Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2024 Volume 64 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 64 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review)

  • Authors:
    • Giulia Tedesco
    • Manuela Santarosa
    • Roberta Maestro
  • View Affiliations / Copyright

    Affiliations: Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I‑33081 Aviano, Italy
    Copyright: © Tedesco et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 57
    |
    Published online on: April 10, 2024
       https://doi.org/10.3892/ijo.2024.5645
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Autophagy is a conserved catabolic process that controls organelle quality, removes misfolded or abnormally aggregated proteins and is part of the defense mechanisms against intracellular pathogens. Autophagy contributes to the suppression of tumor initiation by promoting genome stability, cellular integrity, redox balance and proteostasis. On the other hand, once a tumor is established, autophagy can support cancer cell survival and promote epithelial‑to‑mesenchymal transition. A growing number of molecules involved in autophagy have been identified. In addition to their key canonical activity, several of these molecules, such as ATG5, ATG12 and Beclin‑1, also exert autophagy‑independent functions in a variety of biological processes. The present review aimed to summarize autophagy‑independent functions of molecules of the autophagy machinery and how the activity of these molecules can influence signaling pathways that are deregulated in cancer progression.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Suzuki K, Kubota Y, Sekito T and Ohsumi Y: Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells. 12:209–218. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Reggiori F and Klionsky DJ: Autophagic processes in yeast: Mechanism, machinery and regulation. Genetics. 194:341–361. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G and Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 282:24131–24145. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Elmore SP, Qian T, Grissom SF and Lemasters JJ: The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 15:2286–2287. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Mizushima N and Levine B: Autophagy in human diseases. N Engl J Med. 383:1564–1576. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Bustos SO, Antunes F, Rangel MC and Chammas R: Emerging autophagy functions shape the tumor microenvironment and play a role in cancer progression-implications for cancer therapy. Front Oncol. 10:6064362020. View Article : Google Scholar

7 

Xie X, Koh JY, Price S, White E and Mehnert JM: Atg7 overcomes senescence and promotes growth of BrafV600E-Driven Melanoma. Cancer Discov. 5:410–423. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Yang A, Herter-Sprie G, Zhang H, Lin EY, Biancur D, Wang X, Deng J, Hai J, Yang S, Wong KK and Kimmelman AC: Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov. 8:276–287. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Shchors K, Massaras A and Hanahan D: Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell. 28:456–471. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Santanam U, Banach-Petrosky W, Abate-Shen C, Shen MM, White E and DiPaola RS: Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev. 30:399–407. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD and White E: Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4:914–927. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Huo Y, Cai H, Teplova I, Bowman-Colin C, Chen G, Price S, Barnard N, Ganesan S, Karantza V, White E and Xia B: Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer. Cancer Discov. 3:894–907. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S and White E: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21:1621–1635. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Moussay E, Kaoma T, Baginska J, Muller A, Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G and Janji B: The acquisition of resistance to TNFα in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy. 7:760–770. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Bildik G, Liang X, Sutton MN, Bast RC Jr and Lu Z: DIRAS3: An Imprinted tumor suppressor gene that regulates RAS and PI3K-driven cancer growth, motility, autophagy and tumor dormancy. Mol Cancer Ther. 21:25–37. 2021. View Article : Google Scholar

17 

Dower CM, Wills CA, Frisch SM and Wang HG: Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy. 14:1110–1128. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Mizushima N, Yoshimori T and Ohsumi Y: The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 27:107–132. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T and Mizushima N: The role of autophagy during the early neonatal starvation period. Nature. 432:1032–1036. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Levine B and Kroemer G: Biological functions of autophagy genes: A disease perspective. Cell. 176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, et al: The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30:187–200. 2021. View Article : Google Scholar

