Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2023 Volume 62 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2023 Volume 62 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review)

  • Authors:
    • Jiaying Cao
    • Feng Zeng
    • Shan Liao
    • Lan Cao
    • Yanhong Zhou
  • View Affiliations / Copyright

    Affiliations: NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China, Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China, Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
    Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 70
    |
    Published online on: May 4, 2023
       https://doi.org/10.3892/ijo.2023.5518
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Under conditions of oxygen sufficiency, tumor cells supply themselves with energy through glycolysis, which is one of the causes of their rapid proliferation, metastasis and acquisition of drug resistance. Tumor‑associated macrophages (TAMs) are transformed from peripheral blood monocytes and are among the immune‑related cells that constitute the tumor microenvironment (TME). Altered glycolysis levels in TAMs have an important impact on their polarization and function. The cytokines secreted by TAMs, and phagocytosis in different polarization states, affect tumorigenesis and development. Furthermore, changes in glycolysis activity of tumor cells and other immune‑related cells in the TME also affect the polarization and function of TAMs. Studies on the relationship between glycolysis and TAMs have received increasing attention. The present study summarized the link between glycolysis of TAMs and their polarization and function, as well as the interaction between changes in glycolysis of tumor cells and other immune‑associated cells in the TME and TAMs. The present review aimed to provide a comprehensive understanding of the effects of glycolysis on the polarization and function of TAMs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Tang BL: Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol. 235:7653–7662. 2020.

2 

Fernie AR, Carrari F and Sweetlove LJ: Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol. 7:254–261. 2004.

3 

Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Z, Yanxiang Guo J, et al: Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118. 2017.

4 

Gerich JE, Meyer C, Woerle HJ and Stumvoll M: Renal gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care. 24:382–391. 2001.

5 

Weinhouse S: Oxidative metabolism of neoplastic tissues. Adv Cancer Res. 3:269–325. 1955.

6 

Jin L and Zhou Y: Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett. 17:4213–4221. 2019.

7 

Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G and Sun Y: New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med. 13:452015.

8 

Pereira M, Chen TD, Buang N, Olona A, Ko JH, Prendecki M, Costa ASH, Nikitopoulou E, Tronci L, Pusey CD, et al: Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo. Cell Rep. 28:498–511.e5. 2019.

9 

Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, Dzeja PP and Herrmann J: Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab. 28:463–475.e4. 2018.

10 

Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, Sugiura A, Cohen AS, Ali A, Do BT, et al: Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 593:282–288. 2021.

11 

Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD and Pearce EJ: Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity. 45:817–830. 2016.

12 

Shi Q, Shen Q, Liu Y, Shi Y, Huang W, Wang X, Li Z, Chai Y, Wang H, Hu X, et al: Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell. 40:1207–1222.e10. 2022.

13 

M de-Brito N, Duncan-Moretti J, C da-Costa H, Saldanha-Gama R, Paula-Neto HA, G Dorighello G, L Simões R and Barja-Fidalgo C: Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages. Biochim Biophys Acta Mol Cell Res. 1867:1186042020.

14 

Saha S, Shalova IN and Biswas SK: Metabolic regulation of macrophage phenotype and function. Immunol Rev. 280:102–111. 2017.

15 

Lin EY, Gouon-Evans V, Nguyen AV and Pollard JW: The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia. 7:147–162. 2002.

16 

Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24:241–255. 2010.

17 

Li W, Li Y, Jin X, Liao Q, Chen Z, Peng H and Zhou Y: CD38: A Significant Regulator of macrophage Function. Front Oncol. 12:7756492022.

18 

Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013.

19 

Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, et al: The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15:813–826. 2012.

20 

Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ and Liu G: Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol. 194:6082–6089. 2015.

21 

Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR, Domingo-Fernandez R, Johnston DG, et al: Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21:65–80. 2015.

22 

Tawakol A, Singh P, Mojena M, Pimentel-Santillana M, Emami H, MacNabb M, Rudd JH, Narula J, Enriquez JA, Través PG, et al: HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler Thromb Vasc Biol. 35:1463–1471. 2015.

23 

Ruiz-Ga rcía A, Monsalve E, Novellasdemunt L, Navarro-Sabaté A, Manzano A, Rivero S, Castrillo A, Casado M, Laborda J, Bartrons R and Díaz-Guerra MJ: Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem. 286:19247–19258. 2011.

