8:11492017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lei M, Zheng G, Ning Q, Zheng J and Dong
D: Translation and functional roles of circular RNAs in human
cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Y and Wang Z: Efficient backsplicing
produces translatable circular mRNAs. RNA. 21:172–179. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Legnini I, Di Timoteo G, Rossi F, Morlando
M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade
M, et al: Circ-ZNF609 Is a circular RNA that can be translated and
functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Meyer KD, Patil DP, Zhou J, Zinoviev A,
Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR
m(6)A promotes cap-independent translation. Cell. 163:999–1010.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang
Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of
circular RNAs driven by N6-methyladenosine. Cell Res.
27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sun H, Wu Z, Liu M, Yu L, Li J, Ding X and
Jin H: CircRNA may not be ‘circular’. bioRxiv.
2020.2009.2027.315275. 2020.
|
|
77
|
Patop IL and Kadener S: circRNAs in
cancer. Curr Opin Genet Dev. 48:121–127. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bao C, Lyu D and Huang S: Circular RNA
expands its territory. Mol Cell Oncol. 3:e10844432015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Dou Y, Cha DJ, Franklin JL, Higginbotham
JN, Jeppesen DK, Weaver AM, Prasad N, Levy S, Coffey RJ, Patton JG
and Zhang B: Circular RNAs are down-regulated in KRAS mutant colon
cancer cells and can be transferred to exosomes. Sci Rep.
6:379822016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li Y, Zang H, Zhang X and Huang G:
Exosomal Circ-ZNF652 promotes cell proliferation, migration,
invasion and glycolysis in hepatocellular carcinoma via
miR-29a-3p/GUCD1 axis. Cancer Manag Res. 12:7739–7751. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Villanueva A: Hepatocellular carcinoma. N
Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Dai X, Chen C, Yang Q, Xue J, Chen X, Sun
B, Luo F, Liu X, Xiao T, Xu H, et al: Exosomal circRNA_100284 from
arsenite-transformed cells, via microRNA-217 regulation of EZH2, is
involved in the malignant transformation of human hepatic cells by
accelerating the cell cycle and promoting cell proliferation. Cell
Death Dis. 9:4542018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lai Z, Wei T, Li Q, Wang X, Zhang Y and
Zhang S: Exosomal circFBLIM1 promotes hepatocellular carcinoma
progression and glycolysis by regulating the miR-338/LRP6 axis.
Cancer Biother Radiopharm. Sep 9–2020.(Epub ahead of print).
|
|
84
|
Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu
K, Fan Q, Li J, Ning T, Tian F, et al: Exosome circRNA secreted
from adipocytes promotes the growth of hepatocellular carcinoma by
targeting deubiquitination-related USP7. Oncogene. 38:2844–2859.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen W, Quan Y, Fan S, Wang H, Liang J,
Huang L, Chen L, Liu Q, He P and Ye Y: Exosome-transmitted circular
RNA hsa_circ_0051443 suppresses hepatocellular carcinoma
progression. Cancer Lett. 475:119–128. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang Y, Tang K, Chen L, Du M and Qu Z:
Exosomal CircGDI2 suppresses oral squamous cell carcinoma
progression through the regulation of MiR-424-5p/SCAI axis. Cancer
Manag Res. 12:7501–7514. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Feng W, Gong H, Wang Y, Zhu G, Xue T, Wang
Y and Cui G: circIFT80 functions as a ceRNA of miR-1236-3p to
promote colorectal cancer progression. Mol Ther Nucleic Acids.
18:375–387. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Luo Y, Ma J, Liu F, Guo J and Gui R:
Diagnostic value of exosomal circMYC in radioresistant
nasopharyngeal carcinoma. Head Neck. 42:3702–3711. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Luo Y, Liu F, Guo J and Gui R:
Upregulation of circ_0000199 in circulating exosomes is associated
with survival outcome in OSCC. Sci Rep. 10:137392020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li Z, Yanfang W, Li J, Jiang P, Peng T,
Chen K, Zhao X, Zhang Y, Zhen P, Zhu J and Li X: Tumor-released
exosomal circular RNA PDE8A promotes invasive growth via the
miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett.
