Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2023 Volume 62 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2023 Volume 62 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of microRNAs in glycolysis in gynecological tumors (Review)

  • Authors:
    • Qianying Chen
    • Siyi Shen
    • Nengyuan Lv
    • Jinyi Tong
  • View Affiliations / Copyright

    Affiliations: Department of The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 63
    |
    Published online on: April 13, 2023
       https://doi.org/10.3892/ijo.2023.5511
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gynecological malignancies are a leading cause of mortality among females worldwide, and difficulties in early diagnosis and acquired drug resistance constitute obstacles to effective therapies. Ovarian cancer causes more deaths than any other cancer of the female reproductive system. Specifically, in females aged 20 to 39 years, cervical cancer is the third leading cause of cancer‑related mortality, and the incidence rates of cervical adenocarcinoma are increasing. Endometrial carcinoma is the most common gynecological cancer in developed countries, such as the United States. Vulvar cancer and uterine sarcomas are considered rare, and therefore require further investigation. Notably, the development of novel treatment options is critical. Previous research has revealed metabolic reprogramming as a distinct feature of tumor cells, which includes aerobic glycolysis. In this instance, cells produce adenosine triphosphate and various precursor molecules through glycolysis, despite oxygen levels being sufficient. This is to meet the energy required for rapid DNA replication. This phenomenon is also known as the Warburg effect. The Warburg effect results in an increased glucose uptake, lactate production and reduced pH values in tumor cells. The results of previous studies have demonstrated that microRNAs (miRNAs/miRs) regulate glycolysis, and participate in tumorigenesis and tumor progression via interactions with glucose transporters, essential enzymes, tumor suppressor genes, transcription factors and multiple cellular signaling pathways that play critical roles in glycolysis. Notably, miRNAs affect the levels of glycolysis in ovarian, cervical and endometrial cancers. The present review article provides a comprehensive overview of the literature surrounding miRNAs in the glycolysis of gynecological malignant cells. The present review also aimed to determine the role of miRNAs as potential therapeutic options rather than diagnostic markers.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD and Bhattacharya R: Small non-coding-RNA in gynecological malignancies. Cancers. 13:10852021. View Article : Google Scholar : PubMed/NCBI

2 

Brooks RA, Fleming GF, Lastra RR, Lee NK, Moroney JW, Son CH, Tatebe K and Veneris JL: Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin. 69:258–279. 2019.PubMed/NCBI

3 

Tsikouras P, Zervoudis S, Manav B, Tomara E, Iatrakis G, Romanidis C, Bothou A and Galazios G: Cervical cancer: Screening, diagnosis and staging. J BUON. 21:320–325. 2016.PubMed/NCBI

4 

Stewart C, Ralyea C and Lockwood S: Ovarian cancer: An integrated review. Semin Oncol Nurs. 35:151–156. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Shafabakhsh R and Asemi Z: Quercetin: A natural compound for ovarian cancer treatment. J Ovarian Res. 12:552019. View Article : Google Scholar : PubMed/NCBI

6 

Cree IA, White VA, Indave BI and Lokuhetty D: Revising the WHO classification: Female genital tract tumours. Histopathology. 76:151–156. 2020. View Article : Google Scholar

7 

Devouassoux-Shisheboran M and Genestie C: Pathobiology of ovarian carcinomas. Chin J Cancer. 34:50–55. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Vergote I, González-Martín A, Ray-Coquard I, Harter P, Colombo N, Pujol P, Lorusso D, Mirza MR, Brasiuniene B, Madry R, et al: European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer. Ann Oncol. 33:276–287. 2022. View Article : Google Scholar

9 

Steinberga I, Jansson K and Sorbe B: Quality indicators and survival outcome in Stage IIIB-IVB epithelial ovarian cancer treated at a single institution. In Vivo. 33:1521–1530. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Zhang C and Liu N: Noncoding RNAs in the glycolysis of ovarian cancer. Front Pharmacol. 13:8554882022. View Article : Google Scholar : PubMed/NCBI

11 

Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, Garcia FA, Moriarty AT, Waxman AG, Wilbur DC, et al: American Cancer Society, American Society for Colposcopy and cervical pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. CA Cancer J Clin. 62:147–172. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Xu HH, Wang K, Feng XJ, Dong SS, Lin A, Zheng LZ and Yan WH: Prevalence of human papillomavirus genotypes and relative risk of cervical cancer in China: A systematic review and meta-analysis. Oncotarget. 9:15386–15397. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Bray F, Carstensen B, Møller H, Zappa M, Zakelj MP, Lawrence G, Hakama M and Weiderpass E: Incidence trends of adenocarcinoma of the cervix in 13 European countries. Cancer Epidemiol Biomarkers Prev. 14:2191–2199. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Li H, Wu X and Cheng X: Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol. 27:e432016. View Article : Google Scholar : PubMed/NCBI

16 

Crosbie EJ, Einstein MH, Franceschi S and Kitchener HC: Human papillomavirus and cervical cancer. Lancet. 382:889–899. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Han X, Wen H, Ju X, Chen X, Ke G, Zhou Y, Li J, Xia L, Tang J, Liang S and Wu X: Predictive factors of para-aortic lymph nodes metastasis in cervical cancer patients: A retrospective analysis based on 723 para-aortic lymphadenectomy cases. Oncotarget. 8:51840–51847. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O and Bray F: Cancer incidence and mortality patterns in Europe Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 103:356–387. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, Chon HS, Chu C, Cohn D, Crispens MA, et al: Uterine neoplasms, version 1.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 16:170–199. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Kajo K, Vallová M, Biró C, Bognár G, Macháleková K, Závodná K, Galbavý Š and Žúbor P: Molecular pathology of endometrial carcinoma-a review. Cesk Patol. 51:65–73. 2015.In Czech.

