Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2023 Volume 63 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 63 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review)

  • Authors:
    • Weiqiong Zhang
    • Ruiping Zhou
    • Xin Liu
    • Lin You
    • Chang Chen
    • Xiaoling Ye
    • Jie Liu
    • Youde Liang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China, Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 126
    |
    Published online on: September 14, 2023
       https://doi.org/10.3892/ijo.2023.5574
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer stem cells (CSCs) constitute a specific subset of cells found within tumors that are responsible for initiating, advancing and resisting traditional cancer treatments. M2 macrophages, also known as alternatively activated macrophages, contribute to the development and progression of cancer through their involvement in promoting angiogenesis, suppressing the immune system, supporting tumor growth and facilitating metastasis. Exosomes, tiny vesicles released by cells, play a crucial role in intercellular communications and have been shown to be associated with cancer development and progression by influencing the immune response; thus, they may serve as markers for diagnosis and prognosis. Currently, investigating the impact of exosomes derived from M2 macrophages on the maintenance of CSCs is a crucial area of research with the aim of developing novel therapeutic strategies to target this process and improve outcomes for individuals with cancer. Understanding the biological functions of exosomes derived from M2 macrophages and their involvement in cancer may lead to the formulation of novel diagnostic tools and treatments for this disease. By targeting M2 macrophages and the exosomes they secrete, promising prospects emerge for cancer treatment, given their substantial contribution to cancer development and progression. Further research is required to fully grasp the intricate interactions between CSCs, M2 macrophages and exosomes in cancer, and to identify fresh targets for cancer therapy. The present review explores the pivotal roles played by exosomes derived from M2 cells in maintaining the stem‑like properties of cancer cells.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Clevers H: The cancer stem cell: Premises, promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Nassar D and Blanpain C: Cancer stem cells: Basic concepts and therapeutic Implications. Annu Rev Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Dawood S, Austin L and Cristofanilli M: Cancer stem cells: Implications for cancer therapy. Oncology (Williston Park). 28:1101–1107. 11102014.PubMed/NCBI

4 

Vlashi E and Pajonk F: Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 31:28–35. 2015. View Article : Google Scholar

5 

Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 11:12802020. View Article : Google Scholar : PubMed/NCBI

6 

Plaks V, Kong N and Werb Z: The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 16:225–238. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Neophytou CM, Panagi M, Stylianopoulos T and Papageorgis P: The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers (Basel). 13:20532021. View Article : Google Scholar : PubMed/NCBI

8 

Liu J, Geng X, Hou J and Wu G: New insights into M1/M2 macrophages: Key modulators in cancer progression. Cancer Cell Int. 21:3892021. View Article : Google Scholar : PubMed/NCBI

9 

Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI

10 

Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, Shao Y and Zheng S: Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 5:1442020. View Article : Google Scholar : PubMed/NCBI

11 

Nicolini A, Ferrari P and Biava PM: Exosomes and cell communication: From tumour-derived exosomes and their role in tumour progression to the use of exosomal cargo for cancer treatment. Cancers (Basel). 13:8222021. View Article : Google Scholar : PubMed/NCBI

12 

Zhang Y, Liu Q, Zhang X, Huang H, Tang S, Chai Y, Xu Z, Li M, Chen X, Liu J and Yang C: Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnology. 20:2792022. View Article : Google Scholar : PubMed/NCBI

13 

Long KB, Collier AI and Beatty GL: Macrophages: Key orchestrators of a tumor microenvironment defined by therapeutic resistance. Mol Immunol. 110:3–12. 2019. View Article : Google Scholar

14 

Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, Shlomi T and Gil Z: Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 78:5287–5299. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, Shah P, Wisler J, Eubank TD, Tridandapani S, et al: Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 121:984–995. 2013. View Article : Google Scholar :

