|
1
|
Leidal AM, Levine B and Debnath J:
Autophagy and the cell biology of age-related disease. Nat Cell
Biol. 20:1338–1348. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ariosa AR and Klionsky DJ: Autophagy core
machinery: Overcoming spatial barriers in neurons. J Mol Med
(Berl). 94:1217–1227. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yang Y and Klionsky DJ: Autophagy and
disease: Unanswered questions. Cell Death Differ. 27:858–871. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gatica D, Chiong M, Lavandero S and
Klionsky DJ: Molecular mechanisms of autophagy in the
cardiovascular system. Circ Res. 116:456–467. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kimmelman AC: The dynamic nature of
autophagy in cancer. Genes Dev. 25:1999–2010. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Condello M, Pellegrini E, Caraglia M and
Meschini S: Targeting autophagy to overcome human diseases. Int J
Mol Sci. 20:7252019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Takamura A, Komatsu M, Hara T, Sakamoto A,
Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K and Mizushima N:
Autophagy-deficient mice develop multiple liver tumors. Genes Dev.
25:795–800. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Capparelli C, Guido C, Whitaker-Menezes D,
Bonuccelli G, Balliet R, Pestell TG, Goldberg AF, Pestell RG,
Howell A, Sneddon S, et al: Autophagy and senescence in
cancer-associated fibroblasts metabolically supports tumor growth
and metastasis via glycolysis and ketone production. Cell Cycle.
11:2285–2302. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
He S, Zhao Z, Yang Y, O'Connell D, Zhang
X, Oh S, Ma B, Lee JH, Zhang T, Varghese B, et al: Truncating
mutation in the autophagy gene UVRAG confers oncogenic properties
and chemosensitivity in colorectal cancers. Nat Commun. 6:78392015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Takahashi Y, Coppola D, Matsushita N,
Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, et
al: Bif-1 interacts with Beclin 1 through UVRAG and regulates
autophagy and tumorigenesis. Nat Cell Biol. 9:1142–1151. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Elzinga BM, Nyhan MJ, Crowley LC,
O'Donovan TR, Cahill MR and McKenna SL: Induction of autophagy by
Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates
Bcr-Abl protein. Am J Hematol. 88:455–462. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Goussetis DJ, Gounaris E, Wu EJ, Vakana E,
Sharma B, Bogyo M, Altman JK and Platanias LC: Autophagic
degradation of the BCR-ABL oncoprotein and generation of
antileukemic responses by arsenic trioxide. Blood. 120:3555–3562.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang Z, Cao L, Kang R, Yang M, Liu L, Zhao
Y, Yu Y, Xie M, Yin X, Livesey KM and Tang D: Autophagy regulates
myeloid cell differentiation by p62/SQSTM1-mediated degradation of
PML-RARalpha oncoprotein. Autophagy. 7:401–411. 2011. View Article : Google Scholar :
|
|
14
|
Isakson P, Bjoras M, Boe SO and Simonsen
A: Autophagy contributes to therapy-induced degradation of the
PML/RARA oncoprotein. Blood. 116:2324–2331. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mortensen M, Soilleux EJ, Djordjevic G,
Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J,
Knight S, Jacobsen SE, et al: The autophagy protein Atg7 is
essential for hematopoietic stem cell maintenance. J Exp Med.
208:455–467. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cao Y, Cai J, Zhang S, Yuan N, Fang Y,
Wang Z, Li X, Cao D, Xu F, Lin W, et al: Autophagy sustains
hematopoiesis through targeting notch. Stem Cells Dev.
24:2660–2673. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wu F, Chen Z, Liu J and Hou Y: The
Akt-mTOR network at the interface of hematopoietic stem cell
homeostasis. Exp Hematol. 103:15–23. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Man N, Tan Y, Sun XJ, Liu F, Cheng G,
Greenblatt SM, Martinez C, Karl DL, Ando K, Sun M, et al: Caspase-3
controls AML1-ETO-driven leukemogenesis via autophagy modulation in
a ULK1-dependent manner. Blood. 129:2782–2792. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Settembre C, Di Malta C, Polito VA, Garcia
Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D,
Colella P, et al: TFEB links autophagy to lysosomal biogenesis.