432:237–250. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li J, Li Z, Jiang P, Peng M, Zhang X, Chen
K, Liu H, Bi H, Liu X and Li X: Circular RNA IARS (circ-IARS)
secreted by pancreatic cancer cells and located within exosomes
regulates endothelial monolayer permeability to promote tumor
metastasis. J Exp Clin Cancer Res. 37:1772018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen X, Chen RX, Wei WS, Li YH, Feng ZH,
Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, et al: PRMT5 circular RNA
promotes metastasis of urothelial carcinoma of the bladder through
sponging mir-30c to induce epithelial-mesenchymal transition. Clin
Cancer Res. 24:6319–6330. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yang H, Zhang H, Yang Y, Wang X, Deng T,
Liu R, Ning T, Bai M, Li H, Zhu K, et al: Hypoxia induced exosomal
circRNA promotes metastasis of colorectal cancer via targeting
GEF-H1/RhoA axis. Theranostics. 10:8211–8226. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhao H, Chen S and Fu Q: Exosomes from
CD133+ cells carrying circ-ABCC1 mediate cell stemness
and metastasis in colorectal cancer. J Cell Biochem. 121:3286–3297.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie
JW, Wang JB, Lin JX, Chen QY, Cao LL, et al: Circular RNA
circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to
facilitate gastric cancer invasion and metastasis. Cancer Lett.
471:38–48. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hui C, Tian L and He X: Circular RNA
circNHSL1 contributes to gastric cancer progression through the
miR-149-5p/YWHAZ axis. Cancer Manag Res. 12:7117–7130. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
He F, Zhong X, Lin Z, Lin J, Qiu M, Li X
and Hu Z: Plasma exo-hsa_circRNA_0056616: A potential biomarker for
lymph node metastasis in lung adenocarcinoma. J Cancer.
11:4037–4046. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu
M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA
circSATB2 promotes progression of non-small cell lung cancer cells.
Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo
J, Zhang Y, Li H, Zhang Q, Yang Y and Chen G: Three isoforms of
exosomal circPTGR1 promote hepatocellular carcinoma metastasis via
the miR449a-MET pathway. EBioMedicine. 40:432–445. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Huang XY, Huang ZL, Huang J, Xu B, Huang
XY, Xu YH, Zhou J and Tang ZY: Exosomal circRNA-100338 promotes
hepatocellular carcinoma metastasis via enhancing invasiveness and
angiogenesis. J Exp Clin Cancer Res. 39:202020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Guan X, Zong ZH, Liu Y, Chen S, Wang LL
and Zhao Y: circPUM1 promotes tumorigenesis and progression of
ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol Ther
Nucleic Acids. 18:882–892. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zong ZH, Du YP, Guan X, Chen S and Zhao Y:
CircWHSC1 promotes ovarian cancer progression by regulating MUC1
and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer
Res. 38:4372019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F,
Ma P, Jiang H, Wu X, Shu Y and Xu T: Exosomal circSHKBP1 promotes
gastric cancer progression via regulating the miR-582-3p/HUR/VEGF
axis and suppressing HSP90 degradation. Mol Cancer. 19:1122020.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng
B, Chen C, Chang W, Ping Y, Ji P, et al: Exosomal circPACRGL
promotes progression of colorectal cancer via the
miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 19:1172020.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Fang K, Chen X, Qiu F, Xu J, Xiong H and
Zhang Z: Serum-derived exosomes-mediated circular RNA ARHGAP10
modulates the progression of non-small cell lung cancer through the
miR-638/FAM83F axis. Cancer Biother Radiopharm. 37:96–110.
2020.PubMed/NCBI
|
|
106
|
Farrell N: Platinum formulations as
anticancer drugs clinical and pre-clinical studies. Curr Top Med
Chem. 11:2623–2631. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang X, Zhang H, Yang H, Bai M, Ning T,
Deng T, Liu R, Fan Q, Zhu K, Li J, et al: Exosome-delivered circRNA
promotes glycolysis to induce chemoresistance through the
miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 14:539–555.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal
R and Abu N: Extracellular vesicle-derived circular RNAs confers
chemoresistance in colorectal cancer. Sci Rep. 9:164972019.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Luo Y and Gui R: Circulating exosomal
circFoxp1 confers cisplatin resistance in epithelial ovarian cancer
cells. J Gynecol Oncol. 31:e752020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhao Z, Ji M, Wang Q, He N and Li Y:
Circular RNA Cdr1as upregulates SCAI to suppress cisplatin
resistance in ovarian cancer via miR-1270 suppression. Mol Ther
Nucleic Acids. 18:24–33. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yao W, Guo P, Mu Q and Wang Y:
Exosome-derived Circ-PVT1 contributes to cisplatin resistance by
regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1
axis in gastric cancer cells. Cancer Biother Radiopharm.
