|
1
|
Suzuki K, Kubota Y, Sekito T and Ohsumi Y:
Hierarchy of Atg proteins in pre-autophagosomal structure
organization. Genes Cells. 12:209–218. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Reggiori F and Klionsky DJ: Autophagic
processes in yeast: Mechanism, machinery and regulation. Genetics.
194:341–361. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Pankiv S, Clausen TH, Lamark T, Brech A,
Bruun JA, Outzen H, Øvervatn A, Bjørkøy G and Johansen T:
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of
ubiquitinated protein aggregates by autophagy. J Biol Chem.
282:24131–24145. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Elmore SP, Qian T, Grissom SF and
Lemasters JJ: The mitochondrial permeability transition initiates
autophagy in rat hepatocytes. FASEB J. 15:2286–2287. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mizushima N and Levine B: Autophagy in
human diseases. N Engl J Med. 383:1564–1576. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bustos SO, Antunes F, Rangel MC and
Chammas R: Emerging autophagy functions shape the tumor
microenvironment and play a role in cancer progression-implications
for cancer therapy. Front Oncol. 10:6064362020. View Article : Google Scholar
|
|
7
|
Xie X, Koh JY, Price S, White E and
Mehnert JM: Atg7 overcomes senescence and promotes growth of
BrafV600E-Driven Melanoma. Cancer Discov. 5:410–423. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yang A, Herter-Sprie G, Zhang H, Lin EY,
Biancur D, Wang X, Deng J, Hai J, Yang S, Wong KK and Kimmelman AC:
Autophagy sustains pancreatic cancer growth through both
cell-autonomous and nonautonomous mechanisms. Cancer Discov.
8:276–287. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shchors K, Massaras A and Hanahan D: Dual
targeting of the autophagic regulatory circuitry in gliomas with
repurposed drugs elicits cell-lethal autophagy and therapeutic
benefit. Cancer Cell. 28:456–471. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Santanam U, Banach-Petrosky W, Abate-Shen
C, Shen MM, White E and DiPaola RS: Atg7 cooperates with Pten loss
to drive prostate cancer tumor growth. Genes Dev. 30:399–407. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Karsli-Uzunbas G, Guo JY, Price S, Teng X,
Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD and
White E: Autophagy is required for glucose homeostasis and lung
tumor maintenance. Cancer Discov. 4:914–927. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Huo Y, Cai H, Teplova I, Bowman-Colin C,
Chen G, Price S, Barnard N, Ganesan S, Karantza V, White E and Xia
B: Autophagy opposes p53-mediated tumor barrier to facilitate
tumorigenesis in a model of PALB2-associated hereditary breast
cancer. Cancer Discov. 3:894–907. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Degenhardt K, Mathew R, Beaudoin B, Bray
K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, et al:
Autophagy promotes tumor cell survival and restricts necrosis,
inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Karantza-Wadsworth V, Patel S, Kravchuk O,
Chen G, Mathew R, Jin S and White E: Autophagy mitigates metabolic
stress and genome damage in mammary tumorigenesis. Genes Dev.
21:1621–1635. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Moussay E, Kaoma T, Baginska J, Muller A,
Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G and
Janji B: The acquisition of resistance to TNFα in breast cancer
cells is associated with constitutive activation of autophagy as
revealed by a transcriptome analysis using a custom microarray.
Autophagy. 7:760–770. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bildik G, Liang X, Sutton MN, Bast RC Jr
and Lu Z: DIRAS3: An Imprinted tumor suppressor gene that regulates
RAS and PI3K-driven cancer growth, motility, autophagy and tumor
dormancy. Mol Cancer Ther. 21:25–37. 2021. View Article : Google Scholar
|
|
17
|
Dower CM, Wills CA, Frisch SM and Wang HG:
Mechanisms and context underlying the role of autophagy in cancer
metastasis. Autophagy. 14:1110–1128. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mizushima N, Yoshimori T and Ohsumi Y: The
role of Atg proteins in autophagosome formation. Annu Rev Cell Dev
Biol. 27:107–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kuma A, Hatano M, Matsui M, Yamamoto A,
Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T and Mizushima N: The
role of autophagy during the early neonatal starvation period.
