Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2023 Volume 62 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2023 Volume 62 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting neddylation as a novel approach to lung cancer treatment (Review)

  • Authors:
    • Zhaochun Tian
    • Jiafei Li
    • Ruijie Ma
    • Ting Li
    • Zhigang Sun
    • Shuhong Huang
  • View Affiliations / Copyright

    Affiliations: Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, P.R. China, School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, P.R. China, Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
    Copyright: © Tian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 65
    |
    Published online on: April 20, 2023
       https://doi.org/10.3892/ijo.2023.5513
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As a protein that resembles ubiquitin, neural precursor cell expressed developmentally downregulated 8 (NEDD8) takes part in neddylation, which modifies substrates in a manner similar to ubiquitination and alters the activity of target proteins. Neddylation may affect the activity of multiple signaling pathways, have a regulatory role in tumor formation, progression and metastasis, and influence the prognosis of cancer treatment. The present review summarizes the regulatory roles of NEDD8 in the MDM2‑p53, NF‑κB, PI3K/AKT/mTOR, hypoxia‑inducible factor, Hippo and receptor tyrosine kinase signaling pathways, as well as in the development and progression of lung cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Oudkerk M, Liu S, Heuvelmans MA, Walter JE and Field JK: Lung cancer LDCT screening and mortality reduction-evidence, pitfalls and future perspectives. Nat Rev Clin Oncol. 18:135–151. 2021. View Article : Google Scholar

2 

Sachs E, Sartipy U and Jackson V: Sex and Survival After Surgery for Lung Cancer: A Swedish Nationwide Cohort. Chest. 159:2029–2039. 2021. View Article : Google Scholar :

3 

Thai AA, Solomon BJ, Sequist LV, Gainor JF and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Howington JA, Blum MG, Chang AC, Balekian AA and Murthy SC: Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 143(5 Suppl): e278S–e313S. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar

6 

Watson IR, Irwin MS and Ohh M: NEDD8 pathways in cancer, Sine quibus non. Cancer Cell. 19:168–176. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Kamitani T, Kito K, Nguyen HP and Yeh ET: Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem. 272:28557–28562. 1997. View Article : Google Scholar : PubMed/NCBI

8 

Chung D and Dellaire G: The Role of the COP9 Signalosome and Neddylation in DNA damage signaling and repair. Biomolecules. 5:2388–2416. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Zhou W, Xu J, Tan M, Li H, Li H, Wei W and Sun Y: UBE2M Is a Stress-Inducible Dual E2 for neddylation and ubiquitylation that promotes targeted degradation of UBE2F. Mol Cell. 70:1008–1024.e6. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF and Schulman BA: E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell. 33:483–495. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Xirodimas DP, Saville MK, Bourdon JC, Hay RT and Lane DP: Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell. 118:83–97. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Abida WM, Nikolaev A, Zhao W, Zhang W and Gu W: FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem. 282:1797–1804. 2007. View Article : Google Scholar

13 

Lee GW, Park JB, Park SY, Seo J, Shin SH, Park JW, Kim SJ, Watanabe M and Chun YS: The E3 ligase C-CBL inhibits cancer cell migration by neddylating the proto-oncogene c-Src. Oncogene. 37:5552–5568. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Broemer M, Tenev T, Rigbolt KT, Hempel S, Blagoev B, Silke J, Ditzel M and Meier P: Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell. 40:810–822. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Keuss MJ, Thomas Y, Mcarthur R, Wood NT, Knebel A and Kurz T: Characterization of the mammalian family of DCN-type NEDD8 E3 ligases. J Cell Sci. 129:1441–1454. 2016.PubMed/NCBI

16 

Meyer-Schaller N, Chou YC, Sumara I, Martin DD, Kurz T, Katheder N, Hofmann K, Berthiaume LG, Sicheri F and Peter M: The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes. Proc Natl Acad Sci USA. 106:12365–12370. 2009. View Article : Google Scholar : PubMed/NCBI

17 

He S, Cao Y, Xie P, Dong G and Zhang L: The Nedd8 Non-covalent binding region in the smurf HECT domain is critical to its ubiquitn ligase function. Sci Rep. 7:413642017. View Article : Google Scholar : PubMed/NCBI