22 

Leidal AM and Debnath J: Emerging roles for the autophagy machinery in extracellular vesicle biogenesis and secretion. FASEB Bioadv. 3:377–386. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Okamoto T, Yeo SK, Hao M, Copley MR, Haas MA, Chen S and Guan JL: FIP200 suppresses immune checkpoint therapy responses in breast cancers by limiting AZI2/TBK1/IRF signaling independent of its canonical autophagy function. Cancer Res. 80:3580–3592. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Guo H, Sadoul R and Gibbings D: Autophagy-independent effects of autophagy-related-5 (Atg5) on exosome production and metastasis. Mol Cell Oncol. 5:e14459412018. View Article : Google Scholar : PubMed/NCBI

25 

Hu F, Li G, Huang C, Hou Z, Yang X, Luo X, Feng Y, Wang G, Hu J and Cao Z: The autophagy-independent role of BECN1 in colorectal cancer metastasis through regulating STAT3 signaling pathway activation. Cell Death Dis. 11:3042020. View Article : Google Scholar : PubMed/NCBI

26 

Yamamoto H, Zhang S and Mizushima N: Autophagy genes in biology and disease. Nat Rev Genet. 24:382–400. 2023. View Article : Google Scholar : PubMed/NCBI

27 

Agarwal S, Bell CM, Rothbart SB and Moran RG: AMP-activated Protein Kinase (AMPK) Control of mTORC1 Is p53-and TSC2-independent in pemetrexed-treated carcinoma cells. J Biol Chem. 290:27473–27486. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Mercer TJ, Gubas A and Tooze SA: A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem. 293:5386–5395. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Zachari M and Ganley IG: The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61:585–596. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH and Jung JU: Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol. 8:688–699. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, et al: Ambra1 regulates autophagy and development of the nervous system. Nature. 447:1121–1125. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Sawa-Makarska J, Baumann V, Coudevylle N, von Bülow S, Nogellova V, Abert C, Schuschnig M, Graef M, Hummer G and Martens S: Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science. 369:eaaz77142020. View Article : Google Scholar : PubMed/NCBI

34 

Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, et al: Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol. 27:1185–1193. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI and Tooze SA: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 55:238–252. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Wible DJ, Chao HP, Tang DG and Bratton SB: ATG5 cancer mutations and alternative mRNA splicing reveal a conjugation switch that regulates ATG12-ATG5-ATG16L1 complex assembly and autophagy. Cell Discov. 5:422019. View Article : Google Scholar : PubMed/NCBI

37 

Baines K, Yoshioka K, Takuwa Y and Lane JD: The ATG5 interactome links clathrin-mediated vesicular trafficking with the autophagosome assembly machinery. Autophagy Rep. 1:88–118. 2022. View Article : Google Scholar : PubMed/NCBI

38 

Haller M, Hock AK, Giampazolias E, Oberst A, Green DR, Debnath J, Ryan KM, Vousden KH and Tait SW: Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity. Autophagy. 10:2269–2278. 2014. View Article : Google Scholar

39 

Tanida I, Ueno T and Kominami E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 36:2503–2518. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Melia TJ, Lystad AH and Simonsen A: Autophagosome biogenesis: From membrane growth to closure. J Cell Biol. 219:e2020020852020. View Article : Google Scholar : PubMed/NCBI

41 

Gatica D, Lahiri V and Klionsky DJ: Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 20:233–242. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C and Liu HF: p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett. 21:292016. View Article : Google Scholar

43 

Yim WW and Mizushima N: Lysosome biology in autophagy. Cell Discov. 6:62020. View Article : Google Scholar : PubMed/NCBI

44 

Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Hanahan D: Hallmarks of cancer: New Dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI

46 

Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S and White E: Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21:1367–1381. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Marteijn JA, Lans H, Vermeulen W and Hoeijmakers JH: Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 15:465–481. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Yang Y, He S, Wang Q, Li F, Kwak MJ, Chen S, O'Connell D, Zhang T, Pirooz SD, Jeon YH, et al: Autophagic UVRAG Promotes UV-Induced Photolesion Repair by Activation of the CRL4(DDB2) E3 Ligase. Mol Cell. 62:507–519. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Zhao Z, Oh S, Li D, Ni D, Pirooz SD, Lee JH, Yang S, Lee JY, Ghozalli I, Costanzo V, et al: A dual role for UVRAG in maintaining chromosomal stability independent of autophagy. Dev Cell. 22:1001–1016. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Park JM, Tougeron D, Huang S, Okamoto K and Sinicrope FA: Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One. 9:e1008192014. View Article : Google Scholar : PubMed/NCBI