16 

Behzadi E, Hosseini HM, Halabian R and Fooladi AAI: Macrophage cell-derived exosomes/staphylococcal enterotoxin B against fibrosarcoma tumor. Microb Pathog. 111:132–138. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Cheng L, Wang Y and Huang L: Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node. Mol Ther. 25:1665–1675. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Akbar Samadani A, Keymoradzdeh A, Shams S, Soleymanpour A, Elham Norollahi S, Vahidi S, Rashidy-Pour A, Ashraf A, Mirzajani E, Khanaki K, et al: Mechanisms of cancer stem cell therapy. Clin Chim Acta. 510:581–592. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Zhao W, Li Y and Zhang X: Stemness-related markers in cancer. Cancer Transl Med. 3:87–95. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Babaei G, Aziz SG and Jaghi NZZ: EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother. 133:1109092021. View Article : Google Scholar

22 

Das PK, Pillai S, Rakib MA, Khanam JA, Gopalan V, Lam AKY and Islam F: Plasticity of cancer stem cell: Origin and role in disease progression and therapy resistance. Stem Cell Rev Rep. 16:397–412. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Zhu P and Fan Z: Cancer stem cells and tumorigenesis. Biophys Rep. 4:178–188. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Chen W, Dong J, Haiech J, Kilhoffer MC and Zeniou M: Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016:17409362016. View Article : Google Scholar : PubMed/NCBI

26 

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI

27 

Shi C and Pamer EG: Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 11:762–774. 2011. View Article : Google Scholar : PubMed/NCBI

28 

van Furth R and Cohn ZA: The origin and kinetics of mononuclear phagocytes. J Exp Med. 128:415–435. 1968. View Article : Google Scholar : PubMed/NCBI

29 

Epelman S, Lavine KJ and Randolph GJ: Origin and functions of tissue macrophages. Immunity. 41:21–35. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J, Morales BM, Brown M, Chang C, Troncoso L, Chen ST, et al: Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature. 595:578–584. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Gratchev A, Schledzewski K, Guillot P and Goerdt S: Alternatively activated antigen-presenting cells: Molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol. 14:272–279. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage polarization: Different gene signatures in M1(LPS+) vs classically and M2(LPS-) vs alternatively activated macrophages. Front Immunol. 10:10842019. View Article : Google Scholar

33 

Tong Y, Guo YJ, Zhang Q, Bi HX, Kai K and Zhou RY: Combined treatment with dihydrotestosterone and lipopolysaccharide modulates prostate homeostasis by upregulating TNF-α from M1 macrophages and promotes proliferation of prostate stromal cells. Asian J Androl. 24:513–520. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Hu W, Lin J, Lian X, Yu F, Liu W, Wu Y, Fang X, Liang X and Hao W: M2a and M2b macrophages predominate in kidney tissues and M2 subpopulations were associated with the severity of disease of IgAN patients. Clin Immunol. 205:8–15. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Wen Y, Lu X, Ren J, Privratsky JR, Yang B, Rudemiller NP, Zhang J, Griffiths R, Jain MK, Nedospasov SA, et al: KLF4 in macrophages attenuates TNFα-mediated kidney injury and fibrosis. J Am Soc Nephrol. 30:1925–1938. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Loegl J, Hiden U, Nussbaumer E, Schliefsteiner C, Cvitic S, Lang I, Wadsack C, Huppertz B and Desoye G: Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis. Reproduction. 152:447–455. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Lurier EB, Dalton D, Dampier W, Raman P, Nassiri S, Ferraro NM, Rajagopalan R, Sarmady M and Spiller KL: Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology. 222:847–856. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Wang Q, Ni H, Lan L, Wei X, Xiang R and Wang Y: Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 20:701–712. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S and Leibovich SJ: The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation. 36:921–931. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI

41 

DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J and Condeelis J: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64:7022–7029. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Esser S, Lampugnani MG, Corada M, Dejana E and Risau W: Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci. 111:1853–1865. 1998. View Article : Google Scholar : PubMed/NCBI

44 

Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, et al: A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 25:605–620. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M and De Palma M: Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. 8:1432–1446. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Kim YB, Ahn YH, Jung JH, Lee YJ, Lee JH and Kang JL: Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis. Cell Mol Immunol. 16:851–867. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Välimäki E, Cypryk W, Virkanen J, Nurmi K, Turunen PM, Eklund KK, Åkerman KE, Nyman TA and Matikainen S: Calpain activity is essential for ATP-driven unconventional vesicle-mediated protein secretion and inflammasome activation in human macrophages. J Immunol. 197:3315–3325. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Qu Y, Franchi L, Nunez G and Dubyak GR: Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol. 179:1913–1925. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Yang Q, Nanayakkara GK, Drummer C, Sun Y, Johnson C, Cueto R, Fu H, Shao Y, Wang L, Yang WY, et al: Low-intensity ultrasound-induced anti-inflammatory effects are mediated by several new mechanisms including gene induction, immunosuppressor cell promotion, and enhancement of exosome biogenesis and docking. Front Physiol. 8:8182017. View Article : Google Scholar : PubMed/NCBI