18 

Deshaies RJ and Joazeiro CA: RING domain E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Soucy TA, Dick LR, Smith PG, Milhollen MA and Brownell JE: The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer. 1:708–716. 2010. View Article : Google Scholar

20 

Mendoza HM, Shen LN, Botting C, Lewis A, Chen J, Ink B and Hay RT: NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J Biol Chem. 278:25637–25643. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Zhou L, Zhu J, Chen W, Jiang Y, Hu T, Wang Y, Ye X, Zhan M, Ji C, Xu Z, et al: Induction of NEDD8-conjugating enzyme E2 UBE2F by platinum protects lung cancer cells from apoptosis and confers to platinum-insensitivity. Cell Death Dis. 11:9752020. View Article : Google Scholar : PubMed/NCBI

22 

Zhou L, Jiang Y, Luo Q, Li L and Jia L: Neddylation: A novel modulator of the tumor microenvironment. Mol Cancer. 18:772019. View Article : Google Scholar : PubMed/NCBI

23 

Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N and Schulman BA: Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 21:257–264. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Furukawa M, Zhang Y, McCarville J, Ohta T and Xiong Y: The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1. Mol Cell Biol. 20:8185–8197. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M and Schulman BA: Structural insights into NEDD8 activation of cullin-RING ligases: Conformational control of conjugation. Cell. 134:995–1006. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Kim AY, Bommelje CC, Lee BE, Yonekawa Y, Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, et al: SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation. J Biol Chem. 283:33211–33220. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y and Zheng N: Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell. 119:517–528. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Feng S, Shen Y, Sullivan JA, Rubio V, Xiong Y, Sun TP and Deng XW: Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein Degradation. Plant Cell. 16:1870–1882. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Salon C, Brambilla E, Brambilla C, Lantuejoul S, Gazzeri S and Eymin B: Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: Relationships with CAND1 and cyclin E protein levels. J Pathol. 213:303–310. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Li L, Kang J, Zhang W, Cai L, Wang S, Liang Y, Jiang Y, Liu X, Zhang Y, Ruan H, et al: Validation of NEDD8-conjugating enzyme UBC12 as a new therapeutic target in lung cancer. EBioMedicine. 45:81–91. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Podust VN, Brownell JE, Gladysheva TB, Luo RS, Wang C, Coggins MB, Pierce JW, Lightcap ES and Chau V: A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc Natl Acad Sci USA. 97:4579–4584. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Iso T, Suzuki T, Baird L and Yamamoto M: Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells. Mol Cell Biol. 36:3100–3112. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Bennett EJ, Rush J, Gygi SP and Harper JW: Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell. 143:951–965. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Zhao Y, Morgan MA and Sun Y: Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal. 21:2383–2400. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Kang M, Li Y, Zhao Y, He S and Shi J: MiR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer. Clin Transl Oncol. 20:457–466. 2018. View Article : Google Scholar

36 

Li L, Wang M, Yu G, Chen P, Li H, Wei D, Zhu J, Xie L, Jia H, Shi J, et al: Overactivated neddylation pathway as a therapeutic target in lung cancer. J Natl Cancer Inst. 106:dju0832014. View Article : Google Scholar : PubMed/NCBI

37 

Watson IR, Li BK, Roche O, Blanch A, Ohh M and Irwin MS: Chemotherapy induces NEDP1-mediated destabilization of MDM2. Oncogene. 29:297–304. 2010. View Article : Google Scholar

38 

Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, et al: The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun. 5:37332014. View Article : Google Scholar : PubMed/NCBI

39 

Mahata B, Sundqvist A and Xirodimas DP: Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene. 31:3060–3071. 2012. View Article : Google Scholar

40 

Sundqvist A, Liu G, Mirsaliotis A and Xirodimas DP: Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep. 10:1132–1139. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Zhang J, Bai D, Ma X, Guan J and Zheng X: hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14. Oncogene. 33:246–254. 2014. View Article : Google Scholar

42 

Deben C, Deschoolmeester V, Lardon F, Rolfo C and Pauwels P: TP53 and MDM2 genetic alterations in non-small cell lung cancer: Evaluating their prognostic and predictive value. Crit Rev Oncol Hematol. 99:63–73. 2016. View Article : Google Scholar

43 

Karin M and Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-[Kappa]B activity. Annu Rev Immunol. 18:621–663. 2000. View Article : Google Scholar