Nature. 432:1032–1036. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Levine B and Kroemer G: Biological
functions of autophagy genes: A disease perspective. Cell.
176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Oughtred R, Rust J, Chang C, Breitkreutz
BJ, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, et
al: The BioGRID database: A comprehensive biomedical resource of
curated protein, genetic, and chemical interactions. Protein Sci.
30:187–200. 2021. View Article : Google Scholar
|
|
22
|
Leidal AM and Debnath J: Emerging roles
for the autophagy machinery in extracellular vesicle biogenesis and
secretion. FASEB Bioadv. 3:377–386. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Okamoto T, Yeo SK, Hao M, Copley MR, Haas
MA, Chen S and Guan JL: FIP200 suppresses immune checkpoint therapy
responses in breast cancers by limiting AZI2/TBK1/IRF signaling
independent of its canonical autophagy function. Cancer Res.
80:3580–3592. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Guo H, Sadoul R and Gibbings D:
Autophagy-independent effects of autophagy-related-5 (Atg5) on
exosome production and metastasis. Mol Cell Oncol. 5:e14459412018.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hu F, Li G, Huang C, Hou Z, Yang X, Luo X,
Feng Y, Wang G, Hu J and Cao Z: The autophagy-independent role of
BECN1 in colorectal cancer metastasis through regulating STAT3
signaling pathway activation. Cell Death Dis. 11:3042020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yamamoto H, Zhang S and Mizushima N:
Autophagy genes in biology and disease. Nat Rev Genet. 24:382–400.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Agarwal S, Bell CM, Rothbart SB and Moran
RG: AMP-activated Protein Kinase (AMPK) Control of mTORC1 Is
p53-and TSC2-independent in pemetrexed-treated carcinoma cells. J
Biol Chem. 290:27473–27486. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hosokawa N, Hara T, Kaizuka T, Kishi C,
Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et
al: Nutrient-dependent mTORC1 association with the
ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell.
20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mercer TJ, Gubas A and Tooze SA: A
molecular perspective of mammalian autophagosome biogenesis. J Biol
Chem. 293:5386–5395. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zachari M and Ganley IG: The mammalian
ULK1 complex and autophagy initiation. Essays Biochem. 61:585–596.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liang C, Feng P, Ku B, Dotan I, Canaani D,
Oh BH and Jung JU: Autophagic and tumour suppressor activity of a
novel Beclin1-binding protein UVRAG. Nat Cell Biol. 8:688–699.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fimia GM, Stoykova A, Romagnoli A, Giunta
L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A,
Schwartz P, et al: Ambra1 regulates autophagy and development of
the nervous system. Nature. 447:1121–1125. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sawa-Makarska J, Baumann V, Coudevylle N,
von Bülow S, Nogellova V, Abert C, Schuschnig M, Graef M, Hummer G
and Martens S: Reconstitution of autophagosome nucleation defines
Atg9 vesicles as seeds for membrane formation. Science.
369:eaaz77142020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Matoba K, Kotani T, Tsutsumi A, Tsuji T,
Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, et al:
Atg9 is a lipid scramblase that mediates autophagosomal membrane
expansion. Nat Struct Mol Biol. 27:1185–1193. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Dooley HC, Razi M, Polson HE, Girardin SE,
Wilson MI and Tooze SA: WIPI2 links LC3 conjugation with PI3P,
autophagosome formation, and pathogen clearance by recruiting
Atg12-5-16L1. Mol Cell. 55:238–252. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wible DJ, Chao HP, Tang DG and Bratton SB:
ATG5 cancer mutations and alternative mRNA splicing reveal a
conjugation switch that regulates ATG12-ATG5-ATG16L1 complex
assembly and autophagy. Cell Discov. 5:422019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Baines K, Yoshioka K, Takuwa Y and Lane
JD: The ATG5 interactome links clathrin-mediated vesicular
trafficking with the autophagosome assembly machinery. Autophagy
Rep. 1:88–118. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Haller M, Hock AK, Giampazolias E, Oberst
A, Green DR, Debnath J, Ryan KM, Vousden KH and Tait SW:
Ubiquitination and proteasomal degradation of ATG12 regulates its
proapoptotic activity. Autophagy. 10:2269–2278. 2014. View Article : Google Scholar
|
|
39
|
Tanida I, Ueno T and Kominami E: LC3
conjugation system in mammalian autophagy. Int J Biochem Cell Biol.