51 

Xu J, Camfield R and Gorski SM: The interplay between exosomes and autophagy-partners in crime. J Cell Sci. 131:jcs2152102018. View Article : Google Scholar

52 

Babuta M, Furi I, Bala S, Bukong TN, Lowe P, Catalano D, Calenda C, Kodys K and Szabo G: Dysregulated autophagy and lysosome function are linked to exosome production by Micro-RNA 155 in alcoholic liver disease. Hepatology. 70:2123–2141. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Li ZG, Scott MJ, Brzóska T, Sundd P, Li YH, Billiar TR, Wilson MA, Wang P and Fan J: Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages. Mil Med Res. 5:242018.PubMed/NCBI

54 

Brahimi-Horn MC, Chiche J and Pouysségur J: Hypoxia and cancer. J Mol Med (Berl). 85:1301–1307. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Goto Y, Ogawa Y, Tsumoto H, Miura Y, Nakamura TJ, Ogawa K, Akimoto Y, Kawakami H, Endo T, Yanoshita R and Tsujimoto M: Contribution of the exosome-associated form of secreted endoplasmic reticulum aminopeptidase 1 to exosome-mediated macrophage activation. Biochim Biophys Acta Mol Cell Res. 1865:874–888. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Sancho-Albero M, Navascués N, Mendoza G, Sebastián V, Arruebo M, Martín-Duque P and Santamaría J: Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobiotechnology. 17:162019. View Article : Google Scholar : PubMed/NCBI

57 

Lai B, Wang J, Fagenson A, Sun Y, Saredy J, Lu Y, Nanayakkara G, Yang WY, Yu D, Shao Y, et al: Twenty novel disease group-specific and 12 new shared macrophage pathways in eight groups of 34 diseases including 24 inflammatory organ diseases and 10 types of tumors. Front Immunol. 10:26122019. View Article : Google Scholar : PubMed/NCBI

58 

Bryl R, Piwocka O, Kawka E, Mozdziak P, Kempisty B and Knopik-Skrocka A: Cancer stem cells-the insight into non-coding RNAs. Cells. 11:36992022. View Article : Google Scholar : PubMed/NCBI

59 

Zheng N, Wang T, Luo Q, Liu Y, Yang J, Zhou Y, Xie G, Ma Y, Yuan X and Shen L: M2 macrophage-derived exosomes suppress tumor intrinsic immunogenicity to confer immunotherapy resistance. Oncoimmunology. 12:22109592023. View Article : Google Scholar : PubMed/NCBI

60 

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Roy S: miRNA in macrophage development and function. Antioxid Redox Signal. 25:795–804. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Li H, Jiang T, Li MQ, Zheng XL and Zhao GJ: Transcriptional regulation of macrophages polarization by MicroRNAs. Front Immunol. 9:11752018. View Article : Google Scholar : PubMed/NCBI

63 

Yao Q, Song Z, Wang B and Zhang JA: Emerging roles of microRNAs in the metabolic control of immune cells. Cancer Lett. 433:10–17. 2018. View Article : Google Scholar : PubMed/NCBI

64 

McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R, Aradillas Lopez E, Alexander GM, Sacan A, Fortina P and Ajit SK: Functional significance of macrophage-derived exosomes in inflammation and pain. Pain. 155:1527–1539. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Ma YS, Wu TM, Ling CC, Yu F, Zhang J, Cao PS, Gu LP, Wang HM, Xu H, Li L, et al: M2 macrophage-derived exosomal microRNA-155-5p promotes the immune escape of colon cancer by downregulating ZC3H12B. Mol Ther Oncolytics. 20:484–498. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Lan J, Sun L, Xu F, Liu L, Hu F, Song D, Hou Z, Wu W, Luo X, Wang J, et al: M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res. 79:146–158. 2019. View Article : Google Scholar

