Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2023 Volume 63 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 63 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Calcium signals and potential therapy targets in ovarian cancer (Review)

  • Authors:
    • Fengying Deng
    • Mengyu Fu
    • Chenxuan Zhao
    • Jiahui Lei
    • Ting Xu
    • Bingyu Ji
    • Hongmei Ding
    • Yueming Zhang
    • Jie Chen
    • Junlan Qiu
    • Qinqin Gao
  • View Affiliations / Copyright

    Affiliations: Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China, Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China, Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, P.R. China
    Copyright: © Deng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 125
    |
    Published online on: September 12, 2023
       https://doi.org/10.3892/ijo.2023.5573
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ovarian cancer (OC) is a deadly disease. The poor prognosis and high lethality of OC are attributed to its high degrees of aggressiveness, resistance to chemotherapy and recurrence rates. Calcium ion (Ca2+) signaling has received attention in recent years, as it appears to form an essential part of various aspects of cancer pathophysiology and is a potential therapeutic target for OC treatment. Disruption of normal Ca2+ signaling pathways can induce changes in cell cycle progression, apoptosis, proliferation and migration and invasion, leading to the development of the malignant phenotype of tumors. In the present review, the main roles of ion channel/receptor/pump‑triggered Ca2+ signaling pathways located at the plasma membrane and organelle Ca2+ transport in OC are summarized. In addition, the potential of Ca2+ signaling as a novel target for the development of effective treatment strategies for OC was discussed. Furthering the understanding into the role of Ca2+ signaling in OC is expected to facilitated the identification of novel therapeutic targets and improved clinical outcomes for patients.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Matz M, Coleman MP, Sant M, Chirlaque MD, Visser O, Gore M and Allemani C; the CONCORD Working Group: The histology of ovarian cancer: Worldwide distribution and implications for international survival comparisons (CONCORD-2). Gynecol Oncol. 144:405–413. 2017. View Article : Google Scholar

2 

Lisio MA, Fu L, Goyeneche A, Gao ZH and Telleria C: High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints. Int J Mol Sci. 20:9522019. View Article : Google Scholar : PubMed/NCBI

3 

Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI

4 

Mallen A, Soong TR, Townsend MK, Wenham RM, Crum CP and Tworoger SS: Surgical prevention strategies in ovarian cancer. Gynecol Oncol. 151:166–175. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Menon U, Karpinskyj C and Gentry-Maharaj A: Ovarian cancer prevention and screening. Obstet Gynecol. 131:909–927. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL: Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296. 2018. View Article : Google Scholar : PubMed/NCBI

8 

O'Malley DM: New therapies for ovarian cancer. J Natl Compr Canc Netw. 17:619–621. 2019.PubMed/NCBI

9 

Zhang M, Cheng S, Jin Y, Zhao Y and Wang Y: Roles of CA125 in diagnosis, prediction and oncogenesis of ovarian cancer. Biochim Biophys Acta Rev Cancer. 1875:1885032021. View Article : Google Scholar

10 

Berridge MJ, Lipp P and Bootman MD: The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 1:11–21. 2000. View Article : Google Scholar

11 

Altamura C, Greco MR, Carratù MR, Cardone RA and Desaphy JF: Emerging roles for ion channels in ovarian cancer: Pathomechanisms and pharmacological treatment. Cancers (Basel). 13. pp. 6682021, View Article : Google Scholar

12 

Caravia L, Staicu CE, Radu BM, Condrat CE, Crețoiu D, Bacalbașa N, Suciu N, Crețoiu SM and Voinea SC: Altered organelle calcium transport in ovarian physiology and cancer. Cancers (Basel). 12:22322020. View Article : Google Scholar : PubMed/NCBI

13 

Monteith GR, McAndrew D, Faddy HM and Roberts-Thomson SJ: Calcium and cancer: Targeting Ca2+ transport. Nat Rev Cancer. 7:519–530. 2007. View Article : Google Scholar : PubMed/NCBI

14 

McConkey DJ and Orrenius S: The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun. 239:357–366. 1997. View Article : Google Scholar : PubMed/NCBI

15 

Prevarskaya N, Skryma R and Shuba Y: Calcium in tumour metastasis: New roles for known actors. Nat Rev Cancer. 11:609–618. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Pulliam TL, Goli P, Awad D, Lin C, Wilkenfeld SR and Frigo DE: Regulation and role of CAMKK2 in prostate cancer. Nat Rev Urol. 19:367–380. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Venkatachalam K, Luo J and Montell C: Evolutionarily conserved, multitasking TRP channels: Lessons from worms and flies. Handb Exp Pharmacol. 223:937–962. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Chen JP, Wang J, Luan Y, Wang CX, Li WH, Zhang JB, Sha D, Shen R, Cui YG, Zhang Z, et al: TRPM7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Lett. 356:483–490. 2015. View Article : Google Scholar

19 

Chen X, Sooch G, Demaree IS, White FA and Obukhov AG: Transient receptor potential canonical (TRPC) channels: Then and now. Cells. 9:19832020. View Article : Google Scholar : PubMed/NCBI

20 

He B, Liu F, Ruan J, Li A, Chen J, Li R, Shen J, Zheng D and Luo R: Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells. Oncol Rep. 27:1548–1554. 2012.PubMed/NCBI

21 

Ong HL and Ambudkar IS: The dynamic complexity of the TRPC1 channelosome. Channels (Austin). 5:424–431. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Liu X, Zou J, Su J, Lu Y, Zhang J, Li L and Yin F: Downregulation of transient receptor potential cation channel, subfamily C, member 1 contributes to drug resistance and high histological grade in ovarian cancer. Int J Oncol. 48:243–252. 2016. View Article : Google Scholar

