|
1
|
Oudkerk M, Liu S, Heuvelmans MA, Walter JE
and Field JK: Lung cancer LDCT screening and mortality
reduction-evidence, pitfalls and future perspectives. Nat Rev Clin
Oncol. 18:135–151. 2021. View Article : Google Scholar
|
|
2
|
Sachs E, Sartipy U and Jackson V: Sex and
Survival After Surgery for Lung Cancer: A Swedish Nationwide
Cohort. Chest. 159:2029–2039. 2021. View Article : Google Scholar :
|
|
3
|
Thai AA, Solomon BJ, Sequist LV, Gainor JF
and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Howington JA, Blum MG, Chang AC, Balekian
AA and Murthy SC: Treatment of stage I and II non-small cell lung
cancer: Diagnosis and management of lung cancer, 3rd ed: American
College of Chest Physicians evidence-based clinical practice
guidelines. Chest. 143(5 Suppl): e278S–e313S. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar
|
|
6
|
Watson IR, Irwin MS and Ohh M: NEDD8
pathways in cancer, Sine quibus non. Cancer Cell. 19:168–176. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kamitani T, Kito K, Nguyen HP and Yeh ET:
Characterization of NEDD8, a developmentally down-regulated
ubiquitin-like protein. J Biol Chem. 272:28557–28562. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chung D and Dellaire G: The Role of the
COP9 Signalosome and Neddylation in DNA damage signaling and
repair. Biomolecules. 5:2388–2416. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhou W, Xu J, Tan M, Li H, Li H, Wei W and
Sun Y: UBE2M Is a Stress-Inducible Dual E2 for neddylation and
ubiquitylation that promotes targeted degradation of UBE2F. Mol
Cell. 70:1008–1024.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Huang DT, Ayrault O, Hunt HW, Taherbhoy
AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF and
Schulman BA: E2-RING expansion of the NEDD8 cascade confers
specificity to cullin modification. Mol Cell. 33:483–495. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xirodimas DP, Saville MK, Bourdon JC, Hay
RT and Lane DP: Mdm2-mediated NEDD8 conjugation of p53 inhibits its
transcriptional activity. Cell. 118:83–97. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Abida WM, Nikolaev A, Zhao W, Zhang W and
Gu W: FBXO11 promotes the Neddylation of p53 and inhibits its
transcriptional activity. J Biol Chem. 282:1797–1804. 2007.
View Article : Google Scholar
|
|
13
|
Lee GW, Park JB, Park SY, Seo J, Shin SH,
Park JW, Kim SJ, Watanabe M and Chun YS: The E3 ligase C-CBL
inhibits cancer cell migration by neddylating the proto-oncogene
c-Src. Oncogene. 37:5552–5568. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Broemer M, Tenev T, Rigbolt KT, Hempel S,
Blagoev B, Silke J, Ditzel M and Meier P: Systematic in vivo RNAi
analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell. 40:810–822.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Keuss MJ, Thomas Y, Mcarthur R, Wood NT,
Knebel A and Kurz T: Characterization of the mammalian family of
DCN-type NEDD8 E3 ligases. J Cell Sci. 129:1441–1454.
2016.PubMed/NCBI
|
|
16
|
Meyer-Schaller N, Chou YC, Sumara I,
Martin DD, Kurz T, Katheder N, Hofmann K, Berthiaume LG, Sicheri F
and Peter M: The human Dcn1-like protein DCNL3 promotes Cul3
neddylation at membranes. Proc Natl Acad Sci USA. 106:12365–12370.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
He S, Cao Y, Xie P, Dong G and Zhang L:
The Nedd8 Non-covalent binding region in the smurf HECT domain is
critical to its ubiquitn ligase function. Sci Rep. 7:413642017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Deshaies RJ and Joazeiro CA: RING domain
E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Soucy TA, Dick LR, Smith PG, Milhollen MA
and Brownell JE: The NEDD8 conjugation pathway and its relevance in
cancer biology and therapy. Genes Cancer. 1:708–716. 2010.