67 

Yoshikawa T, Fukuda A, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Ogawa S, et al: Brg1 is required to maintain colorectal cancer stem cells. J Pathol. 255:257–269. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, Zhang K, Teng B, Cao J, Wu W, et al: M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2. Mol Ther. 29:1226–1238. 2021. View Article : Google Scholar :

69 

Xie D, Pei Q, Li J, Wan X and Ye T: Emerging role of E2F family in cancer stem cells. Front Oncol. 11:7231372021. View Article : Google Scholar : PubMed/NCBI

70 

Zhang K, Li YJ, Peng LJ, Gao HF, Liu LM and Chen H: M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62. Biol Direct. 18:12023. View Article : Google Scholar : PubMed/NCBI

71 

Li X, Xu H, Yi J, Dong C, Zhang H, Wang Z, Miao L and Zhou W: miR-365 secreted from M2 Macrophage-derived extracellular vesicles promotes pancreatic ductal adenocarcinoma progression through the BTG2/FAK/AKT axis. J Cell Mol Med. 25:4671–4683. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Thakur R, Trivedi R, Rastogi N, Singh M and Mishra DP: Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci Rep. 5:101942015. View Article : Google Scholar : PubMed/NCBI

73 

Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, Zou Y and Chen S: Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res. 38:3102019. View Article : Google Scholar

74 

Katoh M and Katoh M: WNT signaling and cancer stemness. Essays Biochem. 66:319–331. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu Z, Han S, Liu Y, Ying G, Shu X and Di M: TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res. 39:2322020. View Article : Google Scholar

76 

Chang J, Li H, Zhu Z, Mei P, Hu W, Xiong X and Tao J: microRNA-21-5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol Toxicol. 38:577–590. 2022. View Article : Google Scholar :

77 

Guan B, Dai X, Zhu Y and Geng Q: M2 macrophage-derived exosomal miR-1911-5p promotes cell migration and invasion in lung adenocarcinoma by down-regulating CELF2-activated ZBTB4 expression. Anticancer Drugs. 34:238–247. 2023. View Article : Google Scholar : PubMed/NCBI

78 

Song S, Zhao Y, Wang X, Tong X, Chen X and Xiong Q: M2 macrophages-derived exosomal miR-3917 promotes the progression of lung cancer via targeting GRK6. Biol Chem. 404:41–57. 2022. View Article : Google Scholar : PubMed/NCBI

79 

Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, Zhou Y and Ma L: GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 7:e24782016. View Article : Google Scholar : PubMed/NCBI

80 

Lei J, Chen P, Zhang F, Zhang N, Zhu J, Wang X and Jiang T: M2 macrophages-derived exosomal microRNA-501-3p promotes the progression of lung cancer via targeting WD repeat domain 82. Cancer Cell Int. 21:912021. View Article : Google Scholar : PubMed/NCBI

81 

Wei K, Ma Z, Yang F, Zhao X, Jiang W, Pan C, Li Z, Pan X, He Z, Xu J, et al: M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942. Cancer Lett. 526:205–216. 2022. View Article : Google Scholar

82 

Yu JM, Sun W, Wang ZH, Liang X, Hua F, Li K, Lv XX, Zhang XW, Liu YY, Yu JJ, et al: TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat Commun. 10:57202019. View Article : Google Scholar : PubMed/NCBI

83 

Firat E and Niedermann G: FoxO proteins or loss of functional p53 maintain stemness of glioblastoma stem cells and survival after ionizing radiation plus PI3K/mTOR inhibition. Oncotarget. 7:54883–54896. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Yang X, Cai S, Shu Y, Deng X, Zhang Y, He N, Wan L, Chen X, Qu Y and Yu S: Exosomal miR-487a derived from m2 macrophage promotes the progression of gastric cancer. Cell Cycle. 20:434–444. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Cui HY, Rong JS, Chen J, Guo J, Zhu JQ, Ruan M, Zuo RR, Zhang SS, Qi JM and Zhang BH: Exosomal microRNA-588 from M2 polarized macrophages contributes to cisplatin resistance of gastric cancer cells. World J Gastroenterol. 27:6079–6092. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Xu DD, Zhou PJ, Wang Y, Zhang L, Fu WY, Ruan BB, Xu HP, Hu CZ, Tian L, Qin JH, et al: Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway. Mol Cancer. 15:402016. View Article : Google Scholar : PubMed/NCBI