Science. 332:1429–1433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko
HJ, Kweon MN, Won KJ and Baek SH: AMPK-SKP2-CARM1 signalling
cascade in transcriptional regulation of autophagy. Nature.
534:553–557. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Polager S, Ofir M and Ginsberg D: E2F1
regulates autophagy and the transcription of autophagy genes.
Oncogene. 27:4860–4864. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang K, Liu JD, Deng G, Ou ZY, Li SF, Xu
XL, Zhang MJ, Peng XQ and Chen FH: LncSIK1 enhanced the sensitivity
of AML cells to retinoic acid by the E2F1/autophagy pathway. Cell
Prolif. 55:e131852022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cheng Z: The FoxO-Autophagy Axis in Health
and Disease. Trends Endocrinol Metab. 30:658–671. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Milan G, Romanello V, Pescatore F, Armani
A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, et
al: Regulation of autophagy and the ubiquitin-proteasome system by
the FoxO transcriptional network during muscle atrophy. Nat Commun.
6:66702015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee JW, Nam H, Kim LE, Jeon Y, Min H, Ha
S, Lee Y, Kim SY, Lee SJ, Kim EK and Yu SW: TLR4 (toll-like
receptor 4) activation suppresses autophagy through inhibition of
FOXO3 and impairs phagocytic capacity of microglia. Autophagy.
15:753–770. 2019. View Article : Google Scholar :
|
|
26
|
Zhang J, Ng S, Wang J, Zhou J, Tan SH,
Yang N, Lin Q, Xia D and Shen HM: Histone deacetylase inhibitors
induce autophagy through FOXO1-dependent pathways. Autophagy.
11:629–642. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Baek SH and Kim KI: Epigenetic Control of
Autophagy: Nuclear Events Gain More Attention. Mol Cell.
65:781–785. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen S, Jing Y, Kang X, Yang L, Wang DL,
Zhang W, Zhang L, Chen P, Chang JF, Yang XM and Sun FL: Histone H2B
monoubiquitination is a critical epigenetic switch for the
regulation of autophagy. Nucleic Acids Res. 45:1144–1158.
2017.PubMed/NCBI
|
|
29
|
Artal-Martinez de Narvajas A, Gomez TS,
Zhang JS, Mann AO, Taoda Y, Gorman JA, Herreros-Villanueva M, Gress
TM, Ellenrieder V, Bujanda L, et al: Epigenetic regulation of
autophagy by the methyltransferase G9a. Mol Cell Biol.
33:3983–3993. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
An PNT, Shimaji K, Tanaka R, Yoshida H,
Kimura H, Fukusaki E and Yamaguchi M: Epigenetic regulation of
starvation-induced autophagy in Drosophila by histone
methyltransferase G9a. Sci Rep. 7:73432017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wei FZ, Cao Z, Wang X, Wang H, Cai MY, Li
T, Hattori N, Wang D, Du Y, Song B, et al: Epigenetic regulation of
autophagy by the methyltransferase EZH2 through an MTOR-dependent
pathway. Autophagy. 11:2309–2322. 2015. View Article : Google Scholar
|
|
32
|
Fullgrabe J, Lynch-Day MA, Heldring N, Li
W, Struijk RB, Ma Q, Hermanson O, Rosenfeld MG, Klionsky DJ and
Joseph B: The histone H4 lysine 16 acetyltransferase hMOF regulates
the outcome of autophagy. Nature. 500:468–471. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hu Z, Gomes I, Horrigan SK, Kravarusic J,
Mar B, Arbieva Z, Chyna B, Fulton N, Edassery S, Raza A and
Westbrook CA: A novel nuclear protein, 5qNCA (LOC51780) is a
candidate for the myeloid leukemia tumor suppressor gene on
chromosome 5 band q31. Oncogene. 20:6946–6954. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mar BG, Bullinger L, Basu E, Schlis K,
Silverman LB, Dohner K and Armstrong SA: Sequencing
histone-modifying enzymes identifies UTX mutations in acute
lymphoblastic leukemia. Leukemia. 26:1881–1883. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
MacKinnon RN, Kannourakis G, Wall M and
Campbell LJ: A cryptic deletion in 5q31.2 provides further evidence
for a minimally deleted region in myelodysplastic syndromes. Cancer
Genet. 204:187–194. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li J, Yu B, Deng P, Cheng Y, Yu Y, Kevork
K, Ramadoss S, Ding X, Li X and Wang CY: KDM3 epigenetically
controls tumorigenic potentials of human colorectal cancer stem
cells through Wnt/β-catenin signalling. Nat Commun. 8:151462017.