51 

Knævelsrud H, Ahlquist T, Merok MA, Nesbakken A, Stenmark H, Lothe RA and Simonsen A: UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy. Autophagy. 6:863–870. 2010. View Article : Google Scholar : PubMed/NCBI

52 

He S, Zhao Z, Yang Y, O'Connell D, Zhang X, Oh S, Ma B, Lee JH, Zhang T, Varghese B, et al: Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 6:78392015. View Article : Google Scholar : PubMed/NCBI

53 

Sun SY, Hu XT, Yu XF, Zhang YY, Liu XH, Liu YH, Wu SH, Li YY, Cui SX and Qu XJ: Nuclear translocation of ATG5 induces DNA mismatch repair deficiency (MMR-D)/microsatellite instability (MSI) via interacting with Mis18α in colorectal cancer. Br J Pharmacol. 178:2351–2369. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R and Simon HU: ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun. 4:21302013. View Article : Google Scholar : PubMed/NCBI

55 

Maiani E, Milletti G, Nazio F, Holdgaard SG, Bartkova J, Rizza S, Cianfanelli V, Lorente M, Simoneschi D, Di Marco M, et al: AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature. 592:799–803. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Liu PF, Leung CM, Chang YH, Cheng JS, Chen JJ, Weng CJ, Tsai KW, Hsu CJ, Liu YC, Hsu PC, et al: ATG4B promotes colorectal cancer growth independent of autophagic flux. Autophagy. 10:1454–1465. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L and Finkel T: Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science. 336:225–228. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Frémont S, Gérard A, Galloux M, Janvier K, Karess RE and Berlioz-Torrent C: Beclin-1 is required for chromosome congression and proper outer kinetochore assembly. EMBO Rep. 14:364–372. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Thoresen SB, Pedersen NM, Liestøl K and Stenmark H: A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res. 316:3368–3378. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Sagona AP, Nezis IP, Pedersen NM, Liestøl K, Poulton J, Rusten TE, Skotheim RI, Raiborg C and Stenmark H: PtdIns(3) P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol. 12:362–371. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H and Chen Q: Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell. 1:468–477. 2010. View Article : Google Scholar

62 

Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, et al: Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem. 287:12455–12468. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Han J, Hou W, Goldstein LA, Stolz DB, Watkins SC and Rabinowich H: A Complex between Atg7 and Caspase-9: A novel mechanism of cross-regulation between autophagy and apoptosis. J Biol Chem. 289:6485–6497. 2014. View Article : Google Scholar :

64 

Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, et al: Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 1:e182010. View Article : Google Scholar : PubMed/NCBI

65 

Li X, Su J, Xia M, Li H, Xu Y, Ma C, Ma L, Kang J, Yu H, Zhang Z and Sun L: Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells. Apoptosis. 21:225–238. 2016. View Article : Google Scholar

66 

Strappazzon F, Di Rita A, Cianfanelli V, D'Orazio M, Nazio F, Fimia GM and Cecconi F: Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 12:963–975. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Betin VM and Lane JD: Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci. 122(Pt 14): 2554–2566. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T and Simon HU: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 8:1124–1132. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Rubinstein AD, Eisenstein M, Ber Y, Bialik S and Kimchi A: The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 44:698–709. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Yoo BH, Khan IA, Koomson A, Gowda P, Sasazuki T, Shirasawa S, Gujar S and Rosen KV: Oncogenic RAS-induced downregulation of ATG12 is required for survival of malignant intestinal epithelial cells. Autophagy. 14:134–151. 2018. View Article : Google Scholar :