87 

Zhao G, Ding L, Yu H, Wang W, Wang H, Hu Y, Qin L, Deng G, Xie B, Li G and Qi L: M2-like tumor-associated macrophages transmit exosomal miR-27b-3p and maintain glioblastoma stem-like cell properties. Cell Death Discov. 8:3502022. View Article : Google Scholar : PubMed/NCBI

88 

Tian B, Zhou L, Wang J and Yang P: miR-660-5p-loaded M2 macrophages-derived exosomes augment hepatocellular carcinoma development through regulating KLF3. Int Immunopharmacol. 101:1081572021. View Article : Google Scholar : PubMed/NCBI

89 

Li X and Tang M: Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med. 9:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Liu W, Long Q, Zhang W, Zeng D, Hu B, Liu S and Chen L: miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY). 13:19760–19775. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Yuan Y, Wang Z, Chen M, Jing Y, Shu W, Xie Z, Li Z, Xu J, He F, Jiao P, et al: Macrophage-derived exosomal miR-31-5p promotes oral squamous cell carcinoma tumourigenesis through the large tumor suppressor 2-mediated hippo signalling pathway. J Biomed Nanotechnol. 17:822–837. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Li Z, Wang Y, Zhu Y, Yuan C, Wang D, Zhang W, Qi B, Qiu J, Song X, Ye J, et al: The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol Oncol. 9:1091–1105. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Yao J, Wang Z, Cheng Y, Ma C, Zhong Y, Xiao Y, Gao X and Li Z: M2 macrophage-derived exosomal microRNAs inhibit cell migration and invasion in gliomas through PI3K/AKT/mTOR signaling pathway. J Transl Med. 19:992021. View Article : Google Scholar : PubMed/NCBI

94 

Gao XF, He HQ, Zhu XB, Xie SL and Cao Y: LncRNA SNHG20 promotes tumorigenesis and cancer stemness in glioblastoma via activating PI3K/Akt/mTOR signaling pathway. Neoplasma. 66:532–542. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Gao Y, Lin L, Li T, Yang J and Wei Y: The role of miRNA-223 in cancer: Function, diagnosis and therapy. Gene. 616:1–7. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Haneklaus M, Gerlic M, O'Neill LA and Masters SL: miR-223: Infection, inflammation and cancer. J Intern Med. 274:215–226. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res. 38:812019. View Article : Google Scholar : PubMed/NCBI

98 

Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang JD and Song E: Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 10:1172011. View Article : Google Scholar : PubMed/NCBI

99 

Aucher A, Rudnicka D and Davis DM: MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol. 191:6250–6260. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, et al: Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 21:498–510. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Zhang Q, Han Z, Zhu Y, Chen J and Li W: Role of hypoxia inducible factor-1 in cancer stem cells (Review). Mol Med Rep. 23:172021.

104 

Yin Z, Zhou Y, Ma T, Chen S, Shi N, Zou Y, Hou B and Zhang C: Down-regulated lncRNA SBF2-AS1 in M2 macrophage-derived exosomes elevates miR-122-5p to restrict XIAP, thereby limiting pancreatic cancer development. J Cell Mol Med. 24:5028–5038. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Gao Z, Wang Q, Ji M, Guo X, Li L and Su X: Exosomal lncRNA UCA1 modulates cervical cancer stem cell self-renewal and differentiation through microRNA-122-5p/SOX2 axis. J Transl Med. 19:2292021. View Article : Google Scholar : PubMed/NCBI

106 

Xu M, Zhou C, Weng J, Chen Z, Zhou Q, Gao J, Shi G, Ke A, Ren N, Sun H and Shen Y: Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. J Exp Clin Cancer Res. 41:2532022. View Article : Google Scholar : PubMed/NCBI