View Article : Google Scholar
|
|
37
|
An MJ, Kim DH, Kim CH, Kim M, Rhee S, Seo
SB and Kim JW: Histone demethylase KDM3B regulates the
transcriptional network of cell-cycle genes in hepatocarcinoma
HepG2 cells. Biochem Biophys Res Commun. 508:576–582. 2019.
View Article : Google Scholar
|
|
38
|
Sarac H, Morova T, Pires E, McCullagh J,
Kaplan A, Cingoz A, Bagci-Onder T, Onder T, Kawamura A and Lack NA:
Systematic characterization of chromatin modifying enzymes
identifies KDM3B as a critical regulator in castration resistant
prostate cancer. Oncogene. 39:2187–2201. 2020. View Article : Google Scholar :
|
|
39
|
Wang Y, Zhao Y, Wang H, Zhang C, Wang M,
Yang Y, Xu X and Hu Z: Histone demethylase KDM3B protects against
ferroptosis by upregulating SLC7A11. FEBS Open Bio. 10:637–643.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kuroki S, Maeda R, Yano M, Kitano S,
Miyachi H, Fukuda M, Shinkai Y and Tachibana M: H3K9 Demethylases
JMJD1A and JMJD1B Control Prospermatogonia to Spermatogonia
Transition in Mouse Germline. Stem Cell Reports. 15:424–438. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Saavedra F, Gurard-Levin ZA,
Rojas-Villalobos C, Vassias I, Quatrini R, Almouzni G and Loyola A:
JMJD1B, a novel player in histone H3 and H4 processing to ensure
genome stability. Epigenetics Chromatin. 13:62020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xu X, Nagel S, Quentmeier H, Wang Z,
Pommerenke C, Dirks WG, Macleod RAF, Drexler HG and Hu Z: KDM3B
shows tumor-suppressive activity and transcriptionally regulates
HOXA1 through retinoic acid response elements in acute myeloid
leukemia. Leuk Lymphoma. 59:204–213. 2018. View Article : Google Scholar
|
|
43
|
Xu X, Wang L, Hu L, Dirks WG, Zhao Y, Wei
Z, Chen D, Li Z, Wang Z, Han Y, et al: Small molecular modulators
of JMJD1C preferentially inhibit growth of leukemia cells. Int J
Cancer. 146:400–412. 2020. View Article : Google Scholar
|
|
44
|
Kim JY, Kim KB, Eom GH, Choe N, Kee HJ,
Son HJ, Oh ST, Kim DW, Pak JH, Baek HJ, et al: KDM3B is the H3K9
demethylase involved in transcriptional activation of lmo2 in
leukemia. Mol Cell Biol. 32:2917–2933. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li S, Ali S, Duan X, Liu S, Du J, Liu C,
Dai H, Zhou M, Zhou L, Yang L, et al: JMJD1B demethylates H4R3me2s
and H3K9me2 to facilitate gene expression for development of
hematopoietic stem and progenitor cells. Cell Rep. 23:389–403.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Goldstein LD, Cao Y, Pau G, Lawrence M, Wu
TD, Seshagiri S and Gentleman R: Prediction and Quantification of
Splice Events from RNA-Seq Data. PLoS One. 11:e01561322016.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biology. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
49
|
Hosokawa N, Sasaki T, Iemura S, Natsume T,
Hara T and Mizushima N: Atg101, a novel mammalian autophagy protein
interacting with Atg13. Autophagy. 5:973–979. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Itakura E, Kishi C, Inoue K and Mizushima
N: Beclin 1 forms two distinct phosphatidylinositol 3-kinase
complexes with mammalian Atg14 and UVRAG. Mol Biol Cell.