23 

Yang SL, Cao Q, Zhou KC, Feng YJ and Wang YZ: Transient receptor potential channel C3 contributes to the progression of human ovarian cancer. Oncogene. 28:1320–1328. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Tao X, Zhao N, Jin H, Zhang Z, Liu Y, Wu J, Bast RC Jr, Yu Y and Feng Y: FSH enhances the proliferation of ovarian cancer cells by activating transient receptor potential channel C3. Endocr Relat Cancer. 20:415–429. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Li S, Jiang K, Li J, Hao X, Chu W, Luo C, Zhu Y, Xie R and Chen B: Estrogen enhances the proliferation and migration of ovarian cancer cells by activating transient receptor potential channel C3. J Ovarian Res. 13:202020. View Article : Google Scholar : PubMed/NCBI

26 

Liu EL, Zhou YX, Li J, Zhang DH and Liang F: Long-chain non-coding RNA SNHG3 promotes the growth of ovarian cancer cells by targeting miR-339-5p/TRPC3 axis. Onco Targets Ther. 13:10959–10971. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Shen Z, Gu L, Liu Y, Wang L, Zhu J, Tang S, Wei X, Wang J, Zhang S, Wang X, et al: PLAA suppresses ovarian cancer metastasis via METTL3-mediated m6A modification of TRPC3 mRNA. Oncogene. 41:4145–4158. 2022. View Article : Google Scholar : PubMed/NCBI

28 

Farfariello V, Gordienko DV, Mesilmany L, Touil Y, Germain E, Fliniaux I, Desruelles E, Gkika D, Roudbaraki M, Shapovalov G, et al: TRPC3 shapes the ER-mitochondria Ca2+ transfer characterizing tumour-promoting senescence. Nat Commun. 13:9562022. View Article : Google Scholar

29 

Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD and Julius D: The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature. 389:816–824. 1997. View Article : Google Scholar : PubMed/NCBI

30 

Gunthorpe MJ, Benham CD, Randall A and Davis JB: The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci. 23:183–191. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Wang Z, Dong J, Tian W, Qiao S and Wang H: Role of TRPV1 ion channel in cervical squamous cell carcinoma genesis. Front Mol Biosci. 9:9802622022. View Article : Google Scholar : PubMed/NCBI

32 

Lucido CT, Wynja E, Madeo M, Williamson CS, Schwartz LE, Imblum BA, Drapkin R and Vermeer PD: Innervation of cervical carcinoma is mediated by cancer-derived exosomes. Gynecol Oncol. 154:228–235. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Han GH, Chay DB, Nam S, Cho H, Chung JY and Kim JH: Prognostic significance of transient receptor potential vanilloid type 1 (TRPV1) and phosphatase and tension homolog (PTEN) in epithelial ovarian cancer. Cancer Genomics Proteomics. 17:309–319. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Wang YY, Lee KT, Lim MC and Choi JH: TRPV1 antagonist DWP05195 induces ER stress-dependent apoptosis through the ROS-p38-CHOP pathway in human ovarian cancer cells. Cancers (Basel). 12:17022020. View Article : Google Scholar : PubMed/NCBI

35 

Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S and Wang A: Ursolic acid protects against cisplatin-induced ototoxicity by inhibiting oxidative stress and TRPV1-mediated Ca2+-signaling. Int J Mol Med. 46:806–816. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Santoni G, Amantini C, Maggi F, Marinelli O, Santoni M, Nabissi M and Morelli MB: The TRPV2 cation channels: From urothelial cancer invasiveness to glioblastoma multiforme interactome signature. Lab Invest. 100:186–198. 2020. View Article : Google Scholar

37 

Liberati S, Morelli MB, Amantini C, Farfariello V, Santoni M, Conti A, Nabissi M, Cascinu S and Santoni G: Loss of TRPV2 homeostatic control of cell proliferation drives tumor progression. Cells. 3:112–128. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Fraguas-Sánchez AI, Fernández-Carballido A, Delie F, Cohen M, Martin-Sabroso C, Mezzanzanica D, Figini M, Satta A and Torres-Suárez AI: Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles. Eur J Pharm Biopharm. 154:246–258. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Griffiths C, Aikins J, Warshal D and Ostrovsky O: Can cannabidiol affect the efficacy of chemotherapy and epigenetic treatments in cancer? Biomolecules. 11:7662021. View Article : Google Scholar : PubMed/NCBI

40 

Dutta B, Arya RK, Goswami R, Alharbi MO, Sharma S and Rahaman SO: Role of macrophage TRPV4 in inflammation. Lab Invest. 100:178–185. 2020. View Article : Google Scholar :

41 

Wang K, Feng X, Zheng L, Chai Z, Yu J, You X, Li X and Cheng X: TRPV4 is a prognostic biomarker that correlates with the immunosuppressive microenvironment and chemoresistance of anti-cancer drugs. Front Mol Biosci. 8:6905002021. View Article : Google Scholar : PubMed/NCBI

42 

Zhang C, Xu C, Ma C, Zhang Q, Bu S, Zhang DL, Yu L and Wang H: TRPs in ovarian serous cystadenocarcinoma: The expression patterns, prognostic roles, and potential therapeutic targets. Front Mol Biosci. 9:9154092022. View Article : Google Scholar : PubMed/NCBI

43 

Yu S, Huang S, Ding Y, Wang W, Wang A and Lu Y: Transient receptor potential ion-channel subfamily V member 4: A potential target for cancer treatment. Cell Death Dis. 10:4972019. View Article : Google Scholar : PubMed/NCBI

44 

Bödding M and Flockerzi V: Ca2+ dependence of the Ca2+-selective TRPV6 channel. J Biol Chem. 279:36546–36552. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Gees M, Colsoul B and Nilius B: The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol. 2:a0039622010. View Article : Google Scholar : PubMed/NCBI