107 

Gelardi ELM, Colombo G, Picarazzi F, Ferraris DM, Mangione A, Petrarolo G, Aronica E, Rizzi M, Mori M, La Motta C and Garavaglia S: A selective competitive inhibitor of aldehyde dehydrogenase 1A3 hinders cancer cell growth, invasiveness and stemness in vitro. Cancers (Basel). 13:3562021. View Article : Google Scholar : PubMed/NCBI

108 

Guo Y, Sun W, Gao W, Li L, Liang Y, Mei Z, Liu B and Wang R: Long noncoding RNA H19 derived from M2 tumor-associated macrophages promotes bladder cell autophagy via stabilizing ULK1. J Oncol. 2022:34654592022. View Article : Google Scholar : PubMed/NCBI

109 

Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Shima H, Kida K, Adachi S, Yamada A, Sugae S, Narui K, Miyagi Y, Nishi M, Ryo A, Murata S, et al: Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness. Breast Cancer Res Treat. 170:507–516. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Wang F, Rong L, Zhang Z, Li M, Ma L, Ma Y, Xie X, Tian X and Yang Y: LncRNA H19-derived miR-675-3p promotes epithelial-mesenchymal transition and stemness in human pancreatic cancer cells by targeting the STAT3 pathway. J Cancer. 11:4771–4782. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Zhang F, Sang Y, Chen D, Wu X, Wang X, Yang W and Chen Y: M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2. Cell Death Dis. 12:4672021. View Article : Google Scholar : PubMed/NCBI

113 

Mi X, Xu R, Hong S, Xu T, Zhang W and Liu M: M2 macrophage-derived exosomal lncRNA AFAP1-AS1 and MicroRNA-26a affect cell migration and metastasis in esophageal cancer. Mol Ther Nucleic Acids. 22:779–790. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Huang W, Zhong Z, Luo C, Xiao Y, Li L, Zhang X, Yang L, Xiao K, Ning Y, Chen L, et al: The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics. 9:5497–5516. 2019. View Article : Google Scholar :

115 

Xin L, Zhou LQ, Liu C, Zeng F, Yuan YW, Zhou Q, Li SH, Wu Y, Wang JL, Wu DZ and Lu H: Transfer of LncRNA CRNDE in TAM-derived exosomes is linked with cisplatin resistance in gastric cancer. EMBO Rep. 22:e521242021. View Article : Google Scholar : PubMed/NCBI

116 

Zheng J, Li XD, Wang P, Liu XB, Xue YX, Hu Y, Li Z, Li ZQ, Wang ZH and Liu YH: CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget. 6:25339–25355. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Feng Z, Meng S, Zhou H, Xu Z, Tang Y, Li P, Liu C, Huang Y and Wu M: Functions and potential applications of circular RNAs in cancer stem cells. Front Oncol. 9:5002019. View Article : Google Scholar : PubMed/NCBI

118 

Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI

119 

Zhou P, Chen X, Shi K, Qu H and Xia J: The characteristics, tumorigenicities and therapeutics of cancer stem cells based on circRNAs. Pathol Res Pract. 233:1538222022. View Article : Google Scholar : PubMed/NCBI

120 

Zhuang Z, Jia L, Li W and Zheng Y: The emerging roles of circular RNAs in regulating the fate of stem cells. Mol Cell Biochem. 476:231–246. 2021. View Article : Google Scholar

121 

Yu D, Chang Z, Liu X, Chen P, Zhang H and Qin Y: Macrophage-derived exosomes regulate gastric cancer cell oxaliplatin resistance by wrapping circ 0008253. Cell Cycle. 22:705–717. 2023. View Article : Google Scholar

122 

Chen S, Chen Z, Li Z, Li S, Wen Z, Cao L, Chen Y, Xue P, Li H and Zhang D: Tumor-associated macrophages promote cholangiocarcinoma progression via exosomal Circ_0020256. Cell Death Dis. 13:942022. View Article : Google Scholar : PubMed/NCBI

123 

Gu X, Shi Y, Dong M, Jiang L, Yang J and Liu Z: Exosomal transfer of tumor-associated macrophage-derived hsa_ circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis. 12:8182021. View Article : Google Scholar