View Article : Google Scholar
|
|
20
|
Mendoza HM, Shen LN, Botting C, Lewis A,
Chen J, Ink B and Hay RT: NEDP1, a highly conserved cysteine
protease that deNEDDylates Cullins. J Biol Chem. 278:25637–25643.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhou L, Zhu J, Chen W, Jiang Y, Hu T, Wang
Y, Ye X, Zhan M, Ji C, Xu Z, et al: Induction of NEDD8-conjugating
enzyme E2 UBE2F by platinum protects lung cancer cells from
apoptosis and confers to platinum-insensitivity. Cell Death Dis.
11:9752020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhou L, Jiang Y, Luo Q, Li L and Jia L:
Neddylation: A novel modulator of the tumor microenvironment. Mol
Cancer. 18:772019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Duda DM, Scott DC, Calabrese MF, Zimmerman
ES, Zheng N and Schulman BA: Structural regulation of cullin-RING
ubiquitin ligase complexes. Curr Opin Struct Biol. 21:257–264.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Furukawa M, Zhang Y, McCarville J, Ohta T
and Xiong Y: The CUL1 C-terminal sequence and ROC1 are required for
efficient nuclear accumulation, NEDD8 modification, and ubiquitin
ligase activity of CUL1. Mol Cell Biol. 20:8185–8197. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Duda DM, Borg LA, Scott DC, Hunt HW,
Hammel M and Schulman BA: Structural insights into NEDD8 activation
of cullin-RING ligases: Conformational control of conjugation.
Cell. 134:995–1006. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kim AY, Bommelje CC, Lee BE, Yonekawa Y,
Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, et al: SCCRO
(DCUN1D1) is an essential component of the E3 complex for
neddylation. J Biol Chem. 283:33211–33220. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Goldenberg SJ, Cascio TC, Shumway SD,
Garbutt KC, Liu J, Xiong Y and Zheng N: Structure of the
Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the
assembly of the multisubunit cullin-dependent ubiquitin ligases.
Cell. 119:517–528. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Feng S, Shen Y, Sullivan JA, Rubio V,
Xiong Y, Sun TP and Deng XW: Arabidopsis CAND1, an unmodified
CUL1-interacting protein, is involved in multiple developmental
pathways controlled by ubiquitin/proteasome-mediated protein
Degradation. Plant Cell. 16:1870–1882. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Salon C, Brambilla E, Brambilla C,
Lantuejoul S, Gazzeri S and Eymin B: Altered pattern of Cul-1
protein expression and neddylation in human lung tumours:
Relationships with CAND1 and cyclin E protein levels. J Pathol.
213:303–310. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li L, Kang J, Zhang W, Cai L, Wang S,
Liang Y, Jiang Y, Liu X, Zhang Y, Ruan H, et al: Validation of
NEDD8-conjugating enzyme UBC12 as a new therapeutic target in lung
cancer. EBioMedicine. 45:81–91. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Podust VN, Brownell JE, Gladysheva TB, Luo
RS, Wang C, Coggins MB, Pierce JW, Lightcap ES and Chau V: A Nedd8
conjugation pathway is essential for proteolytic targeting of
p27Kip1 by ubiquitination. Proc Natl Acad Sci USA. 97:4579–4584.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Iso T, Suzuki T, Baird L and Yamamoto M:
Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within
Cells. Mol Cell Biol. 36:3100–3112. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bennett EJ, Rush J, Gygi SP and Harper JW:
Dynamics of cullin-RING ubiquitin ligase network revealed by
systematic quantitative proteomics. Cell. 143:951–965. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhao Y, Morgan MA and Sun Y: Targeting
Neddylation pathways to inactivate cullin-RING ligases for
anticancer therapy. Antioxid Redox Signal. 21:2383–2400. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kang M, Li Y, Zhao Y, He S and Shi J:
MiR-33a inhibits cell proliferation and invasion by targeting CAND1
in lung cancer. Clin Transl Oncol. 20:457–466. 2018. View Article : Google Scholar
|
|
36
|
Li L, Wang M, Yu G, Chen P, Li H, Wei D,
Zhu J, Xie L, Jia H, Shi J, et al: Overactivated neddylation
pathway as a therapeutic target in lung cancer. J Natl Cancer Inst.