46 

Lehen'kyi V, Flourakis M, Skryma R and Prevarskaya N: TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene. 26:7380–7385. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Xu X, Li N, Wang Y, Yu J and Mi J: Calcium channel TRPV6 promotes breast cancer metastasis by NFATC2IP. Cancer Lett. 519:150–160. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Xue H, Wang Y, MacCormack TJ, Lutes T, Rice C, Davey M, Dugourd D, Ilenchuk TT and Stewart JM: Inhibition of transient receptor potential vanilloid 6 channel, elevated in human ovarian cancers, reduces tumour growth in a xenograft model. J Cancer. 9:3196–3207. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Jiang Y, Gou H, Zhu J, Tian S and Yu L: Lidocaine inhibits the invasion and migration of TRPV6-expressing cancer cells by TRPV6 downregulation. Oncol Lett. 12:1164–1170. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Wang X, Li G, Zhang Y, Li L, Qiu L, Qian Z, Zhou S, Wang X, Li Q and Zhang H: Pan-cancer analysis reveals genomic and clinical characteristics of TRPV channel-related genes. Front Oncol. 12:8131002022. View Article : Google Scholar : PubMed/NCBI

51 

Tong Q, Zhang W, Conrad K, Mostoller K, Cheung JY, Peterson BZ and Miller BA: Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J Biol Chem. 281:9076–9085. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Orfanelli U, Wenke AK, Doglioni C, Russo V, Bosserhoff AK and Lavorgna G: Identification of novel sense and antisense transcription at the TRPM2 locus in cancer. Cell Res. 18:1128–1140. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Ding Y, Tan X, Abasi A, Dai Y, Wu R, Zhang T, Li K, Yan M and Huang X: LncRNA TRPM2-AS promotes ovarian cancer progression and cisplatin resistance by sponging miR-138-5pto release SDC3 mRNA. Aging (Albany NY). 13:6832–6848. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Dai W, Bai Y, Hebda L, Zhong X, Liu J, Kao J and Duan C: Calcium deficiency-induced and TRP channel-regulated IGF1R-PI3K-Akt signaling regulates abnormal epithelial cell proliferation. Cell Death Differ. 21:568–581. 2014. View Article : Google Scholar :

55 

Abed E, Martineau C and Moreau R: Role of melastatin transient receptor potential 7 channels in the osteoblastic differentiation of murine MC3T3 cells. Calcif Tissue Int. 88:246–253. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Yee NS, Kazi AA and Yee RK: Cellular and developmental biology of TRPM7 channel-kinase: Implicated roles in cancer. Cells. 3:751–777. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Wang J, Xiao L, Luo CH, Zhou H, Hu J, Tang YX, Fang KN and Zhang Y: Overexpression of TRPM7 is associated with poor prognosis in human ovarian carcinoma. Asian Pac J Cancer Prev. 15:3955–3958. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Wang J, Liao QJ, Zhang Y, Zhou H, Luo CH, Tang J, Wang Y, Tang Y, Zhao M, Zhao XH, et al: TRPM7 is required for ovarian cancer cell growth, migration and invasion. Biochem Biophys Res Commun. 454:547–553. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Liu L, Wu N, Wang Y, Zhang X, Xia B, Tang J, Cai J, Zhao Z, Liao Q and Wang J: TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K/AKT oncogenic signaling. J Exp Clin Cancer Res. 38:1062019. View Article : Google Scholar

60 

Catterall WA: Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 3:a0039472011. View Article : Google Scholar : PubMed/NCBI

61 

Li W, Zhang SL, Wang N, Zhang BB and Li M: Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Invest. 29:339–346. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Jang SJ, Choi HW, Choi DL, Cho S, Rim HK, Choi HE, Kim KS, Huang M, Rhim H, Lee KT and Lee JY: In vitro cytotoxicity on human ovarian cancer cells by T-type calcium channel blockers. Bioorg Med Chem Lett. 23:6656–6662. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Dziegielewska B, Casarez EV, Yang WZ, Gray LS, Dziegielewski J and Slack-Davis JK: T-type Ca2+ channel inhibition sensitizes ovarian cancer to carboplatin. Mol Cancer Ther. 15:460–470. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Mir R, Stanzani E, Martinez-Soler F, Villanueva A, Vidal A, Condom E, Ponce J, Gil J, Tortosa A and Giménez-Bonafé P: YM155 sensitizes ovarian cancer cells to cisplatin inducing apoptosis and tumor regression. Gynecol Oncol. 132:211–220. 2014. View Article : Google Scholar

65 

Fornaro L, Vivaldi C, Lin D, Xue H, Falcone A, Wang Y, Crea F and Bootman MD: Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation. PLoS One. 12:e01828182017. View Article : Google Scholar : PubMed/NCBI

66 

Mertens-Walker I, Bolitho C, Baxter RC and Marsh DJ: Gonadotropin-induced ovarian cancer cell migration and proliferation require extracellular signal-regulated kinase 1/2 activation regulated by calcium and protein kinase C{delta}. Endocr Relat Cancer. 17:335–349. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Kim EK, Ha JM, Kim YW, Jin SY, Ha HK and Bae SS: Inhibitory role of polyunsaturated fatty acids on lysophosphatidic acid-induced cancer cell migration and adhesion. FEBS Lett. 588:2971–2977. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Lee H, Kim JW, Kim DK, Choi DK, Lee S, Yu JH, Kwon OB, Lee J, Lee DS, Kim JH and Min SH: Calcium channels as novel therapeutic targets for ovarian cancer stem cells. Int J Mol Sci. 21:23272020. View Article : Google Scholar : PubMed/NCBI

69 

Lee H, Kwon OB, Lee JE, Jeon YH, Lee DS, Min SH and Kim JW: Repositioning trimebutine maleate as a cancer treatment targeting ovarian cancer stem cells. Cells. 10:9182021. View Article : Google Scholar : PubMed/NCBI

70 

Chang X and Dong Y: CACNA1C is a prognostic predictor for patients with ovarian cancer. J Ovarian Res. 14:882021. View Article : Google Scholar : PubMed/NCBI