21 

Miccò M, Sala E, Lakhman Y, Hricak H and Vargas HA: Imaging features of uncommon gynecologic cancers. AJR Am J Roentgenol. 205:1346–1359. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Di Fiore R, Suleiman S, Pentimalli F, O'Toole SA, O'Leary JJ, Ward MP, Conlon NT, Sabol M, Ozretić P, Erson-Bensan AE, et al: Could MicroRNAs be useful tools to improve the diagnosis and treatment of rare gynecological cancers? A Brief overview. Int J Mol Sci. 22:38222021. View Article : Google Scholar : PubMed/NCBI

23 

Mbatani N, Olawaiye AB and Prat J: Uterine sarcomas. Int J Gynaecol Obstet. 143(Suppl 2): S51–S58. 2018. View Article : Google Scholar

24 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

25 

Griffiths-Jones S: The microRNA registry. Nucleic Acids Res. 32(Database Issue): D109–D111. 2004. View Article : Google Scholar :

26 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Kim VN: MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Carthew RW and Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Riedmann LT and Schwentner R: miRNA, siRNA, piRNA and argonautes: News in small matters. RNA Biol. 7:133–139. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Brennecke J, Hipfner DR, Stark A, Russell RB and Cohen SM: Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 113:25–36. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Zeng Y, Wagner EJ and Cullen BR: Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 9:1327–1333. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Doench JG, Petersen CP and Sharp PA: siRNAs can function as miRNAs. Genes Dev. 17:438–442. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Xu P, Vernooy SY, Guo M and Hay BA: The drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 13:790–795. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Krützfeldt J and Stoffel M: MicroRNAs: A new class of regulatory genes affecting metabolism. Cell Metab. 4:9–12. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

37 

Warburg O: The chemical constitution of respiration ferment. Science. 68:437–443. 1928. View Article : Google Scholar : PubMed/NCBI

38 

Rolfe DF and Brown GC: Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 77:731–758. 1997. View Article : Google Scholar : PubMed/NCBI

39 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

40 

DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Fantin VR, St-Pierre J and Leder P: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 9:425–434. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Shim H, Chun YS, Lewis BC and Dang CV: A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc Natl Acad Sci USA. 95:1511–1516. 1998. View Article : Google Scholar : PubMed/NCBI

43 

Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M and Sabatini DM: An essential role of the mitochondrial electron transport Chain in cell proliferation is to enable aspartate synthesis. Cell. 162:540–551. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Kopp F and Mendell JT: Functional classification and experimental dissection of long noncoding RNAs. Cell. 172:393–407. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al: The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Ulitsky I and Bartel DP: lincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, et al: Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 21:498–510. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Gao YL, Zhao ZS, Zhang MY, Han LJ, Dong YJ and Xu B: Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol Res. 25:1391–1398. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Wang S, Hui Y, Li X and Jia Q: Silencing of lncRNA CCDC26 restrains the growth and migration of glioma cells in vitro and in vivo via targeting miR-203. Oncol Res. 26:1143–1154. 2018. View Article : Google Scholar

50 

Li X, Zhang C and Tian Y: Long non-coding RNA TDRG1 promotes hypoxia-induced glycolysis by targeting the miR-214-5p/SEMA4C axis in cervical cancer cells. J Mol Histol. 52:245–256. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Xiao L, Wang W, Zhao J, Xu H, Li S and Yang X: lncRNA MALAT1 promotes cell proliferation and invasion by regulating the miR-101/EZH2 axis in oral squamous cell carcinoma. Oncol Lett. 20:1642020. View Article : Google Scholar : PubMed/NCBI

52 

Erratum: Long Non-coding RNA CASC2 serves as A ceRNA of microRNA-21 to promote pdcd4 expression in oral squamous cell carcinoma [Corrigendum]. Onco Targets Ther. 12:95692019. View Article : Google Scholar

53 

Yu Q, Xiang L, Chen Z, Liu X, Ou H, Zhou J and Yang D: MALAT1 functions as a competing endogenous RNA to regulate SMAD5 expression by acting as a sponge for miR-142-3p in hepatocellular carcinoma. Cell Biosci. 9:392019. View Article : Google Scholar : PubMed/NCBI

54 

Holman GD: Chemical biology probes of mammalian GLUT structure and function. Biochem J. 475:3511–3534. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ and Smith QR: Blood-brain barrier glucose transporter: Effects of hypo- and hyperglycemia revisited. J Neurochem. 72:238–247. 1999. View Article : Google Scholar : PubMed/NCBI

56 

Yu M, Yongzhi H, Chen S, Luo X, Lin Y, Zhou Y, Jin H, Hou B, Deng Y, Tu L and Jian Z: The prognostic value of GLUT1 in cancers: A systematic review and meta-analysis. Oncotarget. 8:43356–43367. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Maher F, Vannucci SJ and Simpson IA: Glucose transporter proteins in brain. FASEB J. 8:1003–1011. 1994. View Article : Google Scholar : PubMed/NCBI

58 

James DE, Strube M and Mueckler M: Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 338:83–87. 1989. View Article : Google Scholar : PubMed/NCBI