106:dju0832014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Watson IR, Li BK, Roche O, Blanch A, Ohh M
and Irwin MS: Chemotherapy induces NEDP1-mediated destabilization
of MDM2. Oncogene. 29:297–304. 2010. View Article : Google Scholar
|
|
38
|
Xie P, Zhang M, He S, Lu K, Chen Y, Xing
G, Lu Y, Liu P, Li Y, Wang S, et al: The covalent modifier Nedd8 is
critical for the activation of Smurf1 ubiquitin ligase in
tumorigenesis. Nat Commun. 5:37332014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mahata B, Sundqvist A and Xirodimas DP:
Recruitment of RPL11 at promoter sites of p53-regulated genes upon
nucleolar stress through NEDD8 and in an Mdm2-dependent manner.
Oncogene. 31:3060–3071. 2012. View Article : Google Scholar
|
|
40
|
Sundqvist A, Liu G, Mirsaliotis A and
Xirodimas DP: Regulation of nucleolar signalling to p53 through
NEDDylation of L11. EMBO Rep. 10:1132–1139. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang J, Bai D, Ma X, Guan J and Zheng X:
hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway
by controlling NEDDylation of ribosomal protein S14. Oncogene.
33:246–254. 2014. View Article : Google Scholar
|
|
42
|
Deben C, Deschoolmeester V, Lardon F,
Rolfo C and Pauwels P: TP53 and MDM2 genetic alterations in
non-small cell lung cancer: Evaluating their prognostic and
predictive value. Crit Rev Oncol Hematol. 99:63–73. 2016.
View Article : Google Scholar
|
|
43
|
Karin M and Ben-Neriah Y: Phosphorylation
meets ubiquitination: The control of NF-[Kappa]B activity. Annu Rev
Immunol. 18:621–663. 2000. View Article : Google Scholar
|
|
44
|
Read MA, Brownell JE, Gladysheva TB,
Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS,
Chau V and Palombella VJ: Nedd8 Modification of Cul-1 Activates
SCF(beta(TrCP)-Dependent Ubiquitination of IkappaBalpha. Mol Cell
Biol. 20:2326–2333. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yu H, Lin L, Zhang Z, Zhang H and Hu H:
Targeting NF-κB pathway for the therapy of diseases: Mechanism and
clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar
|
|
46
|
Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong
C, Liu X, Lin Y, Li Y, Yu J, et al: Promotion of tumor-associated
macrophages infiltration by elevated neddylation pathway via
NF-κB-CCL2 signaling in lung cancer. Oncogene. 38:5792–5804. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu W, Wang H, Bai F, Ding L, Huang Y, Lu
C, Chen S, Li C, Yue X, Liang X, et al: IL-6 promotes metastasis of
non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell
Prolif. 53:e127762020. View Article : Google Scholar
|
|
48
|
Orel L, Neumeier H, Hochrainer K, Binder
BR and Schmid JA: Crosstalk between the NF-kappaB activating
IKK-complex and the CSN signalosome. J Cell Mol Med. 14:1555–1568.
2010. View Article : Google Scholar
|
|
49
|
Ediriweera MK, Tennekoon KH and Samarakoon
SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer:
Biological and therapeutic significance. Semin Cancer Biol.
59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chibaya L, Karim B, Zhang H and Jones SN:
Mdm2 phosphorylation by Akt regulates the p53 response to oxidative
stress to promote cell proliferation and tumorigenesis. Proc Natl
Acad Sci USA. 118:e20031931182021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y,
Zhang X, Lu Z, Cui CP, Liu CH, et al: Neddylation of PTEN regulates
its nuclear import and promotes tumor development. Cell Res.