71 

Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C and Debnath J: ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell. 142:590–600. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Liu H, He Z, Germič N, Ademi H, Frangež Ž, Felser A, Peng S, Riether C, Djonov V, Nuoffer JM, et al: ATG12 deficiency leads to tumor cell oncosis owing to diminished mitochondrial biogenesis and reduced cellular bioenergetics. Cell Death Differ. 27:1965–1980. 2020. View Article : Google Scholar :

73 

Ni Z, He J, Wu Y, Hu C, Dai X, Yan X, Li B, Li X, Xiong H, Li Y, et al: AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy. 14:685–701. 2018. View Article : Google Scholar :

74 

Wu W, Wang X, Berleth N, Deitersen J, Wallot-Hieke N, Böhler P, Schlütermann D, Stuhldreier F, Cox J, Schmitz K, et al: The autophagy-initiating kinase ULK1 Controls RIPK1-mediated cell death. Cell Rep. 31:1075472020. View Article : Google Scholar : PubMed/NCBI

75 

Joshi A, Iyengar R, Joo JH, Li-Harms XJ, Wright C, Marino R, Winborn BJ, Phillips A, Temirov J, Sciarretta S, et al: Nuclear ULK1 promotes cell death in response to oxidative stress through PARP1. Cell Death Differ. 23:216–230. 2016. View Article : Google Scholar :

76 

Satyavarapu EM, Das R and Mandal C, Mukhopadhyay A and Mandal C: Autophagy-independent induction of LC3B through oxidative stress reveals its non-canonical role in anoikis of ovarian cancer cells. Cell Death Dis. 9:9342018. View Article : Google Scholar

77 

Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE, et al: EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 45:681–695.e4. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM and Kim DR: Control of the epithelial-to-mesenchymal transition and cancer metastasis by autophagy-dependent SNAI1 degradation. Cells. 8:1292019. View Article : Google Scholar : PubMed/NCBI

80 

Han JH, Kim YK, Kim H, Lee J, Oh MJ, Kim SB, Kim M, Kim KH, Yoon HJ, Lee MS, et al: Snail acetylation by autophagy-derived acetyl-coenzyme A promotes invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells. Cancer Commun (Lond). 42:716–749. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Sharifi MN, Mowers EE, Drake LE, Collier C, Chen H, Zamora M, Mui S and Macleod KF: Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep. 15:1660–1672. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Santarosa M and Maestro R: The autophagic route of E-Cadherin and cell adhesion molecules in cancer progression. Cancers (Basel). 13:63282021. View Article : Google Scholar : PubMed/NCBI

83 

Martinez-Lopez N, Athonvarangkul D, Mishall P, Sahu S and Singh R: Autophagy proteins regulate ERK phosphorylation. Nat Commun. 4:27992013. View Article : Google Scholar : PubMed/NCBI

84 

Rohatgi RA, Janusis J, Leonard D, Bellvé KD, Fogarty KE, Baehrecke EH, Corvera S and Shaw LM: Beclin 1 regulates growth factor receptor signaling in breast cancer. Oncogene. 34:5352–5362. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, Doench JG, Bennett L and Levine B: Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci USA. 118:e20204781182021. View Article : Google Scholar : PubMed/NCBI

86 

Wong M, Ganapathy AS, Suchanec E, Laidler L, Ma T and Nighot P: Intestinal epithelial tight junction barrier regulation by autophagy-related protein ATG6/beclin 1. Am J Physiol, Cell Physiol. 316:C753–C765. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Damiano V, Spessotto P, Vanin G, Perin T, Maestro R and Santarosa M: The autophagy machinery contributes to E-cadherin turnover in breast cancer. Front Cell Dev Biol. 8:5452020. View Article : Google Scholar : PubMed/NCBI