36:2503–2518. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Melia TJ, Lystad AH and Simonsen A:
Autophagosome biogenesis: From membrane growth to closure. J Cell
Biol. 219:e2020020852020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gatica D, Lahiri V and Klionsky DJ: Cargo
recognition and degradation by selective autophagy. Nat Cell Biol.
20:233–242. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu
HL, Yang C and Liu HF: p62 links the autophagy pathway and the
ubiqutin-proteasome system upon ubiquitinated protein degradation.
Cell Mol Biol Lett. 21:292016. View Article : Google Scholar
|
|
43
|
Yim WW and Mizushima N: Lysosome biology
in autophagy. Cell Discov. 6:62020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Dikic I and Elazar Z: Mechanism and
medical implications of mammalian autophagy. Nat Rev Mol Cell Biol.
19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hanahan D: Hallmarks of cancer: New
Dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mathew R, Kongara S, Beaudoin B, Karp CM,
Bray K, Degenhardt K, Chen G, Jin S and White E: Autophagy
suppresses tumor progression by limiting chromosomal instability.
Genes Dev. 21:1367–1381. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Marteijn JA, Lans H, Vermeulen W and
Hoeijmakers JH: Understanding nucleotide excision repair and its
roles in cancer and ageing. Nat Rev Mol Cell Biol. 15:465–481.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang Y, He S, Wang Q, Li F, Kwak MJ, Chen
S, O'Connell D, Zhang T, Pirooz SD, Jeon YH, et al: Autophagic
UVRAG Promotes UV-Induced Photolesion Repair by Activation of the
CRL4(DDB2) E3 Ligase. Mol Cell. 62:507–519. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhao Z, Oh S, Li D, Ni D, Pirooz SD, Lee
JH, Yang S, Lee JY, Ghozalli I, Costanzo V, et al: A dual role for
UVRAG in maintaining chromosomal stability independent of
autophagy. Dev Cell. 22:1001–1016. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Park JM, Tougeron D, Huang S, Okamoto K
and Sinicrope FA: Beclin 1 and UVRAG confer protection from
radiation-induced DNA damage and maintain centrosome stability in
colorectal cancer cells. PLoS One. 9:e1008192014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Knævelsrud H, Ahlquist T, Merok MA,
Nesbakken A, Stenmark H, Lothe RA and Simonsen A: UVRAG mutations
associated with microsatellite unstable colon cancer do not affect
autophagy. Autophagy. 6:863–870. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
He S, Zhao Z, Yang Y, O'Connell D, Zhang
X, Oh S, Ma B, Lee JH, Zhang T, Varghese B, et al: Truncating
mutation in the autophagy gene UVRAG confers oncogenic properties
and chemosensitivity in colorectal cancers. Nat Commun. 6:78392015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sun SY, Hu XT, Yu XF, Zhang YY, Liu XH,
Liu YH, Wu SH, Li YY, Cui SX and Qu XJ: Nuclear translocation of
ATG5 induces DNA mismatch repair deficiency (MMR-D)/microsatellite
instability (MSI) via interacting with Mis18α in colorectal cancer.
Br J Pharmacol. 178:2351–2369. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Maskey D, Yousefi S, Schmid I, Zlobec I,
Perren A, Friis R and Simon HU: ATG5 is induced by DNA-damaging
agents and promotes mitotic catastrophe independent of autophagy.