44 

Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V and Palombella VJ: Nedd8 Modification of Cul-1 Activates SCF(beta(TrCP)-Dependent Ubiquitination of IkappaBalpha. Mol Cell Biol. 20:2326–2333. 2000. View Article : Google Scholar : PubMed/NCBI

45 

Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar

46 

Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong C, Liu X, Lin Y, Li Y, Yu J, et al: Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene. 38:5792–5804. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Liu W, Wang H, Bai F, Ding L, Huang Y, Lu C, Chen S, Li C, Yue X, Liang X, et al: IL-6 promotes metastasis of non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell Prolif. 53:e127762020. View Article : Google Scholar

48 

Orel L, Neumeier H, Hochrainer K, Binder BR and Schmid JA: Crosstalk between the NF-kappaB activating IKK-complex and the CSN signalosome. J Cell Mol Med. 14:1555–1568. 2010. View Article : Google Scholar

49 

Ediriweera MK, Tennekoon KH and Samarakoon SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol. 59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Chibaya L, Karim B, Zhang H and Jones SN: Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci USA. 118:e20031931182021. View Article : Google Scholar : PubMed/NCBI

51 

Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y, Zhang X, Lu Z, Cui CP, Liu CH, et al: Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 31:291–311. 2021. View Article : Google Scholar :

52 

Li X, Li C, Guo C, Zhao Q, Cao J, Huang HY, Yue M, Xue Y, Jin Y, Hu L and Ji H: PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer. J Genet Genomics. 48:640–651. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, Gatter KC and Harris AL: Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic molecular profile of tumours and survival. Br J Cancer. 85:881–890. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Zhang Y, Bian Y, Wang Y, Wang Y, Duan X, Han Y, Zhang L, Wang F, Gu Z and Qin Z: HIF-1α is necessary for activation and tumour-promotion effect of cancer-associated fibroblasts in lung cancer. J Cell Mol Med. 25:5457–5469. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Wan J and Wu W: Hyperthermia induced HIF-1a expression of lung cancer through AKT and ERK signaling pathways. J Exp Clin Cancer Res. 35:1192016. View Article : Google Scholar : PubMed/NCBI

56 

Curtis VF, Ehrentraut SF, Campbell EL, Glover LE, Bayless A, Kelly CJ, Kominsky DJ and Colgan SP: Stabilization of HIF through inhibition of Cullin-2 neddylation is protective in mucosal inflammatory responses. FASEB J. 29:208–215. 2015. View Article : Google Scholar :

57 

Russell RC and Ohh M: NEDD8 acts as a 'molecular switch' defining the functional selectivity of VHL. EMBO Rep. 9:486–491. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Wolf ER, Mabry AR, Damania B and Mayo LD: Mdm2-mediated neddylation of pVHL blocks the induction of antiangiogenic factors. Oncogene. 39:5228–5239. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Hsu PC, Yang CT, Jablons DM and You L: The Crosstalk between Src and Hippo/YAP signaling pathways in non-small cell lung cancer (NSCLC). Cancers (Basel). 12:13612020. View Article : Google Scholar : PubMed/NCBI

60 

Zou J, Ma W, Li J, Littlejohn R, Zhou H, Kim IM, Fulton DJR, Chen W, Weintraub NL, Zhou J and Su H: Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proc Natl Acad Sci USA. 115:E4101–E4110. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Cooper J, Xu Q, Zhou L, Pavlovic M, Ojeda V, Moulick K, de Stanchina E, Poirier JT, Zauderer M, Rudin CM, et al: Combined Inhibition of NEDD8-Activating Enzyme and mTOR Suppresses NF2 Loss-Driven Tumorigenesis. Mol Cancer Ther. 16:1693–1704. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Maehama T, Nishio M, Otani J, Mak TW and Suzuki A: The role of Hippo-YAP signaling in squamous cell carcinomas. Cancer Sci. 112:51–60. 2021. View Article : Google Scholar

63 

Du Z and Lovly CM: Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 17:582018. View Article : Google Scholar : PubMed/NCBI

64 

Shi Q and Chen YG: Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development. Sci China Life Sci. 60:1133–1141. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Enchev RI, Schulman BA and Peter M: Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 16:30–44. 2015. View Article : Google Scholar