24 

Bell GI, Burant CF, Takeda J and Gould GW: Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 268:19161–19164. 1993.

25 

Middleton RJ: Hexokinases and glucokinases. Biochem Soc Trans. 18:180–183. 1990.

26 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995.

27 

Moon JS, Hisata S, Park MA, DeNicola GM, Ryter SW, Nakahira K and Choi AMK: mTORC1-Induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 12:102–115. 2015.

28 

Zafar A, Ng HP, Kim GD, Chan ER and Mahabeleshwar GH: BHLHE40 promotes macrophage pro-inflammatory gene expression and functions. FASEB J. 35:e219402021.

29 

Kim MJ, Lee CH, Lee Y, Youn H, Kang KW, Kwon J, Alavi A, Carlin S, Cheon GJ and Chung JK: Glucose-6-phosphatase expression-mediated [18F]FDG efflux in murine inflammation and cancer models. Mol Imaging Biol. 21:917–925. 2019.

30 

Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, Cao Y, Wang Y, Jia A, Bi Y and Liu G: Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation. Front Cell Infect Microbiol. 10:2872020.

31 

Alatshan A, Kovács GE, Aladdin A, Czimmerer Z, Tar K and Benkő S: All-trans retinoic acid enhances both the signaling for priming and the glycolysis for activation of NLRP3 inflammasome in human macrophage. Cells. 9:15912020.

32 

Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, Prenen H, Ghesquière B, Carmeliet P and Mazzone M: Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24:701–715. 2016.

33 

Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B, Lee B, Lee T, Mak SY, Ho YS, et al: Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology. 5:e11917312016.

34 

Singh P, González-Ramos S, Mojena M, Rosales-Mendoza CE, Emami H, Swanson J, Morss A, Fayad ZA, Rudd JH, Gelfand J, et al: GM-CSF enhances macrophage glycolytic activity in vitro and improves detection of inflammation in vivo. J Nucl Med. 57:1428–1435. 2016.

35 

Zeng H, Qi X, Xu X and Wu Y: TAB1 regulates glycolysis and activation of macrophages in diabetic nephropathy. Inflamm Res. 69:1215–1234. 2020.

36 

Xu J, Wang L, Yang Q, Ma Q, Zhou Y, Cai Y, Mao X, Da Q, Lu T, Su Y, et al: Deficiency of myeloid Pfkfb3 protects mice from lung edema and cardiac dysfunction in LPS-induced endotoxemia. Front Cardiovasc Med. 8:7458102021.

37 

Meng Q, Guo P, Jiang Z, Bo L and Bian J: Dexmedetomidine inhibits LPS-induced proinflammatory responses via suppressing HIF1α-dependent glycolysis in macrophages. Aging (Albany NY). 12:9534–9548. 2020.

38 

Poels K, Schnitzler JG, Waissi F, Levels JHM, Stroes ESG, Daemen M, Lutgens E, Pennekamp AM, De Kleijn DPV, Seijkens TTP and Kroon J: Inhibition of PFKFB3 hampers the progression of atherosclerosis and promotes plaque stability. Front Cell Dev Biol. 8:5816412020.

39 

Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, et al: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 8:839–847. 2012.

40 

Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011.

41 

Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, Xu Y, Zhou L, Chu Y, Zhang C, et al: SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production And To Prevent DSS-Induced Colitis In Mice. Cell Rep. 19:2331–2344. 2017.

42 

Henze AT and Mazzone M: The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 126:3672–3679. 2016.

43 

Colangelo T, Polcaro G, Muccillo L, D'Agostino G, Rosato V, Ziccardi P, Lupo A, Mazzoccoli G, Sabatino L and AColantuoni V: Friend or foe? The tumour microenvironment dilemma in colorectal cancer. Biochim Biophys Acta Rev Cancer. 1867:1–18. 2017.

44 

Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, Miyazawa H, Yamaguchi Y, Miura M, Jenkins DM, et al: HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 7:116352016.

45 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011.

46 

Levine AJ and Puzio-Kuter AM: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 330:1340–1344. 2010.

47 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009.

48 

Li C, Wang Y, Li Y, Yu Q, Jin X, Wang X, Jia A, Hu Y, Han L, Wang J, et al: HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection. Sci Rep. 8:36032018.