59 

Shi Y, Zhang Y, Ran F, Liu J, Lin J, Hao X, Ding L and Ye Q: Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated warburg effect. Cancer Lett. 495:53–65. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P and Yang L: MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget. 7:5972–5984. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Zhang T, Zhang Z, Li F, Ping Y, Qin G, Zhang C and Zhang Y: Correction: miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism. J Immunol. 201:2165–2175. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Ciscato F, Ferrone L, Masgras I, Laquatra C and Rasola A: Hexokinase 2 in cancer: A prima donna playing multiple characters. Int J Mol Sci. 22:47162021. View Article : Google Scholar : PubMed/NCBI

63 

Peschiaroli A, Giacobbe A, Formosa A, Markert EK, Bongiorno-Borbone L, Levine AJ, Candi E, D'Alessandro A, Zolla L, Finazzi Agrò A and Melino G: miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene. 32:797–802. 2013. View Article : Google Scholar

64 

Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C and Guha A: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 208:313–326. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Zhou P, Chen WG and Li XW: MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer. Am J Cancer Res. 5:2056–2063. 2015.PubMed/NCBI

66 

Gregersen LH, Jacobsen A, Frankel LB, Wen J, Krogh A and Lund AH: MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer. 12:2322012. View Article : Google Scholar : PubMed/NCBI

67 

Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, Xue C, Ren F, Ren Z, Li J, et al: Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 18:332019. View Article : Google Scholar : PubMed/NCBI

68 

Yu T, Li G, Wang C, Gong G, Wang L, Li C, Chen Y and Wang X: MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis. RNA Biol. 18:2513–2530. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Li Y, Wang Y, Fan H, Zhang Z and Li N: miR-125b-5p inhibits breast cancer cell proliferation, migration and invasion by targeting KIAA1522. Biochem Biophys Res Commun. 504:277–282. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Liu S, Chen Q and Wang Y: MiR-125b-5p suppresses the bladder cancer progression via targeting HK2 and suppressing PI3K/AKT pathway. Hum Cell. 33:185–194. 2020. View Article : Google Scholar

71 

Hui L, Zhang J and Guo X: MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2. Biomed Pharmacother. 103:1194–1201. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Xu QL, Luo Z, Zhang B, Qin GJ, Zhang RY, Kong XY, Tang HY and Jiang W: Methylation-associated silencing of miR-91 promotes nasopharyngeal carcinoma progression and glycolysis via HK2. Cancer Sci. 112:4127–4138. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, Chen Z, Huang S, Gu J, Li J, et al: MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology. 62:1132–1144. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Yoshino H, Enokida H, Itesako T, Kojima S, Kinoshita T, Tatarano S, Chiyomaru T, Nakagawa M and Seki N: Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci. 104:1567–1574. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Zhao Y, Zhong R, Deng C and Zhou Z: Circle RNA circABCB10 modulates PFN2 to promote breast cancer progression, as well as aggravate radioresistance through facilitating glycolytic metabolism via miR-223-3p. Cancer Biother Radiopharm. 36:477–490. 2021.

76 

Dong P, Xiong Y, Konno Y, Ihira K, Kobayashi N, Yue J and Watari H: Long non-coding RNA DLEU2 drives EMT and glycolysis in endometrial cancer through HK2 by competitively binding with miR-455 and by modulating the EZH2/miR-181a pathway. J Exp Clin Cancer Res. 40:2162021. View Article : Google Scholar : PubMed/NCBI

77 

Zhang B, Chen J, Cui M and Jiang Y: LncRNA ZFAS1/miR-1271-5p/HK2 promotes glioma development through regulating proliferation, migration, invasion and apoptosis. Neurochem Res. 45:2828–2839. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Sun L, Wang P, Zhang Z, Zhang K, Xu Z, Li S and Mao J: MicroRNA-615 functions as a tumor suppressor in osteosarcoma through the suppression of HK2. Oncol Lett. 20:2262020. View Article : Google Scholar : PubMed/NCBI

79 

Ye J, Xiao X, Han Y, Fan D, Zhu Y and Yang L: MiR-3662 suppresses cell growth, invasion and glucose metabolism by targeting HK2 in hepatocellular carcinoma cells. Neoplasma. 67:773–781. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Li C, Yu Z and Ye J: MicroRNA-513a-3p regulates colorectal cancer cell metabolism via targeting hexokinase 2. Exp Ther Med. 20:572–580. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Ding Z, Guo L, Deng Z and Li P: Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis. Ann Hepatol. 19:269–279. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Jia KG, Feng G, Tong YS, Tao GZ and Xu L: miR-206 regulates non-small-cell lung cancer cell aerobic glycolysis by targeting hexokinase 2. J Biochem. 167:365–370. 2020. View Article : Google Scholar

83 

Wang J, Chen J, Sun F, Wang Z, Xu W, Yu Y, Ding F and Shen H: miR-202 functions as a tumor suppressor in hepatocellular carcinoma by targeting HK2. Oncology Lett. 19:2265–2271. 2020.