71 

Niemeyer BA: Changing calcium: CRAC channel (STIM and Orai) expression, splicing, and posttranslational modifiers. Am J Physiol Cell Physiol. 310:C701–C709. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Khan HY, Mazahir I, Reddy S, Fazili F and Azmi A: Roles of CRAC channel in cancer: Implications for therapeutic development. Expert Rev Precis Med Drug Dev. 5:371–382. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Abdelazeem KNM, Droppova B, Sukkar B, Al-Maghout T, Pelzl L, Zacharopoulou N, Ali Hassan NH, Abdel-Fattah KI, Stournaras C and Lang F: Upregulation of Orai1 and STIM1 expression as well as store-operated Ca2+ entry in ovary carcinoma cells by placental growth factor. Biochem Biophys Res Commun. 512:467–472. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Schmidt S, Liu G, Liu G, Yang W, Honisch S, Pantelakos S, Stournaras C, Hönig A and Lang F: Enhanced Orai1 and STIM1 expression as well as store operated Ca2+ entry in therapy resistant ovary carcinoma cells. Oncotarget. 5:4799–4810. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Zahid M, Beseler CL, Hall JB, LeVan T, Cavalieri EL and Rogan EG: Unbalanced estrogen metabolism in ovarian cancer. Int J Cancer. 134:2414–2423. 2014. View Article : Google Scholar :

76 

Lv X, Miao C, Liu M, Wang X, Wang L and Wang D: 17β-Estradiol via Orai1 activates calcium mobilization to induce cell proliferation in epithelial ovarian cancer. J Biochem Mol Toxicol. 34:e226032020. View Article : Google Scholar

77 

Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N and Prevarskaya N: Functional and molecular identification of intermediate-conductance Ca(2+)-activated K(+) channels in breast cancer cells: Association with cell cycle progression. Am J Physiol Cell Physiol. 287:C125–C134. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Kunzelmann K: Ion channels and cancer. J Membr Biol. 205:159–173. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Han X, Xi L, Wang H, Huang X, Ma X, Han Z, Wu P, Ma X, Lu Y, Wang G, et al: The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells. Biochem Biophys Res Commun. 375:205–209. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D, et al: BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science. 314:615–620. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Oeggerli M, Tian Y, Ruiz C, Wijker B, Sauter G, Obermann E, Güth U, Zlobec I, Sausbier M, Kunzelmann K and Bubendorf L: Role of KCNMA1 in breast cancer. PLoS One. 7:e416642012. View Article : Google Scholar : PubMed/NCBI

82 

Samuel P, Pink RC, Caley DP, Currie JM, Brooks SA and Carter DR: Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells. Tumour Biol. 37:2565–2573. 2016. View Article : Google Scholar

83 

Lundstrom K: Structural genomics of GPCRs. Trends Biotechnol. 23:103–108. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Oldham WM and Hamm HE: Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 9:60–71. 2008. View Article : Google Scholar

85 

Tu CL, Oda Y, Komuves L and Bikle DD: The role of the calcium-sensing receptor in epidermal differentiation. Cell Calcium. 35:265–273. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Rodland KD: The role of the calcium-sensing receptor in cancer. Cell Calcium. 35:291–295. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Yan S, Yuan C, Yang Q, Li X, Yang N, Liu X, Dong R, Zhang X, Yuan Z, Zhang N and Kong B: A genetic polymorphism (rs17251221) in the calcium-sensing receptor is associated with ovarian cancer susceptibility. Oncol Rep. 34:2151–2155. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Park KS, Kim MK, Im DS and Bae YS: Effect of lysophosphatidylglycerol on several signaling molecules in OVCAR-3 human ovarian cancer cells: Involvement of pertussis toxin-sensitive G-protein coupled receptor. Biochem Pharmacol. 73:675–681. 2007. View Article : Google Scholar

89 

Smith HO, Arias-Pulido H, Kuo DY, Howard T, Qualls CR, Lee SJ, Verschraegen CF, Hathaway HJ, Joste NE and Prossnitz ER: GPR30 predicts poor survival for ovarian cancer. Gynecol Oncol. 114:465–471. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Yan Y, Liu H, Wen H, Jiang X, Cao X, Zhang G and Liu G: The novel estrogen receptor GPER regulates the migration and invasion of ovarian cancer cells. Mol Cell Biochem. 378:1–7. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Heublein S, Mayr D, Friese K, Jarrin-Franco MC, Lenhard M, Mayerhofer A and Jeschke U: The G-protein-coupled estrogen receptor (GPER/GPR30) in ovarian granulosa cell tumors. Int J Mol Sci. 15:15161–15172. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Yan Y, Jiang X, Zhao Y, Wen H and Liu G: Role of GPER on proliferation, migration and invasion in ligand-independent manner in human ovarian cancer cell line SKOV3. Cell Biochem Funct. 33:552–559. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Ignatov T, Modl S, Thulig M, Weißenborn C, Treeck O, Ortmann O, Zenclussen A, Costa SD, Kalinski T and Ignatov A: GPER-1 acts as a tumor suppressor in ovarian cancer. J Ovarian Res. 6:512013. View Article : Google Scholar : PubMed/NCBI

94 

Predescu DV, Crețoiu SM, Crețoiu D, Pavelescu LA, Suciu N, Radu BM and Voinea SC: G protein-coupled receptors (GPCRs)-mediated calcium signaling in ovarian cancer: Focus on GPCRs activated by neurotransmitters and inflammation-associated molecules. Int J Mol Sci. 20:55682019. View Article : Google Scholar : PubMed/NCBI

95 

Xue D, Chen W and Neamati N: Discovery, structure-activity relationship study and biological evaluation of 2-thioureidothiophene-3-carboxylates as a novel class of C-X-C chemokine receptor 2 (CXCR2) antagonists. Eur J Med Chem. 204:1123872020. View Article : Google Scholar : PubMed/NCBI