124 

Ma J, Huang L, Gao YB, Li MX, Chen LL and Yang L: M2 macrophage facilitated angiogenesis in cutaneous squamous cell carcinoma via circ_TNFRSF21/miR-3619-5p/ROCK axis. Kaohsiung J Med Sci. 38:761–771. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Panis C, Pizzatti L, Souza GF and Abdelhay E: Clinical proteomics in cancer: Where we are. Cancer Let. 382:231–239. 2016. View Article : Google Scholar

126 

Zhu Y, Chen X, Pan Q, Wang Y, Su S, Jiang C, Li Y, Xu N, Wu L, Lou X and Liu S: A comprehensive proteomics analysis reveals a secretory path- and status-dependent signature of exosomes released from tumor-associated macrophages. J Proteome Res. 14:4319–4331. 2015. View Article : Google Scholar : PubMed/NCBI

127 

El-Arabey AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, Kabil N, Ozpolat B, Calin GA, Salama SA, et al: GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell Signal. 68:1095392020. View Article : Google Scholar : PubMed/NCBI

128 

Zheng P, Luo Q, Wang W, Li J, Wang T, Wang P, Chen L, Zhang P, Chen H, Liu Y, et al: Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional apolipoprotein E. Cell Death Dis. 9:4342018. View Article : Google Scholar : PubMed/NCBI

129 

Lee HD, Koo BH, Kim YH, Jeon OH and Kim DS: Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. FASEB J. 26:3084–3095. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Yu X, Zhang Q, Zhang X, Han Q, Li H, Mao Y, Wang X, Guo H, Irwin DM, Niu G and Tan H: Exosomes from macrophages exposed to apoptotic breast cancer cells promote breast cancer proliferation and metastasis. J Cancer. 10:2892–2906. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Wang M, Zhou L, Yu F, Zhang Y, Li P and Wang K: The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci. 76:2059–2076. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Sharma A and Johnson A: Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol. 235:1921–1932. 2020. View Article : Google Scholar

133 

Azambuja JH, Ludwig N, Yerneni SS, Braganhol E and Whiteside TL: Arginase-1+ exosomes from reprogrammed macrophages promote glioblastoma progression. Int J Mol Sci. 21:39902020. View Article : Google Scholar : PubMed/NCBI

134 

Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q and Zou Z: Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol. 236:3445–3465. 2021. View Article : Google Scholar

135 

Pienta KJ, Machiels JP, Schrijvers D, Alekseev B, Shkolnik M, Crabb SJ, Li S, Seetharam S, Puchalski TA, Takimoto C, et al: Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs. 31:760–768. 2013. View Article : Google Scholar

136 

Moisan F, Francisco EB, Brozovic A, Duran GE, Wang YC, Chaturvedi S, Seetharam S, Snyder LA, Doshi P and Sikic BI: Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers. Mol Oncol. 8:1231–1239. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Xu F, Wei Y, Tang Z, Liu B and Dong J: Tumor-associated macrophages in lung cancer: Friend or foe? (Review). Mol Med Rep. 22:4107–4115. 2020.PubMed/NCBI

138 

DiPersio JF, Uy GL, Yasothan U and Kirkpatrick P: Plerixafor. Nat Rev Drug Discov. 8:105–106. 2009. View Article : Google Scholar : PubMed/NCBI

139 

Wang J, Tannous BA, Poznansky MC and Chen H: CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacol Res. 159:1050102020. View Article : Google Scholar : PubMed/NCBI

140 

Hume DA and MacDonald KP: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 119:1810–1820. 2012. View Article : Google Scholar

141 

Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI

142 

Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, et al: CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's lymphoma. N Engl J Med. 379:1711–1721. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Petrova PS, Viller NN, Wong M, Pang X, Lin GH, Dodge K, Chai V, Chen H, Lee V, House V, et al: TTI-621 (SIRPαFc): A CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res. 23:1068–1079. 2017. View Article : Google Scholar

144 

Bouwstra R, van Meerten T and Bremer E: CD47-SIRPα blocking-based immunotherapy: Current and prospective therapeutic strategies. Clin Transl Med. 12:e9432022. View Article : Google Scholar

145 

Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS, et al: Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 9:eaak95372017. View Article : Google Scholar : PubMed/NCBI