66 

Hamon P, Thoré MGD, Classe M, Signolle N, Liu W, Bawa O, Meziani L, Clémenson C, Milliat F, Deutsch E and Mondini M: TGFβ receptor inhibition unleashes interferon-β production by tumor-associated macrophages and enhances radiotherapy efficacy. J Immunother Cancer. 10:e0035192022. View Article : Google Scholar

67 

Zuo W, Huang F, Chiang YJ, Li M, Du J, Ding Y, Zhang T, Lee HW, Jeong LS, Chen Y, et al: c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor. Mol Cell. 49:499–510. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, Kochupurakkal BS, Katz M, Lavi S, Cesareni G and Yarden Y: Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem. 281:21640–21651. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Tumbrink HL, Heimsoeth A and Sos ML: The next tier of EGFR resistance mutations in lung cancer. Oncogene. 40:1–11. 2021. View Article : Google Scholar

70 

Konduri K, Gallant JN, Chae YK, Giles FJ, Gitlitz BJ, Gowen K, Ichihara E, Owonikoko TK, Peddareddigari V, Ramalingam SS, et al: EGFR fusions as novel therapeutic targets in lung cancer. Cancer Discov. 6:601–611. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Luo Z, Yu G, Lee HW, Li L, Wang L, Yang D, Pan Y, Ding C, Qian J, Wu L, et al: The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res. 72:3360–3371. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Invrea F, Punzi S, Petti C, Minelli R, Peoples MD, Bristow CA, Vurchio V, Corrado A, Bragoni A, Marchiò C, et al: Synthetic lethality screening highlights colorectal cancer vulnerability to concomitant blockade of NEDD8 and EGFR pathways. Cancers (Basel). 13:38052021. View Article : Google Scholar : PubMed/NCBI

73 

Jiang Y, Cheng W, Li L, Zhou L, Liang Y, Zhang W, Chen W, Wang S, Zhao H, Chen G, et al: Effective targeting of the ubiquitin-like modifier NEDD8 for lung adenocarcinoma treatment. Cell Biol Toxicol. 36:349–364. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Bommelje CC, Weeda VB, Huang G, Shah K, Bains S, Buss E, Shaha M, Gönen M, Ghossein R, Ramanathan SY and Singh B: Oncogenic function of SCCRO5/DCUN1D5 requires its Neddylation E3 activity and nuclear localization. Clin Cancer Res. 20:372–381. 2014. View Article : Google Scholar :

75 

Wang L, Zhang M, Pan X, Zhao M, Huang L, Hu X, Wang X, Qiao L, Guo Q, Xu W, et al: Integrative serum metabolic fingerprints based multi-modal platforms for lung adenocarcinoma early detection and pulmonary nodule classification. Adv Sci (Weinh). 9:e22037862022. View Article : Google Scholar : PubMed/NCBI

76 

Yang J, Yin X, Zhang L, Zhang X, Lin Y, Zhuang L, Liu W, Zhang R, Yan X, Shi L, et al: Defective Fe metal-organic frameworks enhance metabolic profiling for high-accuracy diagnosis of human cancers. Adv Mater. 34:e22014222022. View Article : Google Scholar : PubMed/NCBI

77 

Zhou L, Dong C, Xu Z, Wang X, Zhang L, Chen S, Chen J and Zhu Y: NEDD8-conjugating enzyme E2 UBE2F confers radiation resistance by protecting lung cancer cells from apoptosis. J Zhejiang Univ Sci B. 22:959–965. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Zhou W, Xu J, Li H, Xu M, Chen ZJ, Wei W, Pan Z and Sun Y: Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to Degrade NOXA via the K11 Linkage. Clin Cancer Res. 23:1104–1116. 2017. View Article : Google Scholar :

79 

Guo ZP, Hu YC, Xie Y, Jin F, Song ZQ, Liu XD, Ma T and Zhou PK: MLN4924 suppresses the BRCA1 complex and synergizes with PARP inhibition in NSCLC cells. Biochem Biophys Res Commun. 483:223–229. 2017. View Article : Google Scholar

80 

Meng F, Yu W, Chen C, Guo S, Tian X, Miao Y, Ma L, Zhang X, Yu Y, Huang L, et al: A versatile electrochemical biosensor for the detection of circulating MicroRNA toward non-small cell lung cancer diagnosis. Small. 18:e22007842022. View Article : Google Scholar : PubMed/NCBI

81 

Zhu HZ, Hou J, Guo Y, Liu X, Jiang FL, Chen GP, Pang XF, Sun JG and Chen ZT: Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles. Drug Deliv. 25:1974–1983. 2018. View Article : Google Scholar

82 

Khalife J, Radomska HS, Santhanam R, Huang X, Neviani P, Saultz J, Wang H, Wu YZ, Alachkar H, Anghelina M, et al: Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia. Leukemia. 29:1981–1992. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Ardizzoni A, Boni L, Tiseo M, Fossella FV, Schiller JH, Paesmans M, Radosavljevic D, Paccagnella A, Zatloukal P, Mazzanti P, et al: Cisplatin-versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: An individual patient data meta-analysis. J Natl Cancer Inst. 99:847–857. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Xu W, Xie X, Wu H, et al: Pulsed electromagnetic therapy in cancer treatment: Progress and outlook. View. 3:202200292022. View Article : Google Scholar

85 

Brownell J E, Sintcha k MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL, et al: Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: The NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell. 37:102–111. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Lockhart AC, Bauer TM, Aggarwal C, Lee CB, Harvey RD, Cohen RB, Sedarati F, Nip TK, Faessel H, Dash AB, et al: Phase Ib study of pevonedistat, a NEDD8-activating enzyme inhibitor, in combination with docetaxel, carboplatin and paclitaxel, or gemcitabine, in patients with advanced solid tumors. Invest New Drugs. 37:87–97. 2019. View Article : Google Scholar :

87 

Sarantopoulos J, Shapiro GI, Cohen RB, Clark JW, Kauh JS, Weiss GJ, Cleary JM, Mahalingam D, Pickard MD, Faessel HM, et al: Phase I study of the investigational NEDD8-Activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors. Clin Cancer Res. 22:847–857. 2016. View Article : Google Scholar

88 

Yin Y, Xie CM, Li H, Tan M, Chen G, Schiff R, Xiong X and Sun Y: The FBXW2-MSX2-SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proc Natl Acad Sci USA. 116:20528–20538. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Norton JP, Augert A, Eastwood E, Basom Rudin CM and MacPherson D: Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas. Genes Dev. 35:870–887. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al: An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 458:732–736. 2009. View Article : Google Scholar : PubMed/NCBI

91 

Jia L, Li H and Sun Y: Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. Neoplasia. 13:561–569. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Lin JJ, Milhollen MA, Smith PG, Narayanan U and Dutta A: NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res. 70:10310–10320. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Chen P, Hu T, Liang Y, Li P, Chen X, Zhang J, Ma Y, Hao Q, Wang J, Zhang P, et al: Neddylation inhibition activates the extrinsic apoptosis pathway through ATF4-CHOP-DR5 axis in human esophageal cancer cells. Clin Cancer Res. 22:4145–4157. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Jia L, Soengas MS and Sun Y: ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis, and senescence. Cancer Res. 69:4974–4982. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Rizzardi LF and Cook JG: Flipping the switch from g1 to s phase with e3 ubiquitin ligases. Genes Cancer. 3:634–648. 2012. View Article : Google Scholar

96 

Zhao Y, Xiong X, Jia L and Sun Y: Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis. 3:e3862012. View Article : Google Scholar : PubMed/NCBI

97 

Li Y, Wang C, Xu T, Pan P, Yu Q, Xu L, Xiong X, Hou T, Cui S and Sun Y: Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy. Acta Pharm Sin B. 11:3567–3584. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Yao WT, Wu JF, Yu GY, Wang R, Wang K, Li LH, Chen P, Jiang YN, Cheng H, Lee HW, et al: Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death Dis. 5:e10592014. View Article : Google Scholar : PubMed/NCBI

100 

Tan M, Zhao Y, Kim SJ, Liu M, Jia L, Saunders TL, Zhu Y and Sun Y: SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell. 21:1062–1076. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Tan M, Li H and Sun Y: Endothelial deletion of Sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene. 33:5211–5220. 2014. View Article : Google Scholar :

102 

Conway EM, Pikor LA, Kung SH, Hamilton MJ, Lam S, Lam WL and Bennewith KL: Macrophages, inflammation, and lung cancer. Am J Respir Crit Care Med. 193:116–130. 2016. View Article : Google Scholar

103 

Deng Q, Zhang J, Gao Y, She X, Wang Y, Wang Y and Ge X: MLN4924 protects against bleomycin-induced pulmonary fibrosis by inhibiting the early inflammatory process. Am J Transl Res. 9:1810–1821. 2017.PubMed/NCBI

104 

Zhou L, Zhang W, Sun Y and Jia L: Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal. 44:92–102. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Hao R, Song Y, Li R, Wu Y, Yang X, Li X, Qian F, Ye RD and Sun L: MLN4924 protects against interleukin-17A-induced pulmonary inflammation by disrupting ACT1-mediated signaling. Am J Physiol Lung Cell Mol Physiol. 316:L1070–L1080. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Cheng M, Hu S, Wang Z, Pei Y, Fan R, Liu X, Wang L, Zhou J, Zheng S, Zhang T, et al: Inhibition of neddylation regulates dendritic cell functions via Deptor accumulation driven mTOR inactivation. Oncotarget. 7:35643–35654. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Mathewson N, Toubai T, Kapeles S, Sun Y, Oravecz-Wilson K, Tamaki H, Wang Y, Hou G, Sun Y and Reddy P: Neddylation plays an important role in the regulation of murine and human dendritic cell function. Blood. 122:2062–2073. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Zhu Z, Sun L, Hao R, Jiang H, Qian F and Ye RD: Nedd8 modification of Cullin-5 regulates lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 313:L104–L114. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Jiang Y, Liang Y, Li L, Zhou L, Cheng W, Yang X, Yang X, Qi H, Yu J, Jeong LS, et al: Targeting neddylation inhibits intra-vascular survival and extravasation of cancer cells to prevent lung-cancer metastasis. Cell Biol Toxicol. 35:233–245. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Kim Y, Park JB, Fukuda J, Watanabe M and Chun YS: The effect of neddylation blockade on slug-dependent cancer cell migration is regulated by p53 mutation status. Cancers (Basel). 13:5312021. View Article : Google Scholar : PubMed/NCBI

111 

Sun Y and Li H: Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Protein Cell. 4:103–116. 2013. View Article : Google Scholar

112 

Xu Q, Lin G, Xu H, Hu L, Wang Y, Du S, Deng W, Hu W, Cheng W and Jiang K: MLN4924 neddylation inhibitor promotes cell death in paclitaxel-resistant human lung adenocarcinoma cells. Oncol Lett. 15:515–521. 2018.PubMed/NCBI

113 

Zhang Q, Karnak D, Tan M, Lawrence TS, Morgan MA and Sun Y: FBXW7 facilitates nonhomologous End-Joining via K63-Linked Polyubiquitylation of XRCC4. Mol Cell. 61:419–433. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Zhou X, Tan M, Nyati MK, Zhao Y, Wang G and Sun Y: Blockage of neddylation modification stimulates tumor sphere formation in vitro and stem cell differentiation and wound healing in vivo. Proc Natl Acad Sci USA. 113:E2935–2944. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI

116 

Park JB, Seo J, Park JW and Chun YS: Neddylation blockade induces HIF-1α driven cancer cell migration via upregulation of ZEB1. Sci Rep. 10:182102020. View Article : Google Scholar

117 

Korrodi-Gregório L, Soto-Cerrato V, Vitorino R, Fardilha M and Pérez-Tomás R: From proteomic analysis to potential therapeutic targets: Functional profile of two lung cancer cell lines, A549 and SW900, widely studied in pre-clinical research. PLoS One. 11:e01659732016. View Article : Google Scholar : PubMed/NCBI

118 

Ni S, Chen X, Yu Q, Xu Y, Hu Z, Zhang J, Zhang W, Li B, Yang X, Mao F, et al: Discovery of candesartan cilexetic as a novel neddylation inhibitor for suppressing tumor growth. Eur J Med Chem. 185:1118482020. View Article : Google Scholar

119 

Chen X, Yang X, Mao F, Wei J, Xu Y, Li B, Zhu J, Ni S, Jia L and Li J: Development of novel benzimidazole-derived neddylation inhibitors for suppressing tumor growth invitro and invivo. Eur J Med Chem. 210:1129642021. View Article : Google Scholar

120 

An H and Statsyuk AV: An inhibitor of ubiquitin conjugation and aggresome formation. Chem Sci. 6:5235–5245. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Milhollen MA, Thomas MP, Narayanan U, Traore T, Riceberg J, Amidon BS, Bence NF, Bolen JB, Brownell J, Dick LR, et al: Treatment-emergent mutations in NAEβ confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell. 21:388–401. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Toth JI, Yang L, Dahl R and Petroski MD: A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Cell Rep. 1:309–316. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Verma S, Singh A and Mishra A: Molecular dynamics investigation on the poor sensitivity of A171T mutant NEDD8-activating enzyme (NAE) for MLN4924. J Biomol Struct Dyn. 32:1064–1073. 2014. View Article : Google Scholar

124 

Hammill JT, Scott DC, Min J, Connelly MC, Holbrook G, Zhu F, Matheny A, Yang L, Singh B, Schulman BA and Guy RK: Piperidinyl ureas chemically control defective in cullin neddylation 1 (DCN1)-Mediated cullin neddylation. J Med Chem. 61:2680–2693. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Hammill JT, Bhasin D, Scott DC, Min J, Chen Y, Lu Y, Yang L, Kim HS, Connelly MC, Hammill C, et al: Discovery of an orally bioavailable inhibitor of defective in cullin neddylation 1 (DCN1)-Mediated cullin neddylation. J Med Chem. 61:2694–2706. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Zhou H, Lu J, Liu L, Bernard D, Yang CY, Fernandez-Salas E, Chinnaswamy K, Layton S, Stuckey J, Yu Q, et al: A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. Nat Commun. 8:11502017. View Article : Google Scholar : PubMed/NCBI

127 

Zhou H, Lu J, Chinnaswamy K, Stuckey JA, Liu L, McEachern D, Yang CY, Bernard D, Shen H, Rui L, et al: Selective inhibition of cullin 3 neddylation through covalent targeting DCN1 protects mice from acetaminophen-induced liver toxicity. Nat Commun. 12:26212021. View Article : Google Scholar : PubMed/NCBI

128 

Li Y, Bao Q, Yang S, Yang M and Mao C: Bionanoparticles in cancer imaging, diagnosis, and treatment. View. 3:202000272022. View Article : Google Scholar

129 

Zhang Z, Zhang J, Tian J and Li H: A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1). J Nanobiotechnology. 19:3232021. View Article : Google Scholar : PubMed/NCBI

130 

Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tian Z, Li J, Ma R, Li T, Sun Z and Huang S: Targeting neddylation as a novel approach to lung cancer treatment (Review). Int J Oncol 62: 65, 2023.
APA
Tian, Z., Li, J., Ma, R., Li, T., Sun, Z., & Huang, S. (2023). Targeting neddylation as a novel approach to lung cancer treatment (Review). International Journal of Oncology, 62, 65. https://doi.org/10.3892/ijo.2023.5513
MLA
Tian, Z., Li, J., Ma, R., Li, T., Sun, Z., Huang, S."Targeting neddylation as a novel approach to lung cancer treatment (Review)". International Journal of Oncology 62.5 (2023): 65.
Chicago
Tian, Z., Li, J., Ma, R., Li, T., Sun, Z., Huang, S."Targeting neddylation as a novel approach to lung cancer treatment (Review)". International Journal of Oncology 62, no. 5 (2023): 65. https://doi.org/10.3892/ijo.2023.5513
Copy and paste a formatted citation
x
Spandidos Publications style
Tian Z, Li J, Ma R, Li T, Sun Z and Huang S: Targeting neddylation as a novel approach to lung cancer treatment (Review). Int J Oncol 62: 65, 2023.
APA
Tian, Z., Li, J., Ma, R., Li, T., Sun, Z., & Huang, S. (2023). Targeting neddylation as a novel approach to lung cancer treatment (Review). International Journal of Oncology, 62, 65. https://doi.org/10.3892/ijo.2023.5513
MLA
Tian, Z., Li, J., Ma, R., Li, T., Sun, Z., Huang, S."Targeting neddylation as a novel approach to lung cancer treatment (Review)". International Journal of Oncology 62.5 (2023): 65.
Chicago
Tian, Z., Li, J., Ma, R., Li, T., Sun, Z., Huang, S."Targeting neddylation as a novel approach to lung cancer treatment (Review)". International Journal of Oncology 62, no. 5 (2023): 65. https://doi.org/10.3892/ijo.2023.5513
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team