|
1
|
Clevers H: The cancer stem cell: Premises,
promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nassar D and Blanpain C: Cancer stem
cells: Basic concepts and therapeutic Implications. Annu Rev
Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dawood S, Austin L and Cristofanilli M:
Cancer stem cells: Implications for cancer therapy. Oncology
(Williston Park). 28:1101–1107. 11102014.PubMed/NCBI
|
|
4
|
Vlashi E and Pajonk F: Cancer stem cells,
cancer cell plasticity and radiation therapy. Semin Cancer Biol.
31:28–35. 2015. View Article : Google Scholar
|
|
5
|
Walcher L, Kistenmacher AK, Suo H, Kitte
R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and
Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers:
Perspectives for targeted personalized therapies. Front Immunol.
11:12802020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Plaks V, Kong N and Werb Z: The cancer
stem cell niche: How essential is the niche in regulating stemness
of tumor cells? Cell Stem Cell. 16:225–238. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Neophytou CM, Panagi M, Stylianopoulos T
and Papageorgis P: The role of tumor microenvironment in cancer
metastasis: Molecular mechanisms and therapeutic opportunities.
Cancers (Basel). 13:20532021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liu J, Geng X, Hou J and Wu G: New
insights into M1/M2 macrophages: Key modulators in cancer
progression. Cancer Cell Int. 21:3892021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhou B, Xu K, Zheng X, Chen T, Wang J,
Song Y, Shao Y and Zheng S: Application of exosomes as liquid
biopsy in clinical diagnosis. Signal Transduct Target Ther.
5:1442020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nicolini A, Ferrari P and Biava PM:
Exosomes and cell communication: From tumour-derived exosomes and
their role in tumour progression to the use of exosomal cargo for
cancer treatment. Cancers (Basel). 13:8222021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang Y, Liu Q, Zhang X, Huang H, Tang S,
Chai Y, Xu Z, Li M, Chen X, Liu J and Yang C: Recent advances in
exosome-mediated nucleic acid delivery for cancer therapy. J
Nanobiotechnology. 20:2792022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Long KB, Collier AI and Beatty GL:
Macrophages: Key orchestrators of a tumor microenvironment defined
by therapeutic resistance. Mol Immunol. 110:3–12. 2019. View Article : Google Scholar
|
|
14
|
Binenbaum Y, Fridman E, Yaari Z, Milman N,
Schroeder A, Ben David G, Shlomi T and Gil Z: Transfer of miRNA in
macrophage-derived exosomes induces drug resistance in pancreatic
adenocarcinoma. Cancer Res. 78:5287–5299. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ismail N, Wang Y, Dakhlallah D, Moldovan
L, Agarwal K, Batte K, Shah P, Wisler J, Eubank TD, Tridandapani S,
et al: Macrophage microvesicles induce macrophage differentiation
and miR-223 transfer. Blood. 121:984–995. 2013. View Article : Google Scholar :
|
|
16
|
Behzadi E, Hosseini HM, Halabian R and
Fooladi AAI: Macrophage cell-derived exosomes/staphylococcal
enterotoxin B against fibrosarcoma tumor. Microb Pathog.
111:132–138. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cheng L, Wang Y and Huang L: Exosomes from
M1-polarized macrophages potentiate the cancer vaccine by creating
a pro-inflammatory microenvironment in the lymph node. Mol Ther.
25:1665–1675. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Batlle E and Clevers H: Cancer stem cells
revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Akbar Samadani A, Keymoradzdeh A, Shams S,
Soleymanpour A, Elham Norollahi S, Vahidi S, Rashidy-Pour A, Ashraf
A, Mirzajani E, Khanaki K, et al: Mechanisms of cancer stem cell
therapy. Clin Chim Acta. 510:581–592. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhao W, Li Y and Zhang X: Stemness-related
markers in cancer. Cancer Transl Med. 3:87–95. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Babaei G, Aziz SG and Jaghi NZZ: EMT,
cancer stem cells and autophagy; the three main axes of metastasis.
Biomed Pharmacother. 133:1109092021. View Article : Google Scholar
|
|
22
|
Das PK, Pillai S, Rakib MA, Khanam JA,
Gopalan V, Lam AKY and Islam F: Plasticity of cancer stem cell:
Origin and role in disease progression and therapy resistance. Stem
Cell Rev Rep. 16:397–412. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Huang T, Song X, Xu D, Tiek D, Goenka A,
Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer
initiation, progression, and therapy resistance. Theranostics.
10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhu P and Fan Z: Cancer stem cells and
tumorigenesis. Biophys Rep. 4:178–188. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen W, Dong J, Haiech J, Kilhoffer MC and
Zeniou M: Cancer stem cell quiescence and plasticity as major
challenges in cancer therapy. Stem Cells Int. 2016:17409362016.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang
J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem
cell pathways for cancer therapy. Signal Transduct Target Ther.