88 

Baisamy L, Cavin S, Jurisch N and Diviani D: The ubiquitin-like protein LC3 regulates the Rho-GEF activity of AKAP-Lbc. J Biol Chem. 284:28232–28242. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Zhong Y, Long T, Gu CS, Tang JY, Gao LF, Zhu JX, Hu ZY, Wang X, Ma YD, Ding YQ, et al: MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ. 28:3251–3269. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Galluzzi L and Green DR: Autophagy-Independent functions of the autophagy machinery. Cell. 177:1682–1699. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Ishibashi K, Uemura T, Waguri S and Fukuda M: Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol Biol Cell. 23:3193–3202. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT, Meng L, Latreille E, Tanese de Souza C, McCulloch D, et al: Atg5 Disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell. 43:716–730.e7. 2017. View Article : Google Scholar

93 

Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C and Deretic V: Secretory autophagy. Curr Opin Cell Biol. 35:106–116. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Li X, Wei Z, Yu H, Xu Y, He W, Zhou X and Gou X: Secretory autophagy-induced bladder tumour-derived extracellular vesicle secretion promotes angiogenesis by activating the TPX2-mediated phosphorylation of the AURKA-PI3K-AKT axis. Cancer Lett. 523:10–28. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Tzeng HT, Yang JL, Tseng YJ, Lee CH, Chen WJ and Chyuan IT: Plasminogen activator inhibitor-1 secretion by autophagy contributes to melanoma resistance to chemotherapy through tumor microenvironment modulation. Cancers (Basel). 13:12532021. View Article : Google Scholar : PubMed/NCBI

96 

New J, Arnold L, Ananth M, Alvi S, Thornton M, Werner L, Tawfik O, Dai H, Shnayder Y, Kakarala K, et al: Secretory autophagy in cancer-associated fibroblasts promotes head and neck cancer progression and offers a novel therapeutic target. Cancer Res. 77:6679–6691. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Cunha LD, Yang M, Carter R, Guy C, Harris L, Crawford JC, Quarato G, Boada-Romero E, Kalkavan H, Johnson MDL, et al: LC3-Associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell. 175:429–441.e16. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Liu X, Zhang W, Xu Y, Xu X, Jiang Q, Ruan J, Wu Y, Zhou Y, Saw PE and Luo B: Targeting PI3Kγ/AKT Pathway Remodels LC3-Associated phagocytosis induced immunosuppression after radiofrequency ablation. Adv Sci (Weinh). 9:e21021822022. View Article : Google Scholar

99 

Grimm WA, Messer JS, Murphy SF, Nero T, Lodolce JP, Weber CR, Logsdon MF, Bartulis S, Sylvester BE, Springer A, et al: The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon. Gut. 65:456–464. 2016. View Article : Google Scholar

100 

Peng Y and Croce CM: The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:150042016. View Article : Google Scholar : PubMed/NCBI

101 

Chipman LB and Pasquinelli AE: miRNA Targeting: Growing beyond the Seed. Trends Genet. 35:215–222. 2019. View Article : Google Scholar : PubMed/NCBI

102 

de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villarán E and Muntané J: The role of non-coding RNAs in autophagy during carcinogenesis. Front Cell Dev Biol. 10:7993922022. View Article : Google Scholar : PubMed/NCBI

103 

Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, et al: The emerging roles of autophagy-related MicroRNAs in cancer. Int J Biol Sci. 17:134–150. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu CG and Yang JM: Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 5:816–823. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Wang ZC, Huang FZ, Xu HB, Sun JC and Wang CF: MicroRNA-137 inhibits autophagy and chemosensitizes pancreatic cancer cells by targeting ATG5. Int J Biochem Cell Biol. 111:63–71. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Chen Y, Zhou J, Wu X, Huang J, Chen W, Liu D, Zhang J, Huang Y and Xue W: miR-30a-3p inhibits renal cancer cell invasion and metastasis through targeting ATG12. Transl Androl Urol. 9:646–653. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Hu JL, He GY, Lan XL, Zeng ZC, Guan J, Ding Y, Qian XL, Liao WT, Ding YQ and Liang L: Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis. 7:162018. View Article : Google Scholar : PubMed/NCBI

108 

Pan X, Chen Y, Shen Y and Tantai J: Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7. Cell Death Dis. 10:4292019. View Article : Google Scholar : PubMed/NCBI

109 

Chang Y, Yan W, He X, Zhang L, Li C, Huang H, Nace G, Geller DA, Lin J and Tsung A: miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology. 143:177–187.e8. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Zhang X, Shi H, Lin S, Ba M and Cui S: MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol Rep. 34:1557–1564. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Li M, Chen XM, Wang DM, Gan L and Qiao Y: Effects of miR-26a on the expression of Beclin 1 in retinoblastoma cells. Genet Mol Res. 15:2016.

112 

Hou W, Song L, Zhao Y, Liu Q and Zhang S: Inhibition of beclin-1-mediated autophagy by MicroRNA-17-5p enhanced the radiosensitivity of glioma cells. Oncol Res. 25:43–53. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Zhang F, Wang B, Long H, Yu J, Li F, Hou H and Yang Q: Decreased miR-124-3p expression prompted breast cancer cell progression mainly by targeting Beclin-1. Clin Lab. 62:1139–1145. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Tan S, Shi H, Ba M, Lin S, Tang H, Zeng X and Zhang X: miR-409-3p sensitizes colon cancer cells to oxaliplatin by inhibiting Beclin-1-mediated autophagy. Int J Mol Med. 37:1030–1038. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Wang Y, Li J, Shao C, Tang X, Du Y, Xu T, Zhao Z, Hu H, Sheng Y, Hu C and Xi Y: Systematic profiling of diagnostic and prognostic value of autophagy-related genes for sarcoma patients. BMC Cancer. 21:582021. View Article : Google Scholar : PubMed/NCBI

116 

Yang Q, Sun K, Xia W, Li Y, Zhong M and Lei K: Autophagy-related prognostic signature for survival prediction of triple negative breast cancer. PeerJ. 10:e128782022. View Article : Google Scholar : PubMed/NCBI

117 

Sivridis E, Koukourakis MI, Zois CE, Ledaki I, Ferguson DJ, Harris AL, Gatter KC and Giatromanolaki A: LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Am J Pathol. 176:2477–2489. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Gachechiladze M, Uberall I, Skanderova D, Matchavariani J, Ibrahim M, Shani I, Smickova P, Kolek V, Cierna L, Klein J, et al: LC3A positive 'stone like structures' are differentially associated with survival outcomes and CD68 macrophage infiltration in patients with lung adenocarcinoma and squamous cell carcinoma. Lung Cancer. 156:129–135. 2021. View Article : Google Scholar : PubMed/NCBI

119 

Terabe T, Uchida F, Nagai H, Omori S, Ishibashi-Kanno N, Hasegawa S, Yamagata K, Gosho M, Yanagawa T and Bukawa H: Expression of autophagy-related markers at the surgical margin of oral squamous cell carcinoma correlates with poor prognosis and tumor recurrence. Hum Pathol. 73:156–163. 2018. View Article : Google Scholar

120 

Giatromanolaki A, Koukourakis MI, Georgiou I, Kouroupi M and Sivridis E: LC3A, LC3B and Beclin-1 Expression in gastric cancer. Anticancer Res. 38:6827–6833. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Bortnik S, Tessier-Cloutier B, Leung S, Xu J, Asleh K, Burugu S, Magrill J, Greening K, Derakhshan F, Yip S, et al: Differential expression and prognostic relevance of autophagy-related markers ATG4B, GABARAP, and LC3B in breast cancer. Breast Cancer Res Treat. 183:525–547. 2020. View Article : Google Scholar : PubMed/NCBI

122 

Kim JW, Jun SY, Kim JM, Oh YH, Yoon G, Hong SM and Chung JY: Prognostic value of LC3B and p62 expression in small intestinal adenocarcinoma. J Clin Med. 10:53982021. View Article : Google Scholar : PubMed/NCBI

123 

Langer R, Neppl C, Keller MD, Schmid RA, Tschan MP and Berezowska S: Expression analysis of autophagy related markers LC3B, p62 and HMGB1 indicate an autophagy-independent negative prognostic impact of High p62 expression in pulmonary squamous cell carcinomas. Cancers (Basel). 10:2812018. View Article : Google Scholar : PubMed/NCBI

124 

Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al: Autophagy suppresses tumorigenesis through elimination of p62. Cell. 137:1062–1075. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Islam MA, Sooro MA and Zhang P: Autophagic regulation of p62 is critical for cancer therapy. Int J Mol Sci. 19:14052018. View Article : Google Scholar : PubMed/NCBI

126 

Ruan H, Xu J, Wang L, Zhao Z, Kong L, Lan B and Li X: The prognostic value of p62 in solid tumor patients: A meta-analysis. Oncotarget. 9:4258–4266. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Sánchez-Martín P, Saito T and Komatsu M: p62/SQSTM1: 'Jack of all trades' in health and cancer. FEBS J. 286:8–23. 2019. View Article : Google Scholar

128 

Laddha SV, Ganesan S, Chan CS and White E: Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res. 12:485–490. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Delaney JR, Patel CB, Bapat J, Jones CM, Ramos-Zapatero M, Ortell KK, Tanios R, Haghighiabyaneh M, Axelrod J, DeStefano JW, et al: Autophagy gene haploinsufficiency drives chromosome instability, increases migration, and promotes early ovarian tumors. PLoS Genet. 16:e10085582020. View Article : Google Scholar : PubMed/NCBI

130 

Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, et al: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 112:1809–1820. 2003. View Article : Google Scholar : PubMed/NCBI

131 

Ajazi A and Foiani M: Vps30/Atg6/BECN1 at the crossroads between cell metabolism and DNA damage response. Autophagy. 18:1202–1204. 2022. View Article : Google Scholar : PubMed/NCBI

132 

Tang H, Sebti S, Titone R, Zhou Y, Isidoro C, Ross TS, Hibshoosh H, Xiao G, Packer M, Xie Y and Levine B: Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine. 2:255–263. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Liu C, Yan X, Wang HQ, Gao YY, Liu J, Hu Z, Liu D, Gao J and Lin B: Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors. BMC Cancer. 12:6222012. View Article : Google Scholar : PubMed/NCBI

134 

Xu C, Zang Y, Zhao Y, Cui W, Zhang H, Zhu Y and Xu M: comprehensive pan-cancer analysis confirmed that ATG5 Promoted the maintenance of tumor metabolism and the occurrence of tumor immune escape. Front Oncol. 11:6522112021. View Article : Google Scholar : PubMed/NCBI

135 

Zhou S, Wang X, Ding J, Yang H and Xie Y: Increased ATG5 expression predicts poor prognosis and promotes EMT in cervical carcinoma. Front Cell Dev Biol. 9:7571842021. View Article : Google Scholar : PubMed/NCBI

136 

Qin YQ, Liu SY, Lv ML and Sun WL: Ambra1 in cancer: Implications for clinical oncology. Apoptosis. 27:720–729. 2022. View Article : Google Scholar : PubMed/NCBI

137 

Nitta T, Sato Y, Ren XS, Harada K, Sasaki M, Hirano S and Nakanuma Y: Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma. Int J Clin Exp Pathol. 7:4913–4921. 2014.PubMed/NCBI

138 

Ko YH, Cho YS, Won HS, Jeon EK, An HJ, Hong SU, Park JH and Lee MA: Prognostic significance of autophagy-related protein expression in resected pancreatic ductal adenocarcinoma. Pancreas. 42:829–835. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Falasca L, Torino F, Marconi M, Costantini M, Pompeo V, Sentinelli S, De Salvo L, Patrizio M, Padula C, Gallucci M, et al: AMBRA1 and SQSTM1 expression pattern in prostate cancer. Apoptosis. 20:1577–1586. 2015. View Article : Google Scholar : PubMed/NCBI

140 

Ieni A, Cardia R, Giuffrè G, Rigoli L, Caruso RA and Tuccari G: Immunohistochemical expression of autophagy-related proteins in advanced tubular gastric adenocarcinomas and its implications. Cancers (Basel). 11:3892019. View Article : Google Scholar : PubMed/NCBI

141 

Tang DY, Ellis RA and Lovat PE: Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol. 6:2362016. View Article : Google Scholar : PubMed/NCBI

142 

Schaaf MB, Keulers TG, Vooijs MA and Rouschop KM: LC3/GABARAP family proteins: Autophagy-(un)related functions. FASEB J. 30:3961–3978. 2016. View Article : Google Scholar : PubMed/NCBI

143 

González-Rodríguez P, Klionsky DJ and Joseph B: Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun. 13:27352022. View Article : Google Scholar : PubMed/NCBI

144 

Greer SU, Ogmundsdottir MH, Chen J, Lau BT, Delacruz RGC, Sandoval IT, Kristjansdottir S, Jones DA, Haslem DS, Romero R, et al: Genetic risk of cholangiocarcinoma is linked to the autophagy gene ATG7. BioRxiv. 2019.

145 

Ogmundsdottir MH, Fock V, Sooman L, Pogenberg V, Dilshat R, Bindesbøll C, Ogmundsdottir HM, Simonsen A, Wilmanns M and Steingrimsson E: A short isoform of ATG7 fails to lipidate LC3/GABARAP. Sci Rep. 8:143912018. View Article : Google Scholar : PubMed/NCBI

146 

Somlapura M, Gottschalk B, Lahiri P, Kufferath I, Pabst D, Rülicke T, Graier WF, Denk H and Zatloukal K: Different Roles of p62 (SQSTM1) isoforms in keratin-related protein aggregation. Int J Mol Sci. 22:62272021. View Article : Google Scholar : PubMed/NCBI

147 

Kageyama S, Saito T, Obata M, Koide RH, Ichimura Y and Komatsu M: Negative Regulation of the Keap1-Nrf2 Pathway by a p62/Sqstm1 Splicing Variant. Mol Cell Biol. 38:e006422018. View Article : Google Scholar : PubMed/NCBI

148 

Guo Q, Wang H, Duan J, Luo W, Zhao R, Shen Y, Wang B, Tao S, Sun Y, Ye Q, et al: An alternatively spliced p62 isoform confers resistance to chemotherapy in breast cancer. Cancer Res. 82:4001–4015. 2022. View Article : Google Scholar : PubMed/NCBI

149 

Otomo C, Metlagel Z, Takaesu G and Otomo T: Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol. 20:59–66. 2013. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tedesco G, Santarosa M and Maestro R: Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). Int J Oncol 64: 57, 2024.
APA
Tedesco, G., Santarosa, M., & Maestro, R. (2024). Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). International Journal of Oncology, 64, 57. https://doi.org/10.3892/ijo.2024.5645
MLA
Tedesco, G., Santarosa, M., Maestro, R."Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review)". International Journal of Oncology 64.6 (2024): 57.
Chicago
Tedesco, G., Santarosa, M., Maestro, R."Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review)". International Journal of Oncology 64, no. 6 (2024): 57. https://doi.org/10.3892/ijo.2024.5645
Copy and paste a formatted citation
x
Spandidos Publications style
Tedesco G, Santarosa M and Maestro R: Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). Int J Oncol 64: 57, 2024.
APA
Tedesco, G., Santarosa, M., & Maestro, R. (2024). Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). International Journal of Oncology, 64, 57. https://doi.org/10.3892/ijo.2024.5645
MLA
Tedesco, G., Santarosa, M., Maestro, R."Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review)". International Journal of Oncology 64.6 (2024): 57.
Chicago
Tedesco, G., Santarosa, M., Maestro, R."Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review)". International Journal of Oncology 64, no. 6 (2024): 57. https://doi.org/10.3892/ijo.2024.5645
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team