36:347–359. 2021.PubMed/NCBI
|
|
112
|
Han C, Wang S, Wang H and Zhang J:
Exosomal circ-HIPK3 facilitates tumor progression and temozolomide
resistance by regulating miR-421/ZIC5 axis in glioma. Cancer
Biother Radiopharm. 36:537–548. 2021.PubMed/NCBI
|
|
113
|
Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z,
Zhang G, Gu J and Kang D: Exosome-mediated transfer of circRNA
CircNFIX enhances temozolomide resistance in glioma. Cancer Lett.
479:1–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Luo Y and Gui R: Circulating exosomal
circMYC is associated with recurrence and bortezomib resistance in
patients with multiple myeloma. Turk J Haematol. 37:248–262. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ma J, Qi G and Li L: A novel serum
exosomes-based biomarker hsa_circ_0002130 facilitates
osimertinib-resistance in non-small cell lung cancer by sponging
miR-498. Onco Targets Ther. 13:5293–5307. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hu K, Liu X, Li Y, Li Q, Xu Y, Zeng W,
Zhong G and Yu C: Exosomes mediated transfer of Circ_UBE2D2
enhances the resistance of breast cancer to tamoxifen by binding to
MiR-200a-3p. Med Sci Monit. 26:e9222532020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ,
Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1
induces natural killer cell exhaustion and may cause resistance to
anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer.
19:1102020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Xia D and Gu X: Plasmatic exosome-derived
circRNAs panel act as fingerprint for glioblastoma. Aging (Albany
NY). 13:19575–19586. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Yang B, Teng F, Chang L, Wang J, Liu DL,
Cui YS and Li GH: Tumor-derived exosomal circRNA_102481 contributes
to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small
cell lung cancer. Aging (Albany NY). 13:13264–13286. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Li P, Xu Z, Liu T, Liu Q, Zhou H, Meng S,
Feng Z, Tang Y, Liu C, Feng J, et al: Circular RNA sequencing
reveals serum exosome circular RNA panel for high-grade astrocytoma
diagnosis. Clin Chem. 68:332–343. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Liu S, Lin Z, Rao W, Zheng J, Xie Q, Lin
Y, Lin X, Chen H, Chen Y and Hu Z: Upregulated expression of serum
exosomal hsa_circ_0026611 is associated with lymph node metastasis
and poor prognosis of esophageal squamous cell carcinoma. J Cancer.
12:918–926. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gao L, Tang X, He Q, Sun G, Wang C and Qu
H: Exosome-transmitted circCOG2 promotes colorectal cancer
progression via miR-1305/TGF-β2/SMAD3 pathway. Cell Death Discov.
7:2812021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng
T, Yang H, Sun W, Wang X, Zhu K, et al: Exosomal circRNA derived
from gastric tumor promotes white adipose browning by targeting the
miR-133/PRDM16 pathway. Int J Cancer. 144:2501–2515. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Luo Y, Liu F and Gui R: High expression of
circulating exosomal circAKT3 is associated with higher recurrence
in HCC patients undergoing surgical treatment. Surg Oncol.
33:276–281. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Wu G, Sun Y, Xiang Z, Wang K, Liu B, Xiao
G, Niu Y, Wu D and Chang C: Preclinical study using circular RNA 17
and micro RNA 181c-5p to suppress the enzalutamide-resistant
prostate cancer progression. Cell Death Dis. 10:372019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Pan B, Qin J, Liu X, He B, Wang X, Pan Y,
Sun H, Xu T, Xu M, Chen X, et al: Identification of serum exosomal
hsa-circ-0004771 as a novel diagnostic biomarker of colorectal
cancer. Front Genet. 10:10962019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Shao Y, Tao X, Lu R, Zhang H, Ge J, Xiao
B, Ye G and Guo J: Hsa_circ_0065149 is an indicator for early
gastric cancer screening and prognosis prediction. Pathol Oncol
Res. 26:1475–1482. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Poulet G, Massias J and Taly V: Liquid
biopsy: General concepts. Acta Cytol. 63:449–455. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Mader S and Pantel K: Liquid biopsy:
Current status and future perspectives. Oncol Res Treat.
40:404–408. 2017. View Article : Google Scholar : PubMed/NCBI
|