5:82020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Shi C and Pamer EG: Monocyte recruitment
during infection and inflammation. Nat Rev Immunol. 11:762–774.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
van Furth R and Cohn ZA: The origin and
kinetics of mononuclear phagocytes. J Exp Med. 128:415–435. 1968.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Epelman S, Lavine KJ and Randolph GJ:
Origin and functions of tissue macrophages. Immunity. 41:21–35.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Casanova-Acebes M, Dalla E, Leader AM,
LeBerichel J, Nikolic J, Morales BM, Brown M, Chang C, Troncoso L,
Chen ST, et al: Tissue-resident macrophages provide a
pro-tumorigenic niche to early NSCLC cells. Nature. 595:578–584.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gratchev A, Schledzewski K, Guillot P and
Goerdt S: Alternatively activated antigen-presenting cells:
Molecular repertoire, immune regulation, and healing. Skin
Pharmacol Appl Skin Physiol. 14:272–279. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Orecchioni M, Ghosheh Y, Pramod AB and Ley
K: Macrophage polarization: Different gene signatures in M1(LPS+)
vs classically and M2(LPS-) vs alternatively activated macrophages.
Front Immunol. 10:10842019. View Article : Google Scholar
|
|
33
|
Tong Y, Guo YJ, Zhang Q, Bi HX, Kai K and
Zhou RY: Combined treatment with dihydrotestosterone and
lipopolysaccharide modulates prostate homeostasis by upregulating
TNF-α from M1 macrophages and promotes proliferation of prostate
stromal cells. Asian J Androl. 24:513–520. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hu W, Lin J, Lian X, Yu F, Liu W, Wu Y,
Fang X, Liang X and Hao W: M2a and M2b macrophages predominate in
kidney tissues and M2 subpopulations were associated with the
severity of disease of IgAN patients. Clin Immunol. 205:8–15. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wen Y, Lu X, Ren J, Privratsky JR, Yang B,
Rudemiller NP, Zhang J, Griffiths R, Jain MK, Nedospasov SA, et al:
KLF4 in macrophages attenuates TNFα-mediated kidney injury and
fibrosis. J Am Soc Nephrol. 30:1925–1938. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Loegl J, Hiden U, Nussbaumer E,
Schliefsteiner C, Cvitic S, Lang I, Wadsack C, Huppertz B and
Desoye G: Hofbauer cells of M2a, M2b and M2c polarization may
regulate feto-placental angiogenesis. Reproduction. 152:447–455.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lurier EB, Dalton D, Dampier W, Raman P,
Nassiri S, Ferraro NM, Rajagopalan R, Sarmady M and Spiller KL:
Transcriptome analysis of IL-10-stimulated (M2c) macrophages by
next-generation sequencing. Immunobiology. 222:847–856. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang Q, Ni H, Lan L, Wei X, Xiang R and
Wang Y: Fra-1 protooncogene regulates IL-6 expression in
macrophages and promotes the generation of M2d macrophages. Cell
Res. 20:701–712. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ferrante CJ, Pinhal-Enfield G, Elson G,
Cronstein BN, Hasko G, Outram S and Leibovich SJ: The
adenosine-dependent angiogenic switch of macrophages to an M2-like
phenotype is independent of interleukin-4 receptor alpha (IL-4Rα)
signaling. Inflammation. 36:921–931. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cassetta L and Pollard JW: Targeting
macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov.
17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
DeNardo DG, Barreto JB, Andreu P, Vasquez
L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate
pulmonary metastasis of mammary carcinomas by enhancing protumor
properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wyckoff J, Wang W, Lin EY, Wang Y, Pixley
F, Stanley ER, Graf T, Pollard JW, Segall J and Condeelis J: A
paracrine loop between tumor cells and macrophages is required for
tumor cell migration in mammary tumors. Cancer Res. 64:7022–7029.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Esser S, Lampugnani MG, Corada M, Dejana E
and Risau W: Vascular endothelial growth factor induces VE-cadherin
tyrosine phosphorylation in endothelial cells. J Cell Sci.