49 

Wang L, Pavlou S, Du X, Bhuckory M, Xu H and Chen M: Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 14:22019.

50 

Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT, Cui B, Wang HF, Zhao Y, An F, et al: Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene. 37:1062–74. 2018.

51 

Talreja J, Talwar H, Bauerfeld C, Grossman LI, Zhang K, Tranchida P and Samavati L: HIF-1α regulates IL-1β and IL-17 in sarcoidosis. Elife. 8. pp. e445192019

52 

Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, Macintyre AN, Goraksha-Hicks P, Rathmell JC and Makowski L: Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 289:7884–7896. 2014.

53 

Freemerman AJ, Zhao L, Pingili AK, Teng B, Cozzo AJ, Fuller AM, Johnson AR, Milner JJ, Lim MF, Galanko JA, et al: Myeloid Slc2a1-Deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J Immunol. 202:1265–1286. 2019.

54 

Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015.

55 

Fix DK, Ekiz HA, Petrocelli JJ, McKenzie AM, Mahmassani ZS, O'Connell RM and Drummond MJ: Disrupted macrophage metabolic reprogramming in aged soleus muscle during early recovery following disuse atrophy. Aging Cell. 20:e134482021.

56 

Zhuang H, Lv Q, Zhong C, Cui Y, He L, Zhang C and Yu J: Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway. Front Immunol. 12:6494632021.

57 

Renaudin F, Orliaguet L, Castelli F, Fenaille F, Prignon A, Alzaid F, Combes C, Delvaux A, Adimy Y, Cohen-Solal M, et al: Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β activation on macrophages. Ann Rheum Dis. 79:1506–1514. 2020.

58 

He Y, Du J and Dong Z: Myeloid deletion of phosphoinositide-dependent kinase-1 enhances NK cell-mediated antitumor immunity by mediating macrophage polarization. Oncoimmunology. 9:17742812020.

59 

Baseler WA, Davies LC, Quigley L, Ridnour LA, Weiss JM, Hussain SP, Wink DA and McVicar DW: Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production. Redox Biol. 10:12–23. 2016.

60 

Wei T, Gao J, Huang C, Song B, Sun M and Shen W: SIRT3 (Sirtuin-3) prevents Ang II (Angiotensin II)-Induced macrophage metabolic switch improving perivascular adipose tissue function. Arterioscler Thromb Vasc Biol. 41:714–7130. 2021.

61 

Johnson AR, Qin Y, Cozzo AJ, Freemerman AJ, Huang MJ, Zhao L, Sampey BP, Milner JJ, Beck MA, Damania B, et al: Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Mol Metab. 5:506–526. 2016.

62 

Gu Z, Liu T, Liu C, Yang Y, Tang J, Song H, Wang Y, Yang Y and Yu C: Ferroptosis-Strengthened metabolic and inflammatory regulation of tumor-associated macrophages provokes potent tumoricidal activities. Nano Lett. 21:6471–6479. 2021.

63 

Blanco-Pérez F, Goretzki A, Wolfheimer S and Schülke S: The vaccine adjuvant MPLA activates glycolytic metabolism in mouse mDC by a JNK-dependent activation of mTOR-signaling. Mol Immunol. 106:159–169. 2019.

64 

Uehara T, Eikawa S, Nishida M, Kunisada Y, Yoshida A, Fujiwara T, Kunisada T, Ozaki T and Udono H: Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: Implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol. 31:187–198. 2019.

65 

Yu H, Bai Y, Qiu J, He X, Xiong J, Dai Q, Wang X, Li Y, Sheng H, Xin R, et al: Pseudomonas aeruginosa PcrV Enhances the nitric Oxide-Mediated tumoricidal activity of Tumor-Associated macrophages via a TLR4/PI3K/AKT/mTOR-Glycolysis-nitric oxide circuit. Front Oncol. 11:7368822021.

66 

Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, Jin X, Liu J, Mo S, Zhang T, et al: Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 9:8732018.

67 

Chen S, Cui W, Chi Z, Xiao Q, Hu T, Ye Q, Zhu K, Yu W, Wang Z, Yu C, et al: Tumor-associated macrophages are shaped by intratumoral high potassium via Kir2.1. Cell Metab. 34:1843–1859.e11. 2022.