146 

Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E and Kabanov AV: Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 142:1–12. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Li J, Li N and Wang J: M1 macrophage-derived exosome-encapsulated cisplatin can enhance its anti-lung cancer effect. Minerva Med. Apr 8–2020.Epub ahead of print. View Article : Google Scholar

148 

Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, et al: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 12:655–664. 2016. View Article : Google Scholar

149 

Bellmunt À M, López-Puerto L, Lorente J and Closa D: Involvement of extracellular vesicles in the macrophage-tumor cell communication in head and neck squamous cell carcinoma. PLoS One. 14:e02247102019. View Article : Google Scholar : PubMed/NCBI

150 

Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B and Simons M: Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 319:1244–1247. 2008. View Article : Google Scholar : PubMed/NCBI

151 

Wu ATH, Srivastava P, Yadav VK, Tzeng DTW, Iamsaard S, Su EC, Hsiao M and Liu MC: Ovatodiolide, isolated from Anisomeles indica, suppresses bladder carcinogenesis through suppression of mTOR/β-catenin/CDK6 and exosomal miR-21 derived from M2 tumor-associated macrophages. Toxicol Appl Pharmacol. 401:1151092020. View Article : Google Scholar

152 

Guo J, Wang X, Guo Q, Zhu S, Li P, Zhang S and Min L: M2 macrophage derived extracellular vesicle-mediated transfer of MiR-186-5p promotes colon cancer progression by targeting DLC1. Int J Biol Sci. 18:1663–1676. 2022. View Article : Google Scholar : PubMed/NCBI

153 

Wang P, Li GY, Zhou L, Jiang HL, Yang Y and Wu HT: Exosomes from M2 macrophages promoted glycolysis in FaDu cells by inhibiting PDLIM2 expression to stabilize PFKL. Neoplasma. 69:1041–1053. 2022. View Article : Google Scholar : PubMed/NCBI

154 

Song L, Luan B, Xu Q, Shi R and Wang X: microRNA-155-3p delivered by M2 macrophages-derived exosomes enhances the progression of medulloblastoma through regulation of WDR82. J Transl Med. 20:132022. View Article : Google Scholar : PubMed/NCBI

155 

Zhang Z, Hu J, Ishihara M, Sharrow AC, Flora K, He Y and Wu L: The miRNA-21-5p payload in exosomes from M2 macrophages drives tumor cell aggression via PTEN/Akt signaling in renal cell carcinoma. Int J Mol Sci. 23:30052022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang W, Zhou R, Liu X, You L, Chen C, Ye X, Liu J and Liang Y: Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review). Int J Oncol 63: 126, 2023.
APA
Zhang, W., Zhou, R., Liu, X., You, L., Chen, C., Ye, X. ... Liang, Y. (2023). Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review). International Journal of Oncology, 63, 126. https://doi.org/10.3892/ijo.2023.5574
MLA
Zhang, W., Zhou, R., Liu, X., You, L., Chen, C., Ye, X., Liu, J., Liang, Y."Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review)". International Journal of Oncology 63.5 (2023): 126.
Chicago
Zhang, W., Zhou, R., Liu, X., You, L., Chen, C., Ye, X., Liu, J., Liang, Y."Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review)". International Journal of Oncology 63, no. 5 (2023): 126. https://doi.org/10.3892/ijo.2023.5574
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang W, Zhou R, Liu X, You L, Chen C, Ye X, Liu J and Liang Y: Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review). Int J Oncol 63: 126, 2023.
APA
Zhang, W., Zhou, R., Liu, X., You, L., Chen, C., Ye, X. ... Liang, Y. (2023). Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review). International Journal of Oncology, 63, 126. https://doi.org/10.3892/ijo.2023.5574
MLA
Zhang, W., Zhou, R., Liu, X., You, L., Chen, C., Ye, X., Liu, J., Liang, Y."Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review)". International Journal of Oncology 63.5 (2023): 126.
Chicago
Zhang, W., Zhou, R., Liu, X., You, L., Chen, C., Ye, X., Liu, J., Liang, Y."Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review)". International Journal of Oncology 63, no. 5 (2023): 126. https://doi.org/10.3892/ijo.2023.5574
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team