111:1853–1865. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Su S, Liu Q, Chen J, Chen J, Chen F, He C,
Huang D, Wu W, Lin L, Huang W, et al: A positive feedback loop
between mesenchymal-like cancer cells and macrophages is essential
to breast cancer metastasis. Cancer Cell. 25:605–620. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Squadrito ML, Baer C, Burdet F, Maderna C,
Gilfillan GD, Lyle R, Ibberson M and De Palma M: Endogenous RNAs
modulate microRNA sorting to exosomes and transfer to acceptor
cells. Cell Rep. 8:1432–1446. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim YB, Ahn YH, Jung JH, Lee YJ, Lee JH
and Kang JL: Programming of macrophages by UV-irradiated apoptotic
cancer cells inhibits cancer progression and lung metastasis. Cell
Mol Immunol. 16:851–867. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Välimäki E, Cypryk W, Virkanen J, Nurmi K,
Turunen PM, Eklund KK, Åkerman KE, Nyman TA and Matikainen S:
Calpain activity is essential for ATP-driven unconventional
vesicle-mediated protein secretion and inflammasome activation in
human macrophages. J Immunol. 197:3315–3325. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Qu Y, Franchi L, Nunez G and Dubyak GR:
Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is
dependent on inflammasome activation and correlated with exosome
release in murine macrophages. J Immunol. 179:1913–1925. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pegtel DM and Gould SJ: Exosomes. Annu Rev
Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang Q, Nanayakkara GK, Drummer C, Sun Y,
Johnson C, Cueto R, Fu H, Shao Y, Wang L, Yang WY, et al:
Low-intensity ultrasound-induced anti-inflammatory effects are
mediated by several new mechanisms including gene induction,
immunosuppressor cell promotion, and enhancement of exosome
biogenesis and docking. Front Physiol. 8:8182017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xu J, Camfield R and Gorski SM: The
interplay between exosomes and autophagy-partners in crime. J Cell
Sci. 131:jcs2152102018. View Article : Google Scholar
|
|
52
|
Babuta M, Furi I, Bala S, Bukong TN, Lowe
P, Catalano D, Calenda C, Kodys K and Szabo G: Dysregulated
autophagy and lysosome function are linked to exosome production by
Micro-RNA 155 in alcoholic liver disease. Hepatology. 70:2123–2141.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li ZG, Scott MJ, Brzóska T, Sundd P, Li
YH, Billiar TR, Wilson MA, Wang P and Fan J: Lung epithelial
cell-derived IL-25 negatively regulates LPS-induced exosome release
from macrophages. Mil Med Res. 5:242018.PubMed/NCBI
|
|
54
|
Brahimi-Horn MC, Chiche J and Pouysségur
J: Hypoxia and cancer. J Mol Med (Berl). 85:1301–1307. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Goto Y, Ogawa Y, Tsumoto H, Miura Y,
Nakamura TJ, Ogawa K, Akimoto Y, Kawakami H, Endo T, Yanoshita R
and Tsujimoto M: Contribution of the exosome-associated form of
secreted endoplasmic reticulum aminopeptidase 1 to exosome-mediated
macrophage activation. Biochim Biophys Acta Mol Cell Res.
1865:874–888. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sancho-Albero M, Navascués N, Mendoza G,
Sebastián V, Arruebo M, Martín-Duque P and Santamaría J: Exosome
origin determines cell targeting and the transfer of therapeutic
nanoparticles towards target cells. J Nanobiotechnology. 17:162019.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lai B, Wang J, Fagenson A, Sun Y, Saredy
J, Lu Y, Nanayakkara G, Yang WY, Yu D, Shao Y, et al: Twenty novel
disease group-specific and 12 new shared macrophage pathways in
eight groups of 34 diseases including 24 inflammatory organ
diseases and 10 types of tumors. Front Immunol. 10:26122019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bryl R, Piwocka O, Kawka E, Mozdziak P,
Kempisty B and Knopik-Skrocka A: Cancer stem cells-the insight into
non-coding RNAs. Cells. 11:36992022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zheng N, Wang T, Luo Q, Liu Y, Yang J,
Zhou Y, Xie G, Ma Y, Yuan X and Shen L: M2 macrophage-derived
exosomes suppress tumor intrinsic immunogenicity to confer
immunotherapy resistance. Oncoimmunology. 12:22109592023.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Roy S: miRNA in macrophage development and
function. Antioxid Redox Signal. 25:795–804. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li H, Jiang T, Li MQ, Zheng XL and Zhao
GJ: Transcriptional regulation of macrophages polarization by
MicroRNAs. Front Immunol. 9:11752018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yao Q, Song Z, Wang B and Zhang JA:
Emerging roles of microRNAs in the metabolic control of immune
cells. Cancer Lett. 433:10–17. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
McDonald MK, Tian Y, Qureshi RA, Gormley
M, Ertel A, Gao R, Aradillas Lopez E, Alexander GM, Sacan A,
Fortina P and Ajit SK: Functional significance of
macrophage-derived exosomes in inflammation and pain. Pain.