19:5360–5372. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ryu HY, Kim LE, Jeong H, Yeo BK, Lee JW,
Nam H, Ha S, An HK, Park H, Jung S, et al: GSK3B induces autophagy
by phosphorylating ULK1. Exp Mol Med. 53:369–383. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Matsunaga K, Morita E, Saitoh T, Akira S,
Ktistakis NT, Izumi T, Noda T and Yoshimori T: Autophagy requires
endoplasmic reticulum targeting of the PI3-kinase complex via
Atg14L. J Cell Biol. 190:511–521. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Birgisdottir AB, Mouilleron S, Bhujabal Z,
Wirth M, Sjottem E, Evjen G, Zhang W, Lee R, O'Reilly N, Tooze SA,
et al: Members of the autophagy class III phosphatidylinositol
3-kinase complex I interact with GABARAP and GABARAPL1 via LIR
motifs. Autophagy. 15:1333–1355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Weidberg H, Shvets E, Shpilka T, Shimron
F, Shinder V and Elazar Z: LC3 and GATE-16/GABARAP subfamilies are
both essential yet act differently in autophagosome biogenesis.
EMBO J. 29:1792–1802. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pankiv S, Alemu EA, Brech A, Bruun JA,
Lamark T, Overvatn A, Bjorkoy G and Johansen T: FYCO1 is a Rab7
effector that binds to LC3 and PI3P to mediate microtubule plus
end-directed vesicle transport. J Cell Biol. 188:253–269. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Fu MM, Nirschl JJ and Holzbaur ELF: LC3
binding to the scaffolding protein JIP1 regulates processive
dynein-driven transport of autophagosomes. Dev Cell. 29:577–590.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nguyen TN, Padman BS, Usher J, Oorschot V,
Ramm G and Lazarou M: Atg8 family LC3/GABARAP proteins are crucial
for autophagosome-lysosome fusion but not autophagosome formation
during PINK1/Parkin mitophagy and starvation. J Cell Biol.
215:857–874. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ebner P, Poetsch I, Deszcz L, Hoffmann T,
Zuber J and Ikeda F: The IAP family member BRUCE regulates
autophagosome-lysosome fusion. Nat Commun. 9:5992018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang X, Wang L, Lak B, Li J, Jokitalo E
and Wang Y: GRASP55 Senses Glucose Deprivation through
O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion. Dev Cell.
45:245–61.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mansuy-Schlick V, Tolle F, Delage-Mourroux
R, Fraichard A, Risold PY and Jouvenot M: Specific distribution of
gabarap, gec1/gabarap Like 1, gate16/gabarap Like 2, lc3 messenger
RNAs in rat brain areas by quantitative real-time PCR. Brain Res.
1073-1074:83–87. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tolle F, Risold PY, Mansuy-Schlick V,
Rossi E, Boyer-Guittaut M, Fraichard A and Jouvenot M: Specific
regional distribution of gec1 mRNAs in adult rat central nervous
system. Brain Res. 1210:103–115. PubMed/NCBI
|
|
62
|
Bollaert E, Claus M, Vandewalle V, Lenglez
S, Essaghir A, Demoulin JB and Havelange V: MiR-15a-5p confers
chemoresistance in acute myeloid leukemia by inhibiting autophagy
induced by daunorubicin. Int J Mol Sci. 22:51532021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang X, Fan H, Xu C, Jiang G, Wang H and
Zhang J: KDM3B suppresses APL progression by restricting chromatin
accessibility and facilitating the ATRA-mediated degradation of
PML/RARalpha. Cancer Cell Int. 19:2562019. View Article : Google Scholar
|
|
64
|
Jung H and Seo SB: Histone lysine
demethylase 3B (KDM3B) regulates the propagation of autophagy via
transcriptional activation of autophagy-related genes. PLoS One.
15:e02364032020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hervouet E, Claude-Taupin A, Gauthier T,
Perez V, Fraichard A, Adami P, Despouy G, Monnien F, Algros MP,
Jouvenot M, et al: The autophagy GABARAPL1 gene is epigenetically
regulated in breast cancer models. BMC Cancer. 15:7292015.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang Y, Wang F, Han L, Wu Y, Li S, Yang
X, Wang Y, Ren F, Zhai Y, Wang D, et al: GABARAPL1 negatively
regulates Wnt/β-catenin signaling by mediating Dvl2 degradation
through the autophagy pathway. Cell Physiol Biochem. 27:503–512.
2011. View Article : Google Scholar
|