31:291–311. 2021. View Article : Google Scholar :
|
|
52
|
Li X, Li C, Guo C, Zhao Q, Cao J, Huang
HY, Yue M, Xue Y, Jin Y, Hu L and Ji H: PI3K/Akt/mTOR signaling
orchestrates the phenotypic transition and chemo-resistance of
small cell lung cancer. J Genet Genomics. 48:640–651. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Giatromanolaki A, Koukourakis MI, Sivridis
E, Turley H, Talks K, Pezzella F, Gatter KC and Harris AL: Relation
of hypoxia inducible factor 1 alpha and 2 alpha in operable
non-small cell lung cancer to angiogenic molecular profile of
tumours and survival. Br J Cancer. 85:881–890. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang Y, Bian Y, Wang Y, Wang Y, Duan X,
Han Y, Zhang L, Wang F, Gu Z and Qin Z: HIF-1α is necessary for
activation and tumour-promotion effect of cancer-associated
fibroblasts in lung cancer. J Cell Mol Med. 25:5457–5469. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wan J and Wu W: Hyperthermia induced
HIF-1a expression of lung cancer through AKT and ERK signaling
pathways. J Exp Clin Cancer Res. 35:1192016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Curtis VF, Ehrentraut SF, Campbell EL,
Glover LE, Bayless A, Kelly CJ, Kominsky DJ and Colgan SP:
Stabilization of HIF through inhibition of Cullin-2 neddylation is
protective in mucosal inflammatory responses. FASEB J. 29:208–215.
2015. View Article : Google Scholar :
|
|
57
|
Russell RC and Ohh M: NEDD8 acts as a
'molecular switch' defining the functional selectivity of VHL. EMBO
Rep. 9:486–491. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wolf ER, Mabry AR, Damania B and Mayo LD:
Mdm2-mediated neddylation of pVHL blocks the induction of
antiangiogenic factors. Oncogene. 39:5228–5239. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hsu PC, Yang CT, Jablons DM and You L: The
Crosstalk between Src and Hippo/YAP signaling pathways in non-small
cell lung cancer (NSCLC). Cancers (Basel). 12:13612020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zou J, Ma W, Li J, Littlejohn R, Zhou H,
Kim IM, Fulton DJR, Chen W, Weintraub NL, Zhou J and Su H:
Neddylation mediates ventricular chamber maturation through
repression of Hippo signaling. Proc Natl Acad Sci USA.
115:E4101–E4110. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cooper J, Xu Q, Zhou L, Pavlovic M, Ojeda
V, Moulick K, de Stanchina E, Poirier JT, Zauderer M, Rudin CM, et
al: Combined Inhibition of NEDD8-Activating Enzyme and mTOR
Suppresses NF2 Loss-Driven Tumorigenesis. Mol Cancer Ther.
16:1693–1704. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Maehama T, Nishio M, Otani J, Mak TW and
Suzuki A: The role of Hippo-YAP signaling in squamous cell
carcinomas. Cancer Sci. 112:51–60. 2021. View Article : Google Scholar
|
|
63
|
Du Z and Lovly CM: Mechanisms of receptor
tyrosine kinase activation in cancer. Mol Cancer. 17:582018.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shi Q and Chen YG: Interplay between TGF-β
signaling and receptor tyrosine kinases in tumor development. Sci
China Life Sci. 60:1133–1141. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Enchev RI, Schulman BA and Peter M:
Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell
Biol. 16:30–44. 2015. View Article : Google Scholar
|
|
66
|
Hamon P, Thoré MGD, Classe M, Signolle N,
Liu W, Bawa O, Meziani L, Clémenson C, Milliat F, Deutsch E and
Mondini M: TGFβ receptor inhibition unleashes interferon-β
production by tumor-associated macrophages and enhances
radiotherapy efficacy. J Immunother Cancer. 10:e0035192022.
View Article : Google Scholar
|
|
67
|
Zuo W, Huang F, Chiang YJ, Li M, Du J,
Ding Y, Zhang T, Lee HW, Jeong LS, Chen Y, et al: c-Cbl-mediated
neddylation antagonizes ubiquitination and degradation of the TGF-β
type II receptor. Mol Cell. 49:499–510. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Oved S, Mosesson Y, Zwang Y, Santonico E,
Shtiegman K, Marmor MD, Kochupurakkal BS, Katz M, Lavi S, Cesareni
G and Yarden Y: Conjugation to Nedd8 instigates ubiquitylation and
down-regulation of activated receptor tyrosine kinases. J Biol
Chem. 281:21640–21651. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tumbrink HL, Heimsoeth A and Sos ML: The
next tier of EGFR resistance mutations in lung cancer. Oncogene.