155:1527–1539. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ma YS, Wu TM, Ling CC, Yu F, Zhang J, Cao
PS, Gu LP, Wang HM, Xu H, Li L, et al: M2 macrophage-derived
exosomal microRNA-155-5p promotes the immune escape of colon cancer
by downregulating ZC3H12B. Mol Ther Oncolytics. 20:484–498. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lan J, Sun L, Xu F, Liu L, Hu F, Song D,
Hou Z, Wu W, Luo X, Wang J, et al: M2 macrophage-derived exosomes
promote cell migration and invasion in colon cancer. Cancer Res.
79:146–158. 2019. View Article : Google Scholar
|
|
67
|
Yoshikawa T, Fukuda A, Omatsu M, Namikawa
M, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Ogawa S, et al:
Brg1 is required to maintain colorectal cancer stem cells. J
Pathol. 255:257–269. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yang Y, Guo Z, Chen W, Wang X, Cao M, Han
X, Zhang K, Teng B, Cao J, Wu W, et al: M2 macrophage-derived
exosomes promote angiogenesis and growth of pancreatic ductal
adenocarcinoma by targeting E2F2. Mol Ther. 29:1226–1238. 2021.
View Article : Google Scholar :
|
|
69
|
Xie D, Pei Q, Li J, Wan X and Ye T:
Emerging role of E2F family in cancer stem cells. Front Oncol.
11:7231372021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang K, Li YJ, Peng LJ, Gao HF, Liu LM
and Chen H: M2 macrophage-derived exosomal miR-193b-3p promotes
progression and glutamine uptake of pancreatic cancer by targeting
TRIM62. Biol Direct. 18:12023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li X, Xu H, Yi J, Dong C, Zhang H, Wang Z,
Miao L and Zhou W: miR-365 secreted from M2 Macrophage-derived
extracellular vesicles promotes pancreatic ductal adenocarcinoma
progression through the BTG2/FAK/AKT axis. J Cell Mol Med.
25:4671–4683. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Thakur R, Trivedi R, Rastogi N, Singh M
and Mishra DP: Inhibition of STAT3, FAK and Src mediated signaling
reduces cancer stem cell load, tumorigenic potential and metastasis
in breast cancer. Sci Rep. 5:101942015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan
J, Zou Y and Chen S: Macrophage-derived exosomal microRNA-501-3p
promotes progression of pancreatic ductal adenocarcinoma through
the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res.
38:3102019. View Article : Google Scholar
|
|
74
|
Katoh M and Katoh M: WNT signaling and
cancer stemness. Essays Biochem. 66:319–331. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu
Z, Han S, Liu Y, Ying G, Shu X and Di M: TM4SF1 promotes EMT and
cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal
cancer. J Exp Clin Cancer Res. 39:2322020. View Article : Google Scholar
|
|
76
|
Chang J, Li H, Zhu Z, Mei P, Hu W, Xiong X
and Tao J: microRNA-21-5p from M2 macrophage-derived extracellular
vesicles promotes the differentiation and activity of pancreatic
cancer stem cells by mediating KLF3. Cell Biol Toxicol. 38:577–590.
2022. View Article : Google Scholar :
|
|
77
|
Guan B, Dai X, Zhu Y and Geng Q: M2
macrophage-derived exosomal miR-1911-5p promotes cell migration and
invasion in lung adenocarcinoma by down-regulating CELF2-activated
ZBTB4 expression. Anticancer Drugs. 34:238–247. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Song S, Zhao Y, Wang X, Tong X, Chen X and
Xiong Q: M2 macrophages-derived exosomal miR-3917 promotes the
progression of lung cancer via targeting GRK6. Biol Chem.
404:41–57. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M,
Zhou Y and Ma L: GRK6 regulates ROS response and maintains
hematopoietic stem cell self-renewal. Cell Death Dis. 7:e24782016.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lei J, Chen P, Zhang F, Zhang N, Zhu J,
Wang X and Jiang T: M2 macrophages-derived exosomal microRNA-501-3p
promotes the progression of lung cancer via targeting WD repeat
domain 82. Cancer Cell Int. 21:912021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wei K, Ma Z, Yang F, Zhao X, Jiang W, Pan
C, Li Z, Pan X, He Z, Xu J, et al: M2 macrophage-derived exosomes
promote lung adenocarcinoma progression by delivering miR-942.
Cancer Lett. 526:205–216. 2022. View Article : Google Scholar
|
|
82
|
Yu JM, Sun W, Wang ZH, Liang X, Hua F, Li
K, Lv XX, Zhang XW, Liu YY, Yu JJ, et al: TRIB3 supports breast
cancer stemness by suppressing FOXO1 degradation and enhancing SOX2
transcription. Nat Commun. 10:57202019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Firat E and Niedermann G: FoxO proteins or
loss of functional p53 maintain stemness of glioblastoma stem cells
and survival after ionizing radiation plus PI3K/mTOR inhibition.