68 

Ling J, Chang Y, Yuan Z, Chen Q, He L and Chen T: Designing lactate Dehydrogenase-Mimicking SnSe nanosheets to reprogram tumor-associated macrophages for potentiation of photothermal immunotherapy. ACS Appl Mater Interfaces. 14:27651–27665. 2022.

69 

Ramesh A, Malik V, Brouillard A and Kulkarni A: Supramolecular nanotherapeutics enable metabolic reprogramming of tumor-associated macrophages to inhibit tumor growth. J Biomed Mater Res A. 110:1448–1459. 2022.

70 

Cai W, Cheng J, Zong S, Yu Y, Wang Y, Song Y, He R, Yuan S, Chen T, Hu M, et al: The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol. 140:186–195. 2021.

71 

Qin Y, Jiang X, Yang Q, Zhao J, Zhou Q and Zhou Y: The Functions, methods, and mobility of mitochondrial transfer between cells. Front Oncol. 11:6727812021.

72 

Wang T, Liu H, Lian G, Zhang SY, Wang X and Jiang C: HIF1α-Induced glycolysis metabolism Is essential to the activation of inflammatory macrophages. Mediators Inflamm. 2017:90293272017.

73 

Dang CP and Leelahavanichkul A: Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One. 15:e02360382020.

74 

Jing C, Castro-Dopico T, Richoz N, Tuong ZK, Ferdinand JR, Lok LSC, Loudon KW, Banham GD, Mathews RJ, Cader Z, et al: Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc Natl Acad Sci USA. 117:15160–71. 2020.

75 

Wang S, Liu F, Tan KS, Ser HL, Tan LT, Lee LH and Tan W: Effect of (R)-salbutamol on the switch of phenotype and metabolic pattern in LPS-induced macrophage cells. J Cell Mol Med. 24:722–736. 2020.

76 

Xu H, Li D, Ma J, Zhao Y, Xu L, Tian R, Liu Y, Sun L and Su J: The IL-33/ST2 axis affects tumor growth by regulating mitophagy in macrophages and reprogramming their polarization. Cancer Biol Med. 18:172–183. 2021.

77 

Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86:1216–1230. 2022.

78 

Liao WT, Hung CH, Liang SS, Yu S, Lu JH, Lee CH, Chai CY and Yu HS: Anti-Inflammatory effects induced by near-infrared light irradiation through M2 macrophage polarization. J Invest Dermatol. 141:2056–2066.e10. 2021.

79 

Kelly B and O'Neill LA: Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25:771–784. 2015.

80 

Jeon EH, Park TS, Jang Y, Hwang E, Kim SJ, Song KD, Weinstein DA, Lee YM, Park BC and Jun HS: Glucose-6-phosphate transporter mediates macrophage proliferation and functions by regulating glycolysis and mitochondrial respiration. Biochem Biophys Res Commun. 524:89–95. 2020.

81 

Liu D, Chang C, Lu N, Wang X, Lu Q, Ren X, Ren P, Zhao D, Wang L, Zhu Y, et al: Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment. J Proteome Res. 16:288–2897. 2017.

82 

Jiang Y, Han Q, Zhao H and Zhang J: Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 40(13)2021.

83 

Geeraerts X, Fernández-Garcia J, Hartmann FJ, de Goede KE, Martens L, Elkrim Y, Debraekeleer A, Stijlemans B, Vandekeere A, Rinaldi G, et al: Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Rep. 37:1101712021.

84 

He Z, Chen D, Wu J, Sui C, Deng X, Zhang P, Chen Z, Liu D, Yu J, Shi J, et al: Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages. Arch Biochem Biophys. 702:1088382021.

85 

Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, Liu X, Chen CH, Fadare O, Pizzo DP, et al: Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 20:597–609. 2018.

86 

Wang JX, Choi SYC, Niu X, Kang N, Xue H, Killam J and Wang Y: Lactic Acid and an Acidic Tumor Microenvironment suppress Anticancer Immunity. Int J Mol Sci. 21:83632020.

87 

Consiglio CR, Udartseva O, Ramsey KD, Bush C and Gollnick SO: Enzalutamide, an androgen receptor antagonist, enhances myeloid Cell-Mediated immune suppression and tumor progression. Cancer Immunol Res. 8:1215–1227. 2020.