40:1–11. 2021. View Article : Google Scholar
|
|
70
|
Konduri K, Gallant JN, Chae YK, Giles FJ,
Gitlitz BJ, Gowen K, Ichihara E, Owonikoko TK, Peddareddigari V,
Ramalingam SS, et al: EGFR fusions as novel therapeutic targets in
lung cancer. Cancer Discov. 6:601–611. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Luo Z, Yu G, Lee HW, Li L, Wang L, Yang D,
Pan Y, Ding C, Qian J, Wu L, et al: The Nedd8-activating enzyme
inhibitor MLN4924 induces autophagy and apoptosis to suppress liver
cancer cell growth. Cancer Res. 72:3360–3371. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Invrea F, Punzi S, Petti C, Minelli R,
Peoples MD, Bristow CA, Vurchio V, Corrado A, Bragoni A, Marchiò C,
et al: Synthetic lethality screening highlights colorectal cancer
vulnerability to concomitant blockade of NEDD8 and EGFR pathways.
Cancers (Basel). 13:38052021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jiang Y, Cheng W, Li L, Zhou L, Liang Y,
Zhang W, Chen W, Wang S, Zhao H, Chen G, et al: Effective targeting
of the ubiquitin-like modifier NEDD8 for lung adenocarcinoma
treatment. Cell Biol Toxicol. 36:349–364. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bommelje CC, Weeda VB, Huang G, Shah K,
Bains S, Buss E, Shaha M, Gönen M, Ghossein R, Ramanathan SY and
Singh B: Oncogenic function of SCCRO5/DCUN1D5 requires its
Neddylation E3 activity and nuclear localization. Clin Cancer Res.
20:372–381. 2014. View Article : Google Scholar :
|
|
75
|
Wang L, Zhang M, Pan X, Zhao M, Huang L,
Hu X, Wang X, Qiao L, Guo Q, Xu W, et al: Integrative serum
metabolic fingerprints based multi-modal platforms for lung
adenocarcinoma early detection and pulmonary nodule classification.
Adv Sci (Weinh). 9:e22037862022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yang J, Yin X, Zhang L, Zhang X, Lin Y,
Zhuang L, Liu W, Zhang R, Yan X, Shi L, et al: Defective Fe
metal-organic frameworks enhance metabolic profiling for
high-accuracy diagnosis of human cancers. Adv Mater.
34:e22014222022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhou L, Dong C, Xu Z, Wang X, Zhang L,
Chen S, Chen J and Zhu Y: NEDD8-conjugating enzyme E2 UBE2F confers
radiation resistance by protecting lung cancer cells from
apoptosis. J Zhejiang Univ Sci B. 22:959–965. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhou W, Xu J, Li H, Xu M, Chen ZJ, Wei W,
Pan Z and Sun Y: Neddylation E2 UBE2F promotes the survival of lung
cancer cells by activating CRL5 to Degrade NOXA via the K11
Linkage. Clin Cancer Res. 23:1104–1116. 2017. View Article : Google Scholar :
|
|
79
|
Guo ZP, Hu YC, Xie Y, Jin F, Song ZQ, Liu
XD, Ma T and Zhou PK: MLN4924 suppresses the BRCA1 complex and
synergizes with PARP inhibition in NSCLC cells. Biochem Biophys Res
Commun. 483:223–229. 2017. View Article : Google Scholar
|
|
80
|
Meng F, Yu W, Chen C, Guo S, Tian X, Miao
Y, Ma L, Zhang X, Yu Y, Huang L, et al: A versatile electrochemical
biosensor for the detection of circulating MicroRNA toward
non-small cell lung cancer diagnosis. Small. 18:e22007842022.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhu HZ, Hou J, Guo Y, Liu X, Jiang FL,
Chen GP, Pang XF, Sun JG and Chen ZT: Identification and imaging of
miR-155 in the early screening of lung cancer by targeted delivery
of octreotide-conjugated chitosan-molecular beacon nanoparticles.