84 

Liu C, Cai L and Li H: miR-185 regulates the growth of osteosarcoma cells via targeting Hexokinase 2. Mol Med Rep. 20:2774–2782. 2019.PubMed/NCBI

85 

Xu F, Yan JJ, Gan Y, Chang Y, Wang HL, He XX and Zhao Q: miR-885-5p negatively regulates warburg effect by silencing hexokinase 2 in liver cancer. Mol Ther Nucleic Acids. 18:308–319. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Lu J, Wang L, Chen W, Wang Y, Zhen S, Chen H, Cheng J, Zhou Y, Li X and Zhao L: miR-603 targeted hexokinase-2 to inhibit the malignancy of ovarian cancer cells. Arch Biochem Biophys. 661:1–9. 2019. View Article : Google Scholar

87 

Liu Y, Huo Y, Wang D, Tai Y, Li J, Pang D, Zhang Y, Zhao W, Du N and Huang Y: MiR-216a-5p/Hexokinase 2 axis regulates uveal melanoma growth through modulation of Warburg effect. Biochem Biophys Res Commun. 501:885–892. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Zhu W, Huang Y, Pan Q, Xiang P, Xie N and Yu H: MicroRNA-98 Suppress Warburg Effect by Targeting HK2 in Colon Cancer Cells. Dig Dis Sci. 62:660–668. 2017. View Article : Google Scholar

89 

Li LQ, Yang Y, Chen H, Zhang L, Pan D and Xie WJ: MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene. Cancer Biomark. 17:75–81. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Zhang K, Zhang M, Jiang H, Liu F, Liu H and Li Y: Down-regulation of miR-214 inhibits proliferation and glycolysis in non-small-cell lung cancer cells via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2. Biomed Pharmacother. 105:545–552. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Kim J, Park MW, Park YJ, Ahn JW, Sim JM, Kim S, Heo J, Jeong JH, Lee M, Lim J and Moon JS: miR-542-3p Contributes to the HK2-mediated high glycolytic phenotype in human glioma cells. Genes. 12:6332021. View Article : Google Scholar : PubMed/NCBI

92 

Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R and Bucala R: High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 62:5881–5887. 2002.PubMed/NCBI

93 

Boscaro C, Baggio C, Carotti M, Sandonà D, Trevisi L, Cignarella A and Bolego C: Targeting of PFKFB3 with miR-206 but not mir-26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB J. 36:e221402022. View Article : Google Scholar : PubMed/NCBI

94 

Ge X, Lyu P, Cao Z, Li J, Guo G, Xia W and Gu Y: Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun. 463:1115–1121. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Deng X, Li D, Ke X, Wang Q, Yan S, Xue Y, Wang Q and Zheng H: Mir-488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3. J Clin Lab Anal. 35:e235782021. View Article : Google Scholar

96 

Wang J, Li X, Xiao Z, Wang Y, Han Y, Li J, Zhu W, Leng Q, Wen Y and Wen X: MicroRNA-488 inhibits proliferation and glycolysis in human prostate cancer cells by regulating PFKFB3. FEBS Open Bio. 9:1798–1807. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Chen L and Cao Y, Wu B and Cao Y: MicroRNA-3666 suppresses cell growth in head and neck squamous cell carcinoma through inhibition of PFKFB3-mediated warburg effect. Onco Targets Ther. 13:9029–9041. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Du JY, Wang LF, Wang Q and Yu LD: miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep. 33:1890–1898. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Sheng W, Xu W, Ding J, Li L, You X, Wu Y and He Q: Curcumol inhibits the malignant progression of prostate cancer and regulates the PDK1/AKT/mTOR pathway by targeting miR-9. Oncol Rep. 46:2462021. View Article : Google Scholar :

100 

Qian Y, Wu X, Wang H, Hou G, Han X and Song W: MicroRNA-4290 suppresses PDK1-mediated glycolysis to enhance the sensitivity of gastric cancer cell to cisplatin. Braz J Med Biol Res. 53:e93302020. View Article : Google Scholar : PubMed/NCBI

101 

Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, Hijiya N, Matsuura K, Fujioka T, Seto M and Moriyama M: MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res. 70:2339–2349. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Jia-Yuan X, Wei S, Fang-Fang L, Zhi-Jian D, Long-He C and Sen L: miR-375 inhibits the proliferation and invasion of nasopharyngeal carcinoma cells by suppressing PDK1. Biomed Res Int. 2020:97042452020. View Article : Google Scholar : PubMed/NCBI

103 

Qu C, Yan C, Cao W, Li F, Qu Y, Guan K, Si C, Yu Z and Qu Z: miR-128-3p contributes to mitochondrial dysfunction and induces apoptosis in glioma cells via targeting pyruvate dehydrogenase kinase 1. IUBMB Life. 72:465–475. 2020. View Article : Google Scholar

104 

Huang Y, Zheng S, Lin Y and Ke L: Circular RNA circ-ERBB2 elevates the warburg effect and facilitates triple-negative breast cancer growth by the MicroRNA 136-5p/pyruvate dehydrogenase Kinase 4 axis. Mol Cell Biol. 41:e00609202021. View Article : Google Scholar : PubMed/NCBI

105 

Zhao Z, Ji M, Wang Q, He N and Li Y: miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer. Mol Ther Oncolytics. 17:509–517. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Guda MR, Asuthkar S, Labak CM, Tsung AJ, Alexandrov I, Mackenzie MJ, Prasad DV and Velpula KK: Targeting PDK4 inhibits breast cancer metabolism. Am J Cancer Res. 8:1725–1738. 2018.PubMed/NCBI

107 

Si T, Ning X, Zhao H, Zhang M, Huang P, Hu Z, Yang L and Lin L: microRNA-9-5p regulates the mitochondrial function of hepatocellular carcinoma cells through suppressing PDK4. Cancer Gene Ther. 28:706–718. 2021. View Article : Google Scholar