96 

Seo MD, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM, Khan SA, Dale P, Li C, Ames JB, Ikura M and Taylor CW: Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature. 483:108–112. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Vermassen E, Parys JB and Mauger JP: Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: Functional relevance and molecular determinants. Biol Cell. 96:3–17. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Giannini G, Clementi E, Ceci R, Marziali G and Sorrentino V: Expression of a ryanodine receptor-Ca2+ channel that is regulated by TGF-beta. Science. 257:91–94. 1992. View Article : Google Scholar : PubMed/NCBI

99 

Santulli G, Nakashima R, Yuan Q and Marks AR: Intracellular calcium release channels: An update. J Physiol. 595:3041–3051. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Ando H, Hirose M and Mikoshiba K: Aberrant IP3 receptor activities revealed by comprehensive analysis of pathological mutations causing spinocerebellar ataxia 29. Proc Natl Acad Sci USA. 115:12259–12264. 2018. View Article : Google Scholar

101 

Díaz-Muñoz M, de la Rosa Santander P, Juárez-Espinosa AB, Arellano RO and Morales-Tlalpan V: Granulosa cells express three inositol 1,4,5-trisphosphate receptor isoforms: Cytoplasmic and nuclear Ca2+ mobilization. Reprod Biol Endocrinol. 6:602008. View Article : Google Scholar : PubMed/NCBI

102 

Hanson CJ, Bootman MD and Roderick HL: Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol. 14:R933–R935. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Lahiri S, Roy A, Li J, Mokashi A and Baby SM: Ca2+ responses to hypoxia are mediated by IP3-R on Ca2+ store depletion. Adv Exp Med Biol. 536:25–32. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Lencesova L, Vlcek M, Krizanova O and Hudecova S: Hypoxic conditions increases H2S-induced ER stress in A2870 cells. Mol Cell Biochem. 414:67–76. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Yu Y, Xie Q, Liu W, Guo Y, Xu N, Xu L, Liu S, Li S, Xu Y and Sun L: Increased intracellular Ca2+ decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells. Biomed Pharmacother. 86:8–15. 2017. View Article : Google Scholar

106 

Xie Q, Xu Y, Gao W, Zhang Y, Su J, Liu Y, Guo Y, Dou M, Hu K and Sun L: TAT-fused IP3R-derived peptide enhances cisplatin sensitivity of ovarian cancer cells by increasing ER Ca2+ release. Int J Mol Med. 41:809–817. 2018.

107 

Rezuchova I, Hudecova S, Soltysova A, Matuskova M, Durinikova E, Chovancova B, Zuzcak M, Cihova M, Burikova M, Penesova A, et al: Type 3 inositol 1,4,5-trisphosphate receptor has antiapoptotic and proliferative role in cancer cells. Cell Death Dis. 10:1862019. View Article : Google Scholar : PubMed/NCBI

108 

Sneyers F, Rosa N and Bultynck G: Type 3 IP3 receptors driving oncogenesis. Cell Calcium. 86:1021412020. View Article : Google Scholar

109 

Xue Y, Morris JL, Yang K, Fu Z, Zhu X, Johnson F, Meehan B, Witkowski L, Yasmeen A, Golenar T, et al: SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca2+ flux to mitochondria. Nat Commun. 12:54042021. View Article : Google Scholar

110 

Kucukkaya B, Erdag D, Akbas F and Yalcintepe L: The effect of iron on the expression levels of calcium related gene in cisplatin resistant epithelial ovarian cancer cells. Explor Target Antitumor Ther. 2:309–322. 2021.PubMed/NCBI

111 

Meissner G: The structural basis of ryanodine receptor ion channel function. J Gen Physiol. 149:1065–1089. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Mariot P, Prevarskaya N, Roudbaraki MM, Le Bourhis X, Van Coppenolle F, Vanoverberghe K and Skryma R: Evidence of functional ryanodine receptor involved in apoptosis of prostate cancer (LNCaP) cells. Prostate. 43:205–214. 2000. View Article : Google Scholar : PubMed/NCBI

113 

Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H, Liu P, Hao X, Zhang W and Chen K: Functional SNP in the microRNA-367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci USA. 108:13653–13658. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Schmitt K, Molfenter B, Laureano NK, Tawk B, Bieg M, Hostench XP, Weichenhan D, Ullrich ND, Shang V, Richter D, et al: Somatic mutations and promotor methylation of the ryanodine receptor 2 is a common event in the pathogenesis of head and neck cancer. Int J Cancer. 145:3299–3310. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Andruska ND, Zheng X, Yang X, Mao C, Cherian MM, Mahapatra L, Helferich WG and Shapiro DJ: Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression. Proc Natl Acad Sci USA. 112:4737–4742. 2015. View Article : Google Scholar

116 

Zheng X, Andruska N, Lambrecht MJ, He S, Parissenti A, Hergenrother PJ, Nelson ER and Shapiro DJ: Targeting multidrug-resistant ovarian cancer through estrogen receptor α dependent ATP depletion caused by hyperactivation of the unfolded protein response. Oncotarget. 9:14741–14753. 2018. View Article : Google Scholar

117 

Williams CJ and Erickson GF: Morphology and Physiology of the Ovary. Endotext. Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, et al: South Dartmouth, MA: MDText.com, Inc.; 2000

118 

Cui C, Merritt R, Fu L and Pan Z: Targeting calcium signaling in cancer therapy. Acta Pharm Sin B. 7:3–17. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB and McDonald JF: Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics. 2:712009. View Article : Google Scholar : PubMed/NCBI

120 

Seo JA, Kim B, Dhanasekaran DN, Tsang BK and Song YS: Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Lett. 371:30–37. 2016. View Article : Google Scholar

121 

Sun Z, Zhang H, Wang X, Wang QC, Zhang C, Wang JQ, Wang YH, An CQ, Yang KY, Wang Y, et al: TMCO1 is essential for ovarian follicle development by regulating ER Ca2+ store of granulosa cells. Cell Death Differ. 25:1686–1701. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Huang N, Yu Y and Qiao J: Dual role for the unfolded protein response in the ovary: Adaption and apoptosis. Protein Cell. 8:14–24. 2017. View Article : Google Scholar :

123 

Peluso JJ: Basic fibroblast growth factor (bFGF) regulation of the plasma membrane calcium ATPase (PMCA) as part of an anti-apoptotic mechanism of action. Biochem Pharmacol. 66:1363–1369. 2003. View Article : Google Scholar : PubMed/NCBI

124 

Solár P and Sytkowski AJ: Differentially expressed genes associated with cisplatin resistance in human ovarian adenocarcinoma cell line A2780. Cancer Lett. 309:11–18. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Kucukkaya B, Basoglu H, Erdag D, Akbas F, Susgun S and Yalcintepe L: Calcium homeostasis in cisplatin resistant epithelial ovarian cancer. Gen Physiol Biophys. 38:353–363. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, et al: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 476:341–345. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Marchi S and Pinton P: The mitochondrial calcium uniporter complex: Molecular components, structure and physiopathological implications. J Physiol. 592:829–839. 2014. View Article : Google Scholar :

128 

Patron M, Checchetto V, Raffaello A, Teardo E, Vecellio Reane D, Mantoan M, Granatiero V, Szabò I, De Stefani D and Rizzuto R: MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol Cell. 53:726–737. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Denton RM: Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta. 1787:1309–1316. 2009. View Article : Google Scholar : PubMed/NCBI

130 

Chakraborty PK, Mustafi SB, Xiong X, Dwivedi SKD, Nesin V, Saha S, Zhang M, Dhanasekaran D, Jayaraman M, Mannel R, et al: MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat Commun. 8:146342017. View Article : Google Scholar : PubMed/NCBI

131 

Hempel N and Trebak M: Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium. 63:70–96. 2017. View Article : Google Scholar : PubMed/NCBI

132 

Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, Dhup S, Tardy M, Vazeille T, Bouzin C, et al: A mitochondrial switch promotes tumor metastasis. Cell Rep. 8:754–766. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Moloney JN and Cotter TG: ROS signalling in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018. View Article : Google Scholar

134 

Ham J, Lim W, Kim K, Heo YM, Ryu SM, Lee D, Kim JJ and Song G: Gentisyl alcohol inhibits proliferation and induces apoptosis via mitochondrial dysfunction and regulation of MAPK and PI3K/AKT pathways in epithelial ovarian cancer cells. Mar Drugs. 17:3312019. View Article : Google Scholar : PubMed/NCBI

135 

Bae H, Park S, Ham J, Song J, Hong T, Choi JH, Song G and Lim W: ER-mitochondria calcium flux by β-sitosterol promotes cell death in ovarian cancer. Antioxidants (Basel). 10:15832021. View Article : Google Scholar

136 

Bae H, Park S, Yang C, Song G and Lim W: Disruption of endoplasmic reticulum and ROS production in human ovarian cancer by campesterol. Antioxidants (Basel). 10:3792021. View Article : Google Scholar : PubMed/NCBI

137 

Bae H, Song G and Lim W: Stigmasterol causes ovarian cancer cell apoptosis by inducing endoplasmic reticulum and mitochondrial dysfunction. Pharmaceutics. 12:4882020. View Article : Google Scholar : PubMed/NCBI

138 

Bae H, Lee JY, Song J, Song G and Lim W: Osthole interacts with an ER-mitochondria axis and facilitates tumor suppression in ovarian cancer. J Cell Physiol. 236:1025–1042. 2021. View Article : Google Scholar

139 

Bae H, Lee JY, Song G and Lim W: Fucosterol suppresses the progression of human ovarian cancer by inducing mitochondrial dysfunction and endoplasmic reticulum stress. Mar Drugs. 18:2612020. View Article : Google Scholar : PubMed/NCBI

140 

Bae H, Song G, Lee JY, Hong T, Chang MJ and Lim W: Laminarin-derived from brown algae suppresses the growth of ovarian cancer cells via mitochondrial dysfunction and ER stress. Mar Drugs. 18:1522020. View Article : Google Scholar : PubMed/NCBI

141 

Lim W, An Y, Yang C, Bazer FW and Song G: Chrysophanol induces cell death and inhibits invasiveness via mitochondrial calcium overload in ovarian cancer cells. J Cell Biochem. 119:10216–10227. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Lim W, Ryu S, Bazer FW, Kim SM and Song G: Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. J Cell Physiol. 233:3129–3140. 2018. View Article : Google Scholar

143 

Rogalska A, Szula E, Gajek A, Marczak A and Jóźwiak Z: Activation of apoptotic pathway in normal, cancer ovarian cells by epothilone B. Environ Toxicol Pharmacol. 36:600–610. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, et al: Mitochondrial Ca(2+) and apoptosis. Cell Calcium. 52:36–43. 2012. View Article : Google Scholar : PubMed/NCBI

145 

Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C and Dolga AM: Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3:170762017. View Article : Google Scholar

146 

Ma L, Wang H, Wang C, Su J, Xie Q, Xu L, Yu Y, Liu S, Li S, Xu Y and Li Z: Failure of elevating calcium induces oxidative stress tolerance and imparts cisplatin resistance in ovarian cancer cells. Aging Dis. 7:254–266. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Xu L, Xie Q, Qi L, Wang C, Xu N, Liu W, Yu Y, Li S and Xu Y: Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells. Oncol Rep. 39:985–992. 2018.

148 

Xie Q, Su J, Jiao B, Shen L, Ma L, Qu X, Yu C, Jiang X, Xu Y and Sun L: ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells. Int J Oncol. 49:2507–2519. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Li J, Qi F, Su H, Zhang C, Zhang Q, Chen Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI

150 

Li L, Zeng S, Guo L, Huang P, Xi J, Feng J, Li Q, Li Y, Xiao X, Yan R and Zhang J: Long noncoding RNA RMRP contributes to paclitaxel sensitivity of ovarian cancer by regulating miR-580-3p/MICU1 signaling. J Oncol. 2022:83019412022.PubMed/NCBI

151 

Bresnick AR, Weber DJ and Zimmer DB: S100 proteins in cancer. Nat Rev Cancer. 15:96–109. 2015. View Article : Google Scholar : PubMed/NCBI

152 

Zimmer DB, Eubanks JO, Ramakrishnan D and Criscitiello MF: Evolution of the S100 family of calcium sensor proteins. Cell Calcium. 53:170–179. 2013. View Article : Google Scholar

153 

Bai Y, Li LD, Li J and Lu X: Prognostic values of S100 family members in ovarian cancer patients. BMC Cancer. 18:12562018. View Article : Google Scholar : PubMed/NCBI

154 

Hua X, Zhang H, Jia J, Chen S, Sun Y and Zhu X: Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother. 127:1101562020. View Article : Google Scholar : PubMed/NCBI

155 

Tian T, Li X, Hua Z, Ma J, Liu Z, Chen H and Cui Z: S100A1 promotes cell proliferation and migration and is associated with lymph node metastasis in ovarian cancer. Discov Med. 23:235–245. 2017.PubMed/NCBI

156 

Buckley NE, D'Costa Z, Kaminska M and Mullan PB: S100A2 is a BRCA1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability. Cell Death Dis. 5:e10702014. View Article : Google Scholar : PubMed/NCBI

157 

Kikuchi N, Horiuchi A, Osada R, Imai T, Wang C, Chen X and Konishi I: Nuclear expression of S100A4 is associated with aggressive behavior of epithelial ovarian carcinoma: An important autocrine/paracrine factor in tumor progression. Cancer Sci. 97:1061–1069. 2006. View Article : Google Scholar : PubMed/NCBI

158 

Horiuchi A, Hayashi T, Kikuchi N, Hayashi A, Fuseya C, Shiozawa T and Konishi I: Hypoxia upregulates ovarian cancer invasiveness via the binding of HIF-1α to a hypoxia-induced, methylation-free hypoxia response element of S100A4 gene. Int J Cancer. 131:1755–1767. 2012. View Article : Google Scholar : PubMed/NCBI

159 

Yan W, Chen J, Chen Z and Chen H: Deregulated miR-296/S100A4 axis promotes tumor invasion by inducing epithelial-mesenchymal transition in human ovarian cancer. Am J Cancer Res. 6:260–269. 2016.PubMed/NCBI

160 

Link T, Kuhlmann JD, Kobelt D, Herrmann P, Vassileva YD, Kramer M, Frank K, Göckenjan M, Wimberger P and Stein U: Clinical relevance of circulating MACC1 and S100A4 transcripts for ovarian cancer. Mol Oncol. 13:1268–1279. 2019. View Article : Google Scholar : PubMed/NCBI

161 

Deo AN, Thorat R, Dhadve AC, De A, Rekhi B and Ray P: IGF1R-α6 integrin-S100A4 network governs the organ-specific metastasis of chemoresistant epithelial ovarian cancer cells. Biochim Biophys Acta Mol Basis Dis. 1868:1662822022. View Article : Google Scholar

162 

Schäfer BW, Fritschy JM, Murmann P, Troxler H, Durussel I, Heizmann CW and Cox JA: Brain S100A5 is a novel calcium-, zinc-, and copper ion-binding protein of the EF-hand superfamily. J Biol Chem. 275:30623–30630. 2000. View Article : Google Scholar : PubMed/NCBI

163 

Wei BR, Hoover SB, Ross MM, Zhou W, Meani F, Edwards JB, Spehalski EI, Risinger JI, Alvord WG, Quiñones OA, et al: Serum S100A6 concentration predicts peritoneal tumor burden in mice with epithelial ovarian cancer and is associated with advanced stage in patients. PLoS One. 4:e76702009. View Article : Google Scholar : PubMed/NCBI

164 

Lin M, Xia B, Qin L, Chen H and Lou G: S100A7 regulates ovarian cancer cell metastasis and chemoresistance through MAPK signaling and is targeted by miR-330-5p. DNA Cell Biol. 37:491–500. 2018. View Article : Google Scholar : PubMed/NCBI

165 

Nymoen DA, Hetland Falkenthal TE, Holth A, Ow GS, Ivshina AV, Tropé CG, Kuznetsov VA, Staff AC and Davidson B: Expression and clinical role of chemoresponse-associated genes in ovarian serous carcinoma. Gynecol Oncol. 139:30–39. 2015. View Article : Google Scholar : PubMed/NCBI

166 

Lokman NA, Pyragius CE, Ruszkiewicz A, Oehler MK and Ricciardelli C: Annexin A2 and S100A10 are independent predictors of serous ovarian cancer outcome. Transl Res. 171:83–95.e1-e2. 2016. View Article : Google Scholar : PubMed/NCBI

167 

Wang L, Yan W, Li X, Liu Z, Tian T, Chen T, Zou L and Cui Z: S100A10 silencing suppresses proliferation, migration and invasion of ovarian cancer cells and enhances sensitivity to carboplatin. J Ovarian Res. 12:1132019. View Article : Google Scholar : PubMed/NCBI

168 

Xuan L, Sun Z, Wang J and Gao S: lncRNA SNHG8 promotes ovarian cancer progression through serving as sponge for miR-1270 to regulate S100A11 expression. J Gene Med. e33152021.

169 

Li W, Cui Z, Kong Y, Liu X and Wang X: Serum levels of S100A11 and MMP-9 in patients with epithelial ovarian cancer and their clinical significance. Biomed Res Int. 2021:73412472021.PubMed/NCBI

170 

Qian J, Ding F, Luo A, Liu Z and Cui Z: Overexpression of S100A14 in human serous ovarian carcinoma. Oncol Lett. 11:1113–1119. 2016. View Article : Google Scholar : PubMed/NCBI

171 

Sturchler E, Cox JA, Durussel I, Weibel M and Heizmann CW: S100A16, a novel calcium-binding protein of the EF-hand superfamily. J Biol Chem. 281:38905–38917. 2006. View Article : Google Scholar : PubMed/NCBI

172 

Yang T, Cheng J, Yang Y, Qi W, Zhao Y, Long H, Xie R and Zhu B: S100B mediates stemness of ovarian cancer stem-like cells through inhibiting p53. Stem Cells. 35:325–336. 2017. View Article : Google Scholar

173 

Yang T, Cheng J, You J, Yan B, Liu H and Li F: S100B promotes chemoresistance in ovarian cancer stem cells by regulating p53. Oncol Rep. 40:1574–1582. 2018.PubMed/NCBI

174 

Wang X, Tian T, Li X, Zhao M, Lou Y, Qian J, Liu Z, Chen H and Cui Z: High expression of S100P is associated with unfavorable prognosis and tumor progression in patients with epithelial ovarian cancer. Am J Cancer Res. 5:2409–2421. 2015.PubMed/NCBI

175 

Wang Q, He Z, Gao J, Hu S, Huang M, Liu M, Zheng J and Tang H: S100P sensitizes ovarian cancer cells to carboplatin and paclitaxel in vitro. Cancer Lett. 272:277–284. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Ma N, Zhu L, Yang L, Cui Y and Zhan Y: Prognostic values of S100 family mRNA expression in ovarian cancer. Cancer Biomark. 25:67–78. 2019. View Article : Google Scholar : PubMed/NCBI

177 

Wu B, Yu C, Zhou B, Huang T, Gao L, Liu T and Yang X: Overexpression of TROP2 promotes proliferation and invasion of ovarian cancer cells. Exp Ther Med. 14:1947–1952. 2017. View Article : Google Scholar : PubMed/NCBI

178 

Dai S, Venturini E, Yadav S, Lin X, Clapp D, Steckiewicz M, Gocher-Demske AM, Hardie DG and Edelman AM: Calcium/calmodulin-dependent protein kinase kinase 2 mediates pleiotropic effects of epidermal growth factor in cancer cells. Biochim Biophys Acta Mol Cell Res. 1869:1192522022. View Article : Google Scholar : PubMed/NCBI

179 

Chen LL, Xia LY, Zhang JP, Wang Y, Chen JY, Guo C and Xu WH: Saikosaponin D alleviates cancer cachexia by directly inhibiting STAT3. Phytother Res. 37:809–819. 2023. View Article : Google Scholar

180 

Laski J, Singha B, Wang X, Valdés YR, Collins O and Shepherd TG: Activated CAMKKβ-AMPK signaling promotes autophagy in a spheroid model of ovarian tumour metastasis. J Ovarian Res. 13:582020. View Article : Google Scholar

181 

Chen Z, Sun X, Xia Z, Wang J, Guo N and Zhang Y: CaMKK2 promotes the progression of ovarian carcinoma through the PI3K/PDK1/Akt axis. Comput Math Methods Med. 2022:71879402022.PubMed/NCBI

182 

Tsuyoshi H, Wong VKW, Han Y, Orisaka M, Yoshida Y and Tsang BK: Saikosaponin-d, a calcium mobilizing agent, sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis by facilitating mitochondrial fission and G2/M arrest. Oncotarget. 8:99825–99840. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Deng F, Fu M, Zhao C, Lei J, Xu T, Ji B, Ding H, Zhang Y, Chen J, Qiu J, Qiu J, et al: Calcium signals and potential therapy targets in ovarian cancer (Review). Int J Oncol 63: 125, 2023.
APA
Deng, F., Fu, M., Zhao, C., Lei, J., Xu, T., Ji, B. ... Gao, Q. (2023). Calcium signals and potential therapy targets in ovarian cancer (Review). International Journal of Oncology, 63, 125. https://doi.org/10.3892/ijo.2023.5573
MLA
Deng, F., Fu, M., Zhao, C., Lei, J., Xu, T., Ji, B., Ding, H., Zhang, Y., Chen, J., Qiu, J., Gao, Q."Calcium signals and potential therapy targets in ovarian cancer (Review)". International Journal of Oncology 63.5 (2023): 125.
Chicago
Deng, F., Fu, M., Zhao, C., Lei, J., Xu, T., Ji, B., Ding, H., Zhang, Y., Chen, J., Qiu, J., Gao, Q."Calcium signals and potential therapy targets in ovarian cancer (Review)". International Journal of Oncology 63, no. 5 (2023): 125. https://doi.org/10.3892/ijo.2023.5573
Copy and paste a formatted citation
x
Spandidos Publications style
Deng F, Fu M, Zhao C, Lei J, Xu T, Ji B, Ding H, Zhang Y, Chen J, Qiu J, Qiu J, et al: Calcium signals and potential therapy targets in ovarian cancer (Review). Int J Oncol 63: 125, 2023.
APA
Deng, F., Fu, M., Zhao, C., Lei, J., Xu, T., Ji, B. ... Gao, Q. (2023). Calcium signals and potential therapy targets in ovarian cancer (Review). International Journal of Oncology, 63, 125. https://doi.org/10.3892/ijo.2023.5573
MLA
Deng, F., Fu, M., Zhao, C., Lei, J., Xu, T., Ji, B., Ding, H., Zhang, Y., Chen, J., Qiu, J., Gao, Q."Calcium signals and potential therapy targets in ovarian cancer (Review)". International Journal of Oncology 63.5 (2023): 125.
Chicago
Deng, F., Fu, M., Zhao, C., Lei, J., Xu, T., Ji, B., Ding, H., Zhang, Y., Chen, J., Qiu, J., Gao, Q."Calcium signals and potential therapy targets in ovarian cancer (Review)". International Journal of Oncology 63, no. 5 (2023): 125. https://doi.org/10.3892/ijo.2023.5573
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team