Drug Deliv. 25:1974–1983. 2018. View Article : Google Scholar
|
|
82
|
Khalife J, Radomska HS, Santhanam R, Huang
X, Neviani P, Saultz J, Wang H, Wu YZ, Alachkar H, Anghelina M, et
al: Pharmacological targeting of miR-155 via the NEDD8-activating
enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid
leukemia. Leukemia. 29:1981–1992. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ardizzoni A, Boni L, Tiseo M, Fossella FV,
Schiller JH, Paesmans M, Radosavljevic D, Paccagnella A, Zatloukal
P, Mazzanti P, et al: Cisplatin-versus carboplatin-based
chemotherapy in first-line treatment of advanced non-small-cell
lung cancer: An individual patient data meta-analysis. J Natl
Cancer Inst. 99:847–857. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xu W, Xie X, Wu H, et al: Pulsed
electromagnetic therapy in cancer treatment: Progress and outlook.
View. 3:202200292022. View Article : Google Scholar
|
|
85
|
Brownell J E, Sintcha k MD, Gavin JM, Liao
H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt
AL, et al: Substrate-assisted inhibition of ubiquitin-like
protein-activating enzymes: The NEDD8 E1 inhibitor MLN4924 forms a
NEDD8-AMP mimetic in situ. Mol Cell. 37:102–111. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lockhart AC, Bauer TM, Aggarwal C, Lee CB,
Harvey RD, Cohen RB, Sedarati F, Nip TK, Faessel H, Dash AB, et al:
Phase Ib study of pevonedistat, a NEDD8-activating enzyme
inhibitor, in combination with docetaxel, carboplatin and
paclitaxel, or gemcitabine, in patients with advanced solid tumors.
Invest New Drugs. 37:87–97. 2019. View Article : Google Scholar :
|
|
87
|
Sarantopoulos J, Shapiro GI, Cohen RB,
Clark JW, Kauh JS, Weiss GJ, Cleary JM, Mahalingam D, Pickard MD,
Faessel HM, et al: Phase I study of the investigational
NEDD8-Activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in
patients with advanced solid tumors. Clin Cancer Res. 22:847–857.
2016. View Article : Google Scholar
|
|
88
|
Yin Y, Xie CM, Li H, Tan M, Chen G, Schiff
R, Xiong X and Sun Y: The FBXW2-MSX2-SOX2 axis regulates stem cell
property and drug resistance of cancer cells. Proc Natl Acad Sci
USA. 116:20528–20538. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Norton JP, Augert A, Eastwood E, Basom
Rudin CM and MacPherson D: Protein neddylation as a therapeutic
target in pulmonary and extrapulmonary small cell carcinomas. Genes
Dev. 35:870–887. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Soucy TA, Smith PG, Milhollen MA, Berger
AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP,
Critchley S, et al: An inhibitor of NEDD8-activating enzyme as a
new approach to treat cancer. Nature. 458:732–736. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jia L, Li H and Sun Y: Induction of
p21-dependent senescence by an NAE inhibitor, MLN4924, as a
mechanism of growth suppression. Neoplasia. 13:561–569. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lin JJ, Milhollen MA, Smith PG, Narayanan
U and Dutta A: NEDD8-targeting drug MLN4924 elicits DNA
rereplication by stabilizing Cdt1 in S phase, triggering checkpoint
activation, apoptosis, and senescence in cancer cells. Cancer Res.
70:10310–10320. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen P, Hu T, Liang Y, Li P, Chen X, Zhang
J, Ma Y, Hao Q, Wang J, Zhang P, et al: Neddylation inhibition
activates the extrinsic apoptosis pathway through ATF4-CHOP-DR5
axis in human esophageal cancer cells. Clin Cancer Res.
22:4145–4157. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jia L, Soengas MS and Sun Y: ROC1/RBX1 E3
ubiquitin ligase silencing suppresses tumor cell growth via
sequential induction of G2-M arrest, apoptosis, and senescence.
Cancer Res. 69:4974–4982. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Rizzardi LF and Cook JG: Flipping the
switch from g1 to s phase with e3 ubiquitin ligases. Genes Cancer.
3:634–648. 2012. View Article : Google Scholar
|
|
96
|
Zhao Y, Xiong X, Jia L and Sun Y:
Targeting Cullin-RING ligases by MLN4924 induces autophagy via
modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis.
3:e3862012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li Y, Wang C, Xu T, Pan P, Yu Q, Xu L,
Xiong X, Hou T, Cui S and Sun Y: Discovery of a small molecule
inhibitor of cullin neddylation that triggers ER stress to induce
autophagy. Acta Pharm Sin B. 11:3567–3584. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Weis SM and Cheresh DA: Tumor
angiogenesis: Molecular pathways and therapeutic targets. Nat Med.