88 

Arts RJ, Plantinga TS, Tuit S, Ulas T, Heinhuis B, Tesselaar M, Sloot Y, Adema GJ, Joosten LA, Smit JW, et al: Transcriptional and metabolic reprogramming induce an inflammatory phenotype in non-medullary thyroid carcinoma-induced macrophages. Oncoimmunology. 5:e12297252016.

89 

Manoharan I, Prasad PD, Thangaraju M and Manicassamy S: Lactate-Dependent regulation of immune responses by dendritic cells and macrophages. Front Immunol. 12:6911342021.

90 

Wu Q, Allouch A, Paoletti A, Leteur C, Mirjolet C, Martins I, Voisin L, Law F, Dakhli H, Mintet E, et al: NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy. Cell Death Differ. 24:1632–1644. 2017.

91 

Zhang J, Muri J, Fitzgerald G, Gorski T, Gianni-Barrera R, Masschelein E, D'Hulst G, Gilardoni P, Turiel G, Fan Z, et al: Endothelial lactate controls muscle regeneration from ischemia by Inducing M2-like macrophage polarization. Cell Metab. 31:1136–1153.e7. 2020.

92 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014.

93 

Colgan SP, Furuta GT and Taylor CT: Hypoxia and innate immunity: Keeping Up with the HIFsters. Annu Rev Immunol. 38:341–363. 2020.

94 

Zhang L and Li S: Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer. Exp Cell Res. 388:1118462020.

95 

Yao X, He Z, Qin C, Deng X, Bai L, Li G and Shi J: SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer Cell Int. 20:5032020.

96 

Wang H, Wang L, Pan H, Wang Y, Shi M, Yu H, Wang C, Pan X and Chen Z: Exosomes derived from macrophages enhance aerobic glycolysis and chemoresistance in lung cancer by stabilizing c-Myc via the Inhibition of NEDD4L. Front Cell Dev Biol. 8:6206032020.

97 

Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, Wei Z, Xie X, Yin B, Chen F, et al: Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 129:631–646. 2019.

98 

Jiang H, Wei H, Wang H, Wang Z, Li J, Ou Y, Xiao X, Wang W, Chang A, Sun W, et al: Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer. Cell Death Dis. 13:2062022.

99 

Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 11:3839–3852. 2021.

100 

Ye H, Zhou Q, Zheng S, Li G, Lin Q, Wei L, Fu Z, Zhang B, Liu Y, Li Z and Chen R: Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis. 9:4532018.

101 

Stone SC, Rossetti RAM, Alvarez KLF, Carvalho JP, Margarido PFR, Baracat EC, Tacla M, Boccardo E, Yokochi K, Lorenzi NP and Lepique AP: Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc Biol. 105:1041–1054. 2019.

102 

Qian M, Wang S, Guo X, Wang J, Zhang Z, Qiu W, Gao X, Chen Z, Xu J, Zhao R, et al: Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways. Oncogene. 39:428–442. 2020.

103 

Niu X, Ma J, Li J, Gu Y, Yin L, Wang Y, Zhou X, Wang J, Ji H and Zhang Q: Sodium/glucose cotransporter 1-dependent metabolic alterations induce tamoxifen resistance in breast cancer by promoting macrophage M2 polarization. Cell Death Dis. 12:5092021.

104 

Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li H, Zhang L, Yu J and Yuan S: Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: A positive metabolic feedback loop. Oncotarget. 8:110426–110443. 2017.

105 

He Y, Fang Y, Zhang M, Zhao Y, Tu B, Shi M, Muhitdinov B, Asrorov A, Xu Q and Huang Y: Remodeling 'cold' tumor immune microenvironment via epigenetic-based therapy using targeted liposomes with in situ formed albumin corona. Acta Pharm Sin B. 12:2057–2073. 2022.

106 

Wang H, Wu C, Tong X and Chen S: A biomimetic Metal-Organic framework nanosystem modulates immunosuppressive tumor microenvironment metabolism to amplify immunotherapy. J Control Release. 353:727–737. 2023.

107 

Zhang J, Sun X, Xu M and Zhao X, Yang C, Li K, Zhao F, Hu H, Qiao M, Chen D and Zhao X: A Self-amplifying ROS-sensitive prodrug-based nanodecoy for circumventing immune resistance in chemotherapy-sensitized immunotherapy. Acta Biomater. 149:307–320. 2022.