Oncotarget. 7:54883–54896. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yang X, Cai S, Shu Y, Deng X, Zhang Y, He
N, Wan L, Chen X, Qu Y and Yu S: Exosomal miR-487a derived from m2
macrophage promotes the progression of gastric cancer. Cell Cycle.
20:434–444. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cui HY, Rong JS, Chen J, Guo J, Zhu JQ,
Ruan M, Zuo RR, Zhang SS, Qi JM and Zhang BH: Exosomal microRNA-588
from M2 polarized macrophages contributes to cisplatin resistance
of gastric cancer cells. World J Gastroenterol. 27:6079–6092. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Xu DD, Zhou PJ, Wang Y, Zhang L, Fu WY,
Ruan BB, Xu HP, Hu CZ, Tian L, Qin JH, et al: Reciprocal activation
between STAT3 and miR-181b regulates the proliferation of
esophageal cancer stem-like cells via the CYLD pathway. Mol Cancer.
15:402016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhao G, Ding L, Yu H, Wang W, Wang H, Hu
Y, Qin L, Deng G, Xie B, Li G and Qi L: M2-like tumor-associated
macrophages transmit exosomal miR-27b-3p and maintain glioblastoma
stem-like cell properties. Cell Death Discov. 8:3502022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tian B, Zhou L, Wang J and Yang P:
miR-660-5p-loaded M2 macrophages-derived exosomes augment
hepatocellular carcinoma development through regulating KLF3. Int
Immunopharmacol. 101:1081572021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li X and Tang M: Exosomes released from M2
macrophages transfer miR-221-3p contributed to EOC progression
through targeting CDKN1B. Cancer Med. 9:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu W, Long Q, Zhang W, Zeng D, Hu B, Liu
S and Chen L: miRNA-221-3p derived from M2-polarized
tumor-associated macrophage exosomes aggravates the growth and
metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging
(Albany NY). 13:19760–19775. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yuan Y, Wang Z, Chen M, Jing Y, Shu W, Xie
Z, Li Z, Xu J, He F, Jiao P, et al: Macrophage-derived exosomal
miR-31-5p promotes oral squamous cell carcinoma tumourigenesis
through the large tumor suppressor 2-mediated hippo signalling
pathway. J Biomed Nanotechnol. 17:822–837. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li Z, Wang Y, Zhu Y, Yuan C, Wang D, Zhang
W, Qi B, Qiu J, Song X, Ye J, et al: The Hippo transducer TAZ
promotes epithelial to mesenchymal transition and cancer stem cell
maintenance in oral cancer. Mol Oncol. 9:1091–1105. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yao J, Wang Z, Cheng Y, Ma C, Zhong Y,
Xiao Y, Gao X and Li Z: M2 macrophage-derived exosomal microRNAs
inhibit cell migration and invasion in gliomas through
PI3K/AKT/mTOR signaling pathway. J Transl Med. 19:992021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gao XF, He HQ, Zhu XB, Xie SL and Cao Y:
LncRNA SNHG20 promotes tumorigenesis and cancer stemness in
glioblastoma via activating PI3K/Akt/mTOR signaling pathway.
Neoplasma. 66:532–542. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Gao Y, Lin L, Li T, Yang J and Wei Y: The
role of miRNA-223 in cancer: Function, diagnosis and therapy. Gene.
616:1–7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Haneklaus M, Gerlic M, O'Neill LA and
Masters SL: miR-223: Infection, inflammation and cancer. J Intern
Med. 274:215–226. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhu X, Shen H, Yin X, Yang M, Wei H, Chen
Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes
deliver miR-223 to epithelial ovarian cancer cells to elicit a
chemoresistant phenotype. J Exp Clin Cancer Res. 38:812019.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yang M, Chen J, Su F, Yu B, Su F, Lin L,
Liu Y, Huang JD and Song E: Microvesicles secreted by macrophages
shuttle invasion-potentiating microRNAs into breast cancer cells.
Mol Cancer. 10:1172011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Aucher A, Rudnicka D and Davis DM:
MicroRNAs transfer from human macrophages to hepato-carcinoma cells
and inhibit proliferation. J Immunol. 191:6250–6260. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Bhan A, Soleimani M and Mandal SS: Long
noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Peng WX, Koirala P and Mo YY:
LncRNA-mediated regulation of cell signaling in cancer. Oncogene.
36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chen F, Chen J, Yang L, Liu J, Zhang X,
Zhang Y, Tu Q, Yin D, Lin D, Wong PP, et al: Extracellular
vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated
macrophages regulates aerobic glycolysis of breast cancer cells.