17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yao WT, Wu JF, Yu GY, Wang R, Wang K, Li
LH, Chen P, Jiang YN, Cheng H, Lee HW, et al: Suppression of tumor
angiogenesis by targeting the protein neddylation pathway. Cell
Death Dis. 5:e10592014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Tan M, Zhao Y, Kim SJ, Liu M, Jia L,
Saunders TL, Zhu Y and Sun Y: SAG/RBX2/ROC2 E3 ubiquitin ligase is
essential for vascular and neural development by targeting NF1 for
degradation. Dev Cell. 21:1062–1076. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tan M, Li H and Sun Y: Endothelial
deletion of Sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic
lethality and blocks tumor angiogenesis. Oncogene. 33:5211–5220.
2014. View Article : Google Scholar :
|
|
102
|
Conway EM, Pikor LA, Kung SH, Hamilton MJ,
Lam S, Lam WL and Bennewith KL: Macrophages, inflammation, and lung
cancer. Am J Respir Crit Care Med. 193:116–130. 2016. View Article : Google Scholar
|
|
103
|
Deng Q, Zhang J, Gao Y, She X, Wang Y,
Wang Y and Ge X: MLN4924 protects against bleomycin-induced
pulmonary fibrosis by inhibiting the early inflammatory process. Am
J Transl Res. 9:1810–1821. 2017.PubMed/NCBI
|
|
104
|
Zhou L, Zhang W, Sun Y and Jia L: Protein
neddylation and its alterations in human cancers for targeted
therapy. Cell Signal. 44:92–102. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hao R, Song Y, Li R, Wu Y, Yang X, Li X,
Qian F, Ye RD and Sun L: MLN4924 protects against
interleukin-17A-induced pulmonary inflammation by disrupting
ACT1-mediated signaling. Am J Physiol Lung Cell Mol Physiol.
316:L1070–L1080. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cheng M, Hu S, Wang Z, Pei Y, Fan R, Liu
X, Wang L, Zhou J, Zheng S, Zhang T, et al: Inhibition of
neddylation regulates dendritic cell functions via Deptor
accumulation driven mTOR inactivation. Oncotarget. 7:35643–35654.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Mathewson N, Toubai T, Kapeles S, Sun Y,
Oravecz-Wilson K, Tamaki H, Wang Y, Hou G, Sun Y and Reddy P:
Neddylation plays an important role in the regulation of murine and
human dendritic cell function. Blood. 122:2062–2073. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhu Z, Sun L, Hao R, Jiang H, Qian F and
Ye RD: Nedd8 modification of Cullin-5 regulates
lipopolysaccharide-induced acute lung injury. Am J Physiol Lung
Cell Mol Physiol. 313:L104–L114. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Jiang Y, Liang Y, Li L, Zhou L, Cheng W,
Yang X, Yang X, Qi H, Yu J, Jeong LS, et al: Targeting neddylation
inhibits intra-vascular survival and extravasation of cancer cells
to prevent lung-cancer metastasis. Cell Biol Toxicol. 35:233–245.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kim Y, Park JB, Fukuda J, Watanabe M and
Chun YS: The effect of neddylation blockade on slug-dependent
cancer cell migration is regulated by p53 mutation status. Cancers
(Basel). 13:5312021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Sun Y and Li H: Functional
characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and
an E3 ubiquitin ligase. Protein Cell. 4:103–116. 2013. View Article : Google Scholar
|
|
112
|
Xu Q, Lin G, Xu H, Hu L, Wang Y, Du S,
Deng W, Hu W, Cheng W and Jiang K: MLN4924 neddylation inhibitor
promotes cell death in paclitaxel-resistant human lung
adenocarcinoma cells. Oncol Lett. 15:515–521. 2018.PubMed/NCBI
|
|
113
|
Zhang Q, Karnak D, Tan M, Lawrence TS,
Morgan MA and Sun Y: FBXW7 facilitates nonhomologous End-Joining
via K63-Linked Polyubiquitylation of XRCC4. Mol Cell. 61:419–433.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhou X, Tan M, Nyati MK, Zhao Y, Wang G
and Sun Y: Blockage of neddylation modification stimulates tumor
sphere formation in vitro and stem cell differentiation and wound