108 

Shen W, Liu T, Pei P, Li J, Yang S, Zhang Y, Zhou H, Hu L and Yang K: Metabolic Homeostasis-Regulated Nanoparticles for Antibody-Independent Cancer Radio-Immunotherapy. Adv Mater. 34:e22073432022.

109 

Harper J and Sainson RC: Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol. 25:69–77. 2014.

110 

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020.

111 

Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F and Guc D: Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep. 9:31722019.

112 

Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T, Matthews QL, Liu RM and Liu G: Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol. 64:115–125. 2021.

113 

Chen S, Chen X, Shan T, Ma J, Lin W, Li W and Kang Y: MiR-21-mediated Metabolic Alteration of Cancer-associated Fibroblasts and Its Effect on Pancreatic Cancer Cell Behavior. Int J Biol Sci. 14:100–110. 2018.

114 

Nishida M, Yamashita N, Ogawa T, Koseki K, Warabi E, Ohue T, Komatsu M, Matsushita H, Kakimi K, Kawakami E, et al: Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. J Immunother Cancer. 9:e0029542021.

115 

Janabi M, Yamashita S, Hirano K, Sakai N, Hiraoka H, Matsumoto K, Zhang Z, Nozaki S and Matsuzawa Y: Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. Arterioscler Thromb Vasc Biol. 20:1953–1960. 2000.

116 

Qiao G, Chen M, Mohammadpour H, MacDonald CR, Bucsek MJ, Hylander BL, Barbi JJ and Repasky EA: Chronic adrenergic stress contributes to metabolic dysfunction and an exhausted phenotype in T cells in the tumor microenvironment. Cancer Immunol Res. 9:651–664. 2021.

117 

Sharma M, Boytard L, Hadi T, Koelwyn G, Simon R, Ouimet M, Seifert L, Spiro W, Yan B, Hutchison S, et al: Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity. Sci Rep. 10:55552020.

118 

Yang Q, Ma Q, Xu J, Liu Z, Zou J, Shen J, Zhou Y, Da Q, Mao X, Lu S, et al: Prkaa1 metabolically regulates monocyte/macrophage recruitment and viability in diet-induced murine metabolic disorders. Front Cell Dev Biol. 8:6113542020.

119 

Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC, Hockstein N, Guarino M, Masters G, Penman E, et al: CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes Tumor-Associated macrophage differentiation. Immunity. 44:303–315. 2016.

120 

Deng H, Wu L, Liu M, Zhu L, Chen Y, Zhou H, Shi X, Wei J, Zheng L, Hu X, et al: Bone marrow mesenchymal stem Cell-derived exosomes attenuate LPS-Induced ARDS by modulating macrophage polarization through inhibiting glycolysis in macrophages. Shock. 54:828–843. 2020.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cao J, Zeng F, Liao S, Cao L and Zhou Y: Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review). Int J Oncol 62: 70, 2023.
APA
Cao, J., Zeng, F., Liao, S., Cao, L., & Zhou, Y. (2023). Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review). International Journal of Oncology, 62, 70. https://doi.org/10.3892/ijo.2023.5518
MLA
Cao, J., Zeng, F., Liao, S., Cao, L., Zhou, Y."Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review)". International Journal of Oncology 62.6 (2023): 70.
Chicago
Cao, J., Zeng, F., Liao, S., Cao, L., Zhou, Y."Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review)". International Journal of Oncology 62, no. 6 (2023): 70. https://doi.org/10.3892/ijo.2023.5518
Copy and paste a formatted citation
x
Spandidos Publications style
Cao J, Zeng F, Liao S, Cao L and Zhou Y: Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review). Int J Oncol 62: 70, 2023.
APA
Cao, J., Zeng, F., Liao, S., Cao, L., & Zhou, Y. (2023). Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review). International Journal of Oncology, 62, 70. https://doi.org/10.3892/ijo.2023.5518
MLA
Cao, J., Zeng, F., Liao, S., Cao, L., Zhou, Y."Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review)". International Journal of Oncology 62.6 (2023): 70.
Chicago
Cao, J., Zeng, F., Liao, S., Cao, L., Zhou, Y."Effects of glycolysis on the polarization and function of tumor‑associated macrophages (Review)". International Journal of Oncology 62, no. 6 (2023): 70. https://doi.org/10.3892/ijo.2023.5518
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team