Nat Cell Biol. 21:498–510. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang Q, Han Z, Zhu Y, Chen J and Li W:
Role of hypoxia inducible factor-1 in cancer stem cells (Review).
Mol Med Rep. 23:172021.
|
|
104
|
Yin Z, Zhou Y, Ma T, Chen S, Shi N, Zou Y,
Hou B and Zhang C: Down-regulated lncRNA SBF2-AS1 in M2
macrophage-derived exosomes elevates miR-122-5p to restrict XIAP,
thereby limiting pancreatic cancer development. J Cell Mol Med.
24:5028–5038. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gao Z, Wang Q, Ji M, Guo X, Li L and Su X:
Exosomal lncRNA UCA1 modulates cervical cancer stem cell
self-renewal and differentiation through microRNA-122-5p/SOX2 axis.
J Transl Med. 19:2292021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xu M, Zhou C, Weng J, Chen Z, Zhou Q, Gao
J, Shi G, Ke A, Ren N, Sun H and Shen Y: Tumor associated
macrophages-derived exosomes facilitate hepatocellular carcinoma
malignance by transferring lncMMPA to tumor cells and activating
glycolysis pathway. J Exp Clin Cancer Res. 41:2532022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Gelardi ELM, Colombo G, Picarazzi F,
Ferraris DM, Mangione A, Petrarolo G, Aronica E, Rizzi M, Mori M,
La Motta C and Garavaglia S: A selective competitive inhibitor of
aldehyde dehydrogenase 1A3 hinders cancer cell growth, invasiveness
and stemness in vitro. Cancers (Basel). 13:3562021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Guo Y, Sun W, Gao W, Li L, Liang Y, Mei Z,
Liu B and Wang R: Long noncoding RNA H19 derived from M2
tumor-associated macrophages promotes bladder cell autophagy via
stabilizing ULK1. J Oncol. 2022:34654592022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen
S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts
promote the stemness and chemoresistance of colorectal cancer by
transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Shima H, Kida K, Adachi S, Yamada A, Sugae
S, Narui K, Miyagi Y, Nishi M, Ryo A, Murata S, et al: Lnc RNA H19
is associated with poor prognosis in breast cancer patients and
promotes cancer stemness. Breast Cancer Res Treat. 170:507–516.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wang F, Rong L, Zhang Z, Li M, Ma L, Ma Y,
Xie X, Tian X and Yang Y: LncRNA H19-derived miR-675-3p promotes
epithelial-mesenchymal transition and stemness in human pancreatic
cancer cells by targeting the STAT3 pathway. J Cancer.
11:4771–4782. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhang F, Sang Y, Chen D, Wu X, Wang X,
Yang W and Chen Y: M2 macrophage-derived exosomal long non-coding
RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by
reducing microRNA-296 and elevating NOTCH2. Cell Death Dis.
12:4672021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Mi X, Xu R, Hong S, Xu T, Zhang W and Liu
M: M2 macrophage-derived exosomal lncRNA AFAP1-AS1 and MicroRNA-26a
affect cell migration and metastasis in esophageal cancer. Mol Ther
Nucleic Acids. 22:779–790. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Huang W, Zhong Z, Luo C, Xiao Y, Li L,
Zhang X, Yang L, Xiao K, Ning Y, Chen L, et al: The
miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal
and temozolomide resistance in glioma. Theranostics. 9:5497–5516.
2019. View Article : Google Scholar :
|
|
115
|
Xin L, Zhou LQ, Liu C, Zeng F, Yuan YW,
Zhou Q, Li SH, Wu Y, Wang JL, Wu DZ and Lu H: Transfer of LncRNA
CRNDE in TAM-derived exosomes is linked with cisplatin resistance
in gastric cancer. EMBO Rep. 22:e521242021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zheng J, Li XD, Wang P, Liu XB, Xue YX, Hu
Y, Li Z, Li ZQ, Wang ZH and Liu YH: CRNDE affects the malignant
biological characteristics of human glioma stem cells by negatively
regulating miR-186. Oncotarget. 6:25339–25355. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Feng Z, Meng S, Zhou H, Xu Z, Tang Y, Li
P, Liu C, Huang Y and Wu M: Functions and potential applications of
circular RNAs in cancer stem cells. Front Oncol. 9:5002019.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T
and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol
Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zhou P, Chen X, Shi K, Qu H and Xia J: The
characteristics, tumorigenicities and therapeutics of cancer stem
cells based on circRNAs. Pathol Res Pract. 233:1538222022.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhuang Z, Jia L, Li W and Zheng Y: The
emerging roles of circular RNAs in regulating the fate of stem
cells. Mol Cell Biochem. 476:231–246. 2021. View Article : Google Scholar
|
|
121
|
Yu D, Chang Z, Liu X, Chen P, Zhang H and
Qin Y: Macrophage-derived exosomes regulate gastric cancer cell
oxaliplatin resistance by wrapping circ 0008253. Cell Cycle.
22:705–717. 2023. View Article : Google Scholar
|
|
122
|
Chen S, Chen Z, Li Z, Li S, Wen Z, Cao L,
Chen Y, Xue P, Li H and Zhang D: Tumor-associated macrophages
promote cholangiocarcinoma progression via exosomal Circ_0020256.
Cell Death Dis. 13:942022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Gu X, Shi Y, Dong M, Jiang L, Yang J and
Liu Z: Exosomal transfer of tumor-associated macrophage-derived
hsa_ circ_0001610 reduces radiosensitivity in endometrial cancer.
Cell Death Dis. 12:8182021. View Article : Google Scholar
|
|
124
|
Ma J, Huang L, Gao YB, Li MX, Chen LL and
Yang L: M2 macrophage facilitated angiogenesis in cutaneous
squamous cell carcinoma via circ_TNFRSF21/miR-3619-5p/ROCK axis.
Kaohsiung J Med Sci. 38:761–771. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Panis C, Pizzatti L, Souza GF and Abdelhay
E: Clinical proteomics in cancer: Where we are. Cancer Let.
382:231–239. 2016. View Article : Google Scholar
|
|
126
|
Zhu Y, Chen X, Pan Q, Wang Y, Su S, Jiang
C, Li Y, Xu N, Wu L, Lou X and Liu S: A comprehensive proteomics
analysis reveals a secretory path- and status-dependent signature
of exosomes released from tumor-associated macrophages. J Proteome
Res. 14:4319–4331. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
El-Arabey AA, Denizli M, Kanlikilicer P,
Bayraktar R, Ivan C, Rashed M, Kabil N, Ozpolat B, Calin GA, Salama
SA, et al: GATA3 as a master regulator for interactions of
tumor-associated macrophages with high-grade serous ovarian
carcinoma. Cell Signal. 68:1095392020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zheng P, Luo Q, Wang W, Li J, Wang T, Wang
P, Chen L, Zhang P, Chen H, Liu Y, et al: Tumor-associated
macrophages-derived exosomes promote the migration of gastric
cancer cells by transfer of functional apolipoprotein E. Cell Death
Dis. 9:4342018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Lee HD, Koo BH, Kim YH, Jeon OH and Kim
DS: Exosome release of ADAM15 and the functional implications of
human macrophage-derived ADAM15 exosomes. FASEB J. 26:3084–3095.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Yu X, Zhang Q, Zhang X, Han Q, Li H, Mao
Y, Wang X, Guo H, Irwin DM, Niu G and Tan H: Exosomes from
macrophages exposed to apoptotic breast cancer cells promote breast
cancer proliferation and metastasis. J Cancer. 10:2892–2906. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang M, Zhou L, Yu F, Zhang Y, Li P and
Wang K: The functional roles of exosomal long non-coding RNAs in
cancer. Cell Mol Life Sci. 76:2059–2076. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Sharma A and Johnson A: Exosome DNA:
Critical regulator of tumor immunity and a diagnostic biomarker. J
Cell Physiol. 235:1921–1932. 2020. View Article : Google Scholar
|
|
133
|
Azambuja JH, Ludwig N, Yerneni SS,
Braganhol E and Whiteside TL: Arginase-1+ exosomes from
reprogrammed macrophages promote glioblastoma progression. Int J
Mol Sci. 21:39902020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Chen Y, Jin H, Song Y, Huang T, Cao J,
Tang Q and Zou Z: Targeting tumor-associated macrophages: A
potential treatment for solid tumors. J Cell Physiol.
236:3445–3465. 2021. View Article : Google Scholar
|
|
135
|
Pienta KJ, Machiels JP, Schrijvers D,
Alekseev B, Shkolnik M, Crabb SJ, Li S, Seetharam S, Puchalski TA,
Takimoto C, et al: Phase 2 study of carlumab (CNTO 888), a human
monoclonal antibody against CC-chemokine ligand 2 (CCL2), in
metastatic castration-resistant prostate cancer. Invest New Drugs.
31:760–768. 2013. View Article : Google Scholar
|
|
136
|
Moisan F, Francisco EB, Brozovic A, Duran
GE, Wang YC, Chaturvedi S, Seetharam S, Snyder LA, Doshi P and
Sikic BI: Enhancement of paclitaxel and carboplatin therapies by
CCL2 blockade in ovarian cancers. Mol Oncol. 8:1231–1239. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Xu F, Wei Y, Tang Z, Liu B and Dong J:
Tumor-associated macrophages in lung cancer: Friend or foe?
(Review). Mol Med Rep. 22:4107–4115. 2020.PubMed/NCBI
|
|
138
|
DiPersio JF, Uy GL, Yasothan U and
Kirkpatrick P: Plerixafor. Nat Rev Drug Discov. 8:105–106. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Wang J, Tannous BA, Poznansky MC and Chen
H: CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a
therapeutic agent. Pharmacol Res. 159:1050102020. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hume DA and MacDonald KP: Therapeutic
applications of macrophage colony-stimulating factor-1 (CSF-1) and
antagonists of CSF-1 receptor (CSF-1R) signaling. Blood.
119:1810–1820. 2012. View Article : Google Scholar
|
|
141
|
Bonapace L, Coissieux MM, Wyckoff J, Mertz
KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2
inhibition accelerates breast cancer metastasis by promoting
angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Advani R, Flinn I, Popplewell L, Forero A,
Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP,
et al: CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's
lymphoma. N Engl J Med. 379:1711–1721. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Petrova PS, Viller NN, Wong M, Pang X, Lin
GH, Dodge K, Chai V, Chen H, Lee V, House V, et al: TTI-621
(SIRPαFc): A CD47-blocking innate immune checkpoint inhibitor with
broad antitumor activity and minimal erythrocyte binding. Clin
Cancer Res. 23:1068–1079. 2017. View Article : Google Scholar
|
|
144
|
Bouwstra R, van Meerten T and Bremer E:
CD47-SIRPα blocking-based immunotherapy: Current and prospective
therapeutic strategies. Clin Transl Med. 12:e9432022. View Article : Google Scholar
|
|
145
|
Zheng JH, Nguyen VH, Jiang SN, Park SH,
Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS, et al: Two-step
enhanced cancer immunotherapy with engineered Salmonella
typhimurium secreting heterologous flagellin. Sci Transl Med.
9:eaak95372017. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Yuan D, Zhao Y, Banks WA, Bullock KM,
Haney M, Batrakova E and Kabanov AV: Macrophage exosomes as natural
nanocarriers for protein delivery to inflamed brain. Biomaterials.
142:1–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Li J, Li N and Wang J: M1
macrophage-derived exosome-encapsulated cisplatin can enhance its
anti-lung cancer effect. Minerva Med. Apr 8–2020.Epub ahead of
print. View Article : Google Scholar
|
|
148
|
Kim MS, Haney MJ, Zhao Y, Mahajan V,
Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O,
et al: Development of exosome-encapsulated paclitaxel to overcome
MDR in cancer cells. Nanomedicine. 12:655–664. 2016. View Article : Google Scholar
|
|
149
|
Bellmunt À M, López-Puerto L, Lorente J
and Closa D: Involvement of extracellular vesicles in the
macrophage-tumor cell communication in head and neck squamous cell
carcinoma. PLoS One. 14:e02247102019. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Trajkovic K, Hsu C, Chiantia S, Rajendran
L, Wenzel D, Wieland F, Schwille P, Brügger B and Simons M:
Ceramide triggers budding of exosome vesicles into multivesicular
endosomes. Science. 319:1244–1247. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Wu ATH, Srivastava P, Yadav VK, Tzeng DTW,
Iamsaard S, Su EC, Hsiao M and Liu MC: Ovatodiolide, isolated from
Anisomeles indica, suppresses bladder carcinogenesis through
suppression of mTOR/β-catenin/CDK6 and exosomal miR-21 derived from
M2 tumor-associated macrophages. Toxicol Appl Pharmacol.
401:1151092020. View Article : Google Scholar
|
|
152
|
Guo J, Wang X, Guo Q, Zhu S, Li P, Zhang S
and Min L: M2 macrophage derived extracellular vesicle-mediated
transfer of MiR-186-5p promotes colon cancer progression by
targeting DLC1. Int J Biol Sci. 18:1663–1676. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Wang P, Li GY, Zhou L, Jiang HL, Yang Y
and Wu HT: Exosomes from M2 macrophages promoted glycolysis in FaDu
cells by inhibiting PDLIM2 expression to stabilize PFKL. Neoplasma.
69:1041–1053. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Song L, Luan B, Xu Q, Shi R and Wang X:
microRNA-155-3p delivered by M2 macrophages-derived exosomes
enhances the progression of medulloblastoma through regulation of
WDR82. J Transl Med. 20:132022. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Zhang Z, Hu J, Ishihara M, Sharrow AC,
Flora K, He Y and Wu L: The miRNA-21-5p payload in exosomes from M2
macrophages drives tumor cell aggression via PTEN/Akt signaling in
renal cell carcinoma. Int J Mol Sci. 23:30052022. View Article : Google Scholar : PubMed/NCBI
|