healing in vivo. Proc Natl Acad Sci USA. 113:E2935–2944. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Park JB, Seo J, Park JW and Chun YS:
Neddylation blockade induces HIF-1α driven cancer cell migration
via upregulation of ZEB1. Sci Rep. 10:182102020. View Article : Google Scholar
|
|
117
|
Korrodi-Gregório L, Soto-Cerrato V,
Vitorino R, Fardilha M and Pérez-Tomás R: From proteomic analysis
to potential therapeutic targets: Functional profile of two lung
cancer cell lines, A549 and SW900, widely studied in pre-clinical
research. PLoS One. 11:e01659732016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ni S, Chen X, Yu Q, Xu Y, Hu Z, Zhang J,
Zhang W, Li B, Yang X, Mao F, et al: Discovery of candesartan
cilexetic as a novel neddylation inhibitor for suppressing tumor
growth. Eur J Med Chem. 185:1118482020. View Article : Google Scholar
|
|
119
|
Chen X, Yang X, Mao F, Wei J, Xu Y, Li B,
Zhu J, Ni S, Jia L and Li J: Development of novel
benzimidazole-derived neddylation inhibitors for suppressing tumor
growth invitro and invivo. Eur J Med Chem. 210:1129642021.
View Article : Google Scholar
|
|
120
|
An H and Statsyuk AV: An inhibitor of
ubiquitin conjugation and aggresome formation. Chem Sci.
6:5235–5245. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Milhollen MA, Thomas MP, Narayanan U,
Traore T, Riceberg J, Amidon BS, Bence NF, Bolen JB, Brownell J,
Dick LR, et al: Treatment-emergent mutations in NAEβ confer
resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer
Cell. 21:388–401. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Toth JI, Yang L, Dahl R and Petroski MD: A
gatekeeper residue for NEDD8-activating enzyme inhibition by
MLN4924. Cell Rep. 1:309–316. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Verma S, Singh A and Mishra A: Molecular
dynamics investigation on the poor sensitivity of A171T mutant
NEDD8-activating enzyme (NAE) for MLN4924. J Biomol Struct Dyn.
32:1064–1073. 2014. View Article : Google Scholar
|
|
124
|
Hammill JT, Scott DC, Min J, Connelly MC,
Holbrook G, Zhu F, Matheny A, Yang L, Singh B, Schulman BA and Guy
RK: Piperidinyl ureas chemically control defective in cullin
neddylation 1 (DCN1)-Mediated cullin neddylation. J Med Chem.
61:2680–2693. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Hammill JT, Bhasin D, Scott DC, Min J,
Chen Y, Lu Y, Yang L, Kim HS, Connelly MC, Hammill C, et al:
Discovery of an orally bioavailable inhibitor of defective in
cullin neddylation 1 (DCN1)-Mediated cullin neddylation. J Med
Chem. 61:2694–2706. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhou H, Lu J, Liu L, Bernard D, Yang CY,
Fernandez-Salas E, Chinnaswamy K, Layton S, Stuckey J, Yu Q, et al:
A potent small-molecule inhibitor of the DCN1-UBC12 interaction
that selectively blocks cullin 3 neddylation. Nat Commun.
8:11502017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhou H, Lu J, Chinnaswamy K, Stuckey JA,
Liu L, McEachern D, Yang CY, Bernard D, Shen H, Rui L, et al:
Selective inhibition of cullin 3 neddylation through covalent
targeting DCN1 protects mice from acetaminophen-induced liver
toxicity. Nat Commun. 12:26212021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Li Y, Bao Q, Yang S, Yang M and Mao C:
Bionanoparticles in cancer imaging, diagnosis, and treatment. View.
3:202000272022. View Article : Google Scholar
|
|
129
|
Zhang Z, Zhang J, Tian J and Li H: A
polydopamine nanomedicine used in photothermal therapy for liver
cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1
(RBX1). J Nanobiotechnology. 19:3232021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Deng L, Meng T, Chen L, Wei W and Wang P:
The role of ubiquitination in tumorigenesis and targeted drug
discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI
|