Nat Commun. 4:21302013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Maiani E, Milletti G, Nazio F, Holdgaard
SG, Bartkova J, Rizza S, Cianfanelli V, Lorente M, Simoneschi D, Di
Marco M, et al: AMBRA1 regulates cyclin D to guard S-phase entry
and genomic integrity. Nature. 592:799–803. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu PF, Leung CM, Chang YH, Cheng JS, Chen
JJ, Weng CJ, Tsai KW, Hsu CJ, Liu YC, Hsu PC, et al: ATG4B promotes
colorectal cancer growth independent of autophagic flux. Autophagy.
10:1454–1465. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lee IH, Kawai Y, Fergusson MM, Rovira II,
Bishop AJ, Motoyama N, Cao L and Finkel T: Atg7 modulates p53
activity to regulate cell cycle and survival during metabolic
stress. Science. 336:225–228. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Frémont S, Gérard A, Galloux M, Janvier K,
Karess RE and Berlioz-Torrent C: Beclin-1 is required for
chromosome congression and proper outer kinetochore assembly. EMBO
Rep. 14:364–372. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Thoresen SB, Pedersen NM, Liestøl K and
Stenmark H: A phosphatidylinositol 3-kinase class III sub-complex
containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates
cytokinesis and degradative endocytic traffic. Exp Cell Res.
316:3368–3378. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sagona AP, Nezis IP, Pedersen NM, Liestøl
K, Poulton J, Rusten TE, Skotheim RI, Raiborg C and Stenmark H:
PtdIns(3) P controls cytokinesis through KIF13A-mediated
recruitment of FYVE-CENT to the midbody. Nat Cell Biol. 12:362–371.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang
X, Jin H, Xu H and Chen Q: Beclin 1 cleavage by caspase-3
inactivates autophagy and promotes apoptosis. Protein Cell.
1:468–477. 2010. View Article : Google Scholar
|
|
62
|
Young MM, Takahashi Y, Khan O, Park S,
Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, et al:
Autophagosomal membrane serves as platform for intracellular
death-inducing signaling complex (iDISC)-mediated caspase-8
activation and apoptosis. J Biol Chem. 287:12455–12468. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Han J, Hou W, Goldstein LA, Stolz DB,
Watkins SC and Rabinowich H: A Complex between Atg7 and Caspase-9:
A novel mechanism of cross-regulation between autophagy and
apoptosis. J Biol Chem. 289:6485–6497. 2014. View Article : Google Scholar :
|
|
64
|
Wirawan E, Vande Walle L, Kersse K,
Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R,
Verspurten J, Declercq W, et al: Caspase-mediated cleavage of
Beclin-1 inactivates Beclin-1-induced autophagy and enhances
apoptosis by promoting the release of proapoptotic factors from
mitochondria. Cell Death Dis. 1:e182010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li X, Su J, Xia M, Li H, Xu Y, Ma C, Ma L,
Kang J, Yu H, Zhang Z and Sun L: Caspase-mediated cleavage of
Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in
human ovarian cancer SKOV3 cells. Apoptosis. 21:225–238. 2016.
View Article : Google Scholar
|
|
66
|
Strappazzon F, Di Rita A, Cianfanelli V,
D'Orazio M, Nazio F, Fimia GM and Cecconi F: Prosurvival AMBRA1
turns into a proapoptotic BH3-like protein during mitochondrial
apoptosis. Autophagy. 12:963–975. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Betin VM and Lane JD: Caspase cleavage of
Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial
targeting and apoptosis. J Cell Sci. 122(Pt 14): 2554–2566. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yousefi S, Perozzo R, Schmid I, Ziemiecki
A, Schaffner T, Scapozza L, Brunner T and Simon HU:
Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis.
Nat Cell Biol. 8:1124–1132. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rubinstein AD, Eisenstein M, Ber Y, Bialik
S and Kimchi A: The autophagy protein Atg12 associates with
antiapoptotic Bcl