108 

Miao Y, Li Q, Sun G, Wang L, Zhang D, Xu H and Xu Z: MiR-5683 suppresses glycolysis and proliferation through targeting pyruvate dehydrogenase kinase 4 in gastric cancer. Cancer Med. 9:7231–7243. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Feng L, Cheng K, Zang R, Wang Q and Wang J: miR-497-5p inhibits gastric cancer cell proliferation and growth through targeting PDK3. Biosci Rep. 39:BSR201906542019. View Article : Google Scholar : PubMed/NCBI

110 

Cheung EC and Vousden KH: The role of p53 in glucose metabolism. Curr Opin Cell Biol. 22:186–191. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Yang L, Zhang B, Wang X, Liu Z, Li J, Zhang S, Gu X, Jia M, Guo H, Feng N, et al: P53/PANK1/miR-107 signalling pathway spans the gap between metabolic reprogramming and insulin resistance induced by high-fat diet. J Cell Mol Med. 24:3611–3624. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF and Lim B: MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23:862–876. 2009. View Article : Google Scholar : PubMed/NCBI

113 

Gopu V, Fan L, Shetty RS, Nagaraja MR and Shetty S: Caveolin-1 scaffolding domain peptide regulates glucose metabolism in lung fibrosis. JCI Insight. 5:e1379692020. View Article : Google Scholar : PubMed/NCBI

114 

Zou S, Rao Y and Chen W: miR-885-5p plays an accomplice role in liver cancer by instigating TIGAR expression via targeting its promoter. Biotechnol Appl Biochem. 66:763–771. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Tang J, Chen L, Qin ZH and Sheng R: Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin. 42:1547–1555. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Jones M and Lal A: MicroRNAs, wild-type and mutant p53: More questions than answers. RNA Biol. 9:781–791. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Dang CV: MYC on the path to cancer. Cell. 149:22–35. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Broecker-Preuss M, Becher-Boveleth N, Bockisch A, Dührsen U and Müller S: Regulation of glucose uptake in lymphoma cell lines by c-MYC- and PI3K-dependent signaling pathways and impact of glycolytic pathways on cell viability. J Transl Med. 15:1582017. View Article : Google Scholar : PubMed/NCBI

119 

Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B and Deng X: Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene. 40:277–291. 2021. View Article : Google Scholar :

120 

Ebron JS, Shankar E, Singh J, Sikand K, Weyman CM, Gupta S, Lindner DJ, Liu X, Campbell MJ and Shukla GC: MiR-644a disrupts oncogenic transformation and warburg effect by direct modulation of multiple genes of tumor-promoting pathways. Cancer Res. 79:1844–1856. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Luan W, Wang Y, Chen X, Shi Y, Wang J, Zhang J, Qian J, Li R, Tao T, Wei W, et al: PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/ c-Myc/hnRNPA1 feedback loop. Oncotarget. 6:13006–13018. 2015. View Article : Google Scholar : PubMed/NCBI

122 

Wang H, Wang L, Pan H, Wang Y, Shi M, Yu H, Wang C, Pan X and Chen Z: Exosomes derived from macrophages enhance aerobic glycolysis and chemoresistance in lung cancer by stabilizing c-Myc via the Inhibition of NEDD4L. Front Cell Dev Biol. 8:6206032020. View Article : Google Scholar

123 

Kim S, Lee E, Jung J, Lee JW, Kim HJ, Kim J, Yoo HJ, Lee HJ, Chae SY, Jeon SM, et al: microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer. Oncogene. 37:2982–2991. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Ojuka EO: Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc. 63:275–278. 2004. View Article : Google Scholar : PubMed/NCBI

125 

Shackelford DB and Shaw RJ: The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression. Nat Rev Cancer. 9:563–575. 2009. View Article : Google Scholar : PubMed/NCBI

126 

Hardie DG: AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 8:774–785. 2007. View Article : Google Scholar : PubMed/NCBI

127 

Lyu X, Wang J, Guo X, Wu G, Jiao Y, Faleti OD, Liu P, Liu T, Long Y, Chong T, et al: EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog. 14:e10074842018. View Article : Google Scholar : PubMed/NCBI

128 

Barisciano G, Colangelo T, Rosato V, Muccillo L, Taddei ML, Ippolito L, Chiarugi P, Galgani M, Bruzzaniti S, Matarese G, et al: miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer. Br J Cancer. 122:1354–1366. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Zhaohui W, Yingli N, Hongli L, Haijing W, Xiaohua Z, Chao F, Liugeng W, Hui Z, Feng T, Linfeng Y and Hong J: Amentoflavone induces apoptosis and suppresses glycolysis in glioma cells by targeting miR-124-3p. Neurosci Lett. 686:1–9. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Wang L, Guo W, Ma J, Dai W, Liu L, Guo S, Chen J, Wang H, Yang Y, Yi X, et al: Aberrant SIRT6 expression contributes to melanoma growth: Role of the autophagy paradox and IGF-AKT signaling. Autophagy. 14:518–533. 2018. View Article : Google Scholar :

131 

Vivanco I and Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002. View Article : Google Scholar : PubMed/NCBI

132 

Sun Y, Liu W, Zhao Q, Zhang R, Wang J, Pan P, Shang H, Liu C and Wang C: Down-regulating the expression of miRNA-21 inhibits the glucose metabolism of A549/DDP cells and promotes cell death through the PI3K/AKT/mTOR/HIF-1α pathway. Front Oncol. 11:6535962021. View Article : Google Scholar

133 

Pan C, Liu Q and Wu X: HIF1α/miR-520a-3p/AKT1/mTOR feedback promotes the proliferation and glycolysis of gastric cancer cells. Cancer Manage Res. 11:10145–10156. 2019. View Article : Google Scholar

134 

Wang Q, Liu MJ, Bu J, Deng JL, Jiang BY, Jiang LD and He XJ: miR-485-3p regulated by MALAT1 inhibits osteosarcoma glycolysis and metastasis by directly suppressing c-MET and AKT3/mTOR signalling. Life Sci. 268:1189252021. View Article : Google Scholar

135 

Carnero A, Blanco-Aparicio C, Renner O, Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 8:187–198. 2008. View Article : Google Scholar : PubMed/NCBI

136 

Zhai Z, Mu T, Zhao L, Li Y, Zhu D and Pan Y: MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered. 13:83–95. 2022. View Article : Google Scholar :

137 

Liu W, Kang L, Han J, Wang Y, Shen C, Yan Z, Tai Y and Zhao C: miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect. Onco Targets Ther. 11:1643–1653. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Wang B, Sun F, Dong N, Sun Z, Diao Y, Zheng C, Sun J, Yang Y and Jiang D: MicroRNA-7 directly targets insulin-like growth factor 1 receptor to inhibit cellular growth and glucose metabolism in gliomas. Diagn Pathol. 9:2112014. View Article : Google Scholar : PubMed/NCBI

139 

Xu H, Sun X, Huang Y, Si Q and Li M: Long non-coding RNA NEAT1 modifies cell proliferation, colony formation, apoptosis, migration and invasion via the miR-4500/BZW1 axis in ovarian cancer. Mol Med Rep. 22:3347–3357. 2020.PubMed/NCBI

140 

Xu M, Zhou K, Wu Y, Wang L and Lu S: Linc00161 regulated the drug resistance of ovarian cancer by sponging microRNA-128 and modulating MAPK1. Mol Carcinog. 58:577–587. 2019. View Article : Google Scholar

141 

Zhao J, Li D and Fang L: MiR-128-3p suppresses breast cancer cellular progression via targeting LIMK1. Biomed Pharmacother. 115:1089472019. View Article : Google Scholar : PubMed/NCBI

142 

Liu Y, Fu X, Wang X, Liu Y and Song X: Long non-coding RNA OIP5-AS1 facilitates the progression of ovarian cancer via the miR-128-3p/CCNG1 axis. Mol Med Rep. 23:3882021. View Article : Google Scholar :

143 

Liu Y, He X, Chen Y and Cao D: Long non-coding RNA LINC00504 regulates the Warburg effect in ovarian cancer through inhibition of miR-1244. Mol Cell Biochem. 464:39–50. 2020. View Article : Google Scholar

144 

Goto H, Nishio M, To Y, Oishi T, Miyachi Y, Maehama T, Nishina H, Akiyama H, Mak TW, Makii Y, et al: Loss of Mob1a/b in mice results in chondrodysplasia due to YAP1/ TAZ-TEAD-dependent repression of SOX9. Development. 145:dev1592442018. View Article : Google Scholar

145 

Wu DW, Wang YC, Wang L, Chen CY and Lee H: A low microRNA-630 expression confers resistance to tyrosine kinase inhibitors in EGFR-mutated lung adenocarcinomas via miR-630/YAP1/ERK feedback loop. Theranostics. 8:1256–1269. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Lin X, Feng D, Li P and Lv Y: LncRNA LINC00857 regulates the progression and glycolysis in ovarian cancer by modulating the Hippo signaling pathway. Cancer Med. 9:8122–8132. 2020. View Article : Google Scholar : PubMed/NCBI

147 

Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W and Li X: MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget. 6:40799–40814. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Young CD, Nolte EC, Lewis A, Serkova NJ and Anderson SM: Activated Akt1 accelerates MMTV-c-ErbB2 mammary tumourigenesis in mice without activation of ErbB3. Br Cancer Res. 10:R702008. View Article : Google Scholar

149 

Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, Wiechec E, Ghavami S and Dzięgiel P: Role of PFKFB3 and PFKFB4 in cancer: Genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers. 13:9092021. View Article : Google Scholar : PubMed/NCBI

150 

Mondal S, Roy D, Sarkar Bhattacharya S, Jin L, Jung D, Zhang S, Kalogera E, Staub J, Wang Y, Xuyang W, et al: Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int J Cancer. 144:178–189. 2019. View Article : Google Scholar

151 

Chakraborty PK, Mustafi SB, Xiong X, Dwivedi SKD, Nesin V, Saha S, Zhang M, Dhanasekaran D, Jayaraman M, Mannel R, et al: MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat Commun. 8:146342017. View Article : Google Scholar : PubMed/NCBI

152 

Singh R, Yadav V, Kumar S and Saini N: MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep. 5:174542015. View Article : Google Scholar : PubMed/NCBI

153 

Yang Y, Li M, Chang S, Wang L, Song T, Gao L, Hu L, Li Z, Liu L, Yao J and Huang C: MicroRNA-195 acts as a tumor suppressor by directly targeting Wnt3a in HepG2 hepatocellular carcinoma cells. Mol Med Rep. 10:2643–2648. 2014. View Article : Google Scholar : PubMed/NCBI

154 

Rao G, Dwivedi SKD, Zhang Y, Dey A, Shameer K, Karthik R, Srikantan S, Hossen MN, Wren JD, Madesh M, et al: MicroRNA-195 controls MICU1 expression and tumor growth in ovarian cancer. EMBO Rep. 21:e484832020. View Article : Google Scholar : PubMed/NCBI

155 

Cao HL, Liu ZJ, Huang PL, Yue YL and Xi JN: lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206. Eur Rev Med Pharmacol Sci. 23:1012–1021. 2019.PubMed/NCBI

156 

Hongfeng Z, Andong J, Liwen S, Mingping B, Xiaowei Y, Mingyong L and Aimin Y: lncRNA RMRP knockdown suppress hepatocellular carcinoma biological activities via regulation miRNA-206/TACR1. J Cell Biochem. 121:1690–1702. 2020. View Article : Google Scholar

157 

Li L, Zeng S, Guo L, Huang P, Xi J, Feng J, Li Q, Li Y, Xiao X, Yan R and Zhang J: Long noncoding RNA RMRP contributes to paclitaxel sensitivity of ovarian cancer by regulating miR-580-3p/MICU1 signaling. J Oncol. 2022:83019412022.PubMed/NCBI

158 

Han RL, Wang FP, Zhang PA, Zhou XY and Li Y: miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA. Neoplasma. 64:244–252. 2017. View Article : Google Scholar : PubMed/NCBI

159 

Rafat M, Moraghebi M, Afsa M and Malekzadeh K: The outstanding role of miR-132-3p in carcinogenesis of solid tumors. Hum Cell. 34:1051–1065. 2021. View Article : Google Scholar : PubMed/NCBI

160 

Cooper SJ, von Roemeling CA, Kang KH, Marlow LA, Grebe SK, Menefee ME, Tun HW, Colon-Otero G, Perez EA and Copland JA: Reexpression of tumor suppressor, sFRP1, leads to antitumor synergy of combined HDAC and methyltransferase inhibitors in chemoresistant cancers. Mol Cancer Ther. 11:2105–2115. 2012. View Article : Google Scholar : PubMed/NCBI

161 

Hu J, Zhao W, Huang Y, Wang Z, Jiang T and Wang L: MiR-1180 from bone marrow MSCs promotes cell proliferation and glycolysis in ovarian cancer cells via SFRP1/Wnt pathway. Cancer Cell Int. 19:662019. View Article : Google Scholar : PubMed/NCBI

162 

Gu ZW, He YF, Wang WJ, Tian Q and Di W: MiR-1180 from bone marrow-derived mesenchymal stem cells induces glycolysis and chemoresistance in ovarian cancer cells by upregulating the Wnt signaling pathway. J Zhejiang Univ Sci B. 20:219–237. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Xiaohong Z, Lichun F, Na X, Kejian Z, Xiaolan X and Shaosheng W: MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumour Biol. 37:14989–14997. 2016. View Article : Google Scholar : PubMed/NCBI

164 

Shao X, Zheng X, Ma D, Liu Y and Liu G: Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis. Biosci Rep. 41:BSR202005332021. View Article : Google Scholar : PubMed/NCBI

165 

Li L, Ma Y, Maerkeya K, Reyanguly D and Han L: LncRNA OIP5-AS1 regulates the warburg effect through miR-124-5p/IDH2/HIF-1α pathway in cervical cancer. Front Cell Dev Biol. 9:6550182021. View Article : Google Scholar

166 

Luo W, Zhang D, Ma S, Wang C, Zhang Q, Wang H, He K and Liu Z: miR-27a is highly expressed in H1650 cancer stem cells and regulates proliferation, migration, and invasion. J Cancer Res Ther. 14(Suppl): S1004–S1011. 2018. View Article : Google Scholar : PubMed/NCBI

167 

Jiang G, Shi W, Fang H and Zhang X: miR-27a promotes human breast cancer cell migration by inducing EMT in a FBXW7-dependent manner. Mol Med Rep. 18:5417–5426. 2018.PubMed/NCBI

168 

Li W, Yu ZX and Ma BF: The increase of miR-27a affects the role of cisplatin on proliferation and migration capacities of liver cancer cells. Eur Rev Med Pharmacol Sci. 22:5490–5498. 2018.PubMed/NCBI

169 

Li P, Zhang Q and Tang H: INPP1 up-regulation by miR-27a contributes to the growth, migration and invasion of human cervical cancer. J Cell Mol Med. 23:7709–7716. 2019. View Article : Google Scholar : PubMed/NCBI

170 

Zhang S, Chen P, Huang Z, Hu X, Chen M, Hu S, Hu Y and Cai T: Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a. Sci Rep. 5:97872015. View Article : Google Scholar : PubMed/NCBI

171 

Gougelet A, Sartor C, Bachelot L, Godard C, Marchiol C, Renault G, Tores F, Nitschke P, Cavard C, Terris B, et al: Antitumour activity of an inhibitor of miR-34a in liver cancer with β-catenin-mutations. Gut. 65:1024–1034. 2016. View Article : Google Scholar

172 

Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar

173 

Zhang R, Su J, Xue SL, Yang H, Ju LL, Ji Y, Wu KH, Zhang YW, Zhang YX, Hu JF and Yu MM: HPV E6/p53 mediated down-regulation of miR-34a inhibits Warburg effect through targeting LDHA in cervical cancer. Am J Cancer Res. 6:312–320. 2016.PubMed/NCBI

174 

Yang H, Wu XL, Wu KH, Zhang R, Ju LL, Ji Y, Zhang YW, Xue SL, Zhang YX, Yang YF and Yu MM: MicroRNA-497 regulates cisplatin chemosensitivity of cervical cancer by targeting transketolase. Am J Cancer Res. 6:2690–2699. 2016.PubMed/NCBI

175 

Yang X and Wu X: miRNA expression profile of vulvar squamous cell carcinoma and identification of the oncogenic role of miR-590-5p. Oncol Rep. 35:398–408. 2016. View Article : Google Scholar

176 

de Melo Maia B, Lavorato-Rocha AM, Rodrigues LS, Coutinho-Camillo CM, Baiocchi G, Stiepcich MM, Puga R, de A Lima L, Soares FA and Rocha RM: microRNA portraits in human vulvar carcinoma. Cancer Prev Res (Phila). 6:1231–1241. 2013. View Article : Google Scholar : PubMed/NCBI

177 

Gonzalez Dos Anjos L, de Almeida BC, Gomes de Almeida T, Mourão Lavorato Rocha A, De Nardo Maffazioli G, Soares FA, Werneck da Cunha I, Baracat EC and Carvalho KC: Could miRNA signatures be useful for predicting uterine sarcoma and carcinosarcoma prognosis and treatment? Cancers (Basel). 10:3152018. View Article : Google Scholar : PubMed/NCBI

178 

Tyagi K, Mandal S and Roy A: Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: A promise towards disease remission. Biochim Biophys Acta Rev Cancer. 1876:1885632021. View Article : Google Scholar : PubMed/NCBI

179 

Hietanen S, Lain S, Krausz E, Blattner C and Lane DP: Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci USA. 97:8501–8506. 2000. View Article : Google Scholar : PubMed/NCBI

180 

Guan XY, Guan XL and Jiao ZY: Improving therapeutic resistance: Beginning with targeting the tumor microenvironment. J Chemother. 34:492–516. 2022. View Article : Google Scholar

181 

Arvizo RR, Moyano DF, Saha S, Thompson MA, Bhattacharya R, Rotello VM, Prakash YS and Mukherjee P: Probing novel roles of the mitochondrial uniporter in ovarian cancer cells using nanoparticles. J Biol Chem. 288:17610–17618. 2013. View Article : Google Scholar : PubMed/NCBI

182 

Khan S, Chib R, Shah BA, Wani ZA, Dhar N, Mondhe DM, Lattoo S, Jain SK, Taneja SC and Singh J: A cyano analogue of boswellic acid induces crosstalk between p53/PUMA/Bax and telomerase that stages the human papillomavirus type 18 positive HeLa cells to apoptotic death. Eur J Pharmacol. 660:241–248. 2011. View Article : Google Scholar : PubMed/NCBI

183 

Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, et al: Cancer metabolism and tumor microenvironment: Fostering each other? Sci China Life Sci. 65:236–279. 2022. View Article : Google Scholar

184 

Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H and Hamblin MR: Non-coding RNAs and exosomes: Their role in the pathogenesis of sepsis. Mol Ther Nucleic Acids. 21:51–74. 2020. View Article : Google Scholar : PubMed/NCBI

185 

Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, Hamblin MR and Mirzaei H: Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol. 157:1031922021. View Article : Google Scholar

186 

Bonneau E, Neveu B, Kostantin E, Tsongalis GJ and De Guire V: How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 30:114–127. 2019.PubMed/NCBI

187 

Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV and García-Giménez JL: Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother. 145:1124442022. View Article : Google Scholar

188 

Gumusoglu-Acar E, Gunel T, Hosseini MK, Dogan B, Tekarslan EE, Gurdamar B, Cevik N, Sezerman U, Topuz S and Aydinli K: Metabolic pathways of potential miRNA biomarkers derived from liquid biopsy in epithelial ovarian cancer. Oncol Lett. 25:1422023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Q, Shen S, Lv N and Tong J: Role of microRNAs in glycolysis in gynecological tumors (Review). Int J Oncol 62: 63, 2023.
APA
Chen, Q., Shen, S., Lv, N., & Tong, J. (2023). Role of microRNAs in glycolysis in gynecological tumors (Review). International Journal of Oncology, 62, 63. https://doi.org/10.3892/ijo.2023.5511
MLA
Chen, Q., Shen, S., Lv, N., Tong, J."Role of microRNAs in glycolysis in gynecological tumors (Review)". International Journal of Oncology 62.5 (2023): 63.
Chicago
Chen, Q., Shen, S., Lv, N., Tong, J."Role of microRNAs in glycolysis in gynecological tumors (Review)". International Journal of Oncology 62, no. 5 (2023): 63. https://doi.org/10.3892/ijo.2023.5511
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Q, Shen S, Lv N and Tong J: Role of microRNAs in glycolysis in gynecological tumors (Review). Int J Oncol 62: 63, 2023.
APA
Chen, Q., Shen, S., Lv, N., & Tong, J. (2023). Role of microRNAs in glycolysis in gynecological tumors (Review). International Journal of Oncology, 62, 63. https://doi.org/10.3892/ijo.2023.5511
MLA
Chen, Q., Shen, S., Lv, N., Tong, J."Role of microRNAs in glycolysis in gynecological tumors (Review)". International Journal of Oncology 62.5 (2023): 63.
Chicago
Chen, Q., Shen, S., Lv, N., Tong, J."Role of microRNAs in glycolysis in gynecological tumors (Review)". International Journal of Oncology 62, no. 5 (2023): 63. https://doi.org/10.3892/ijo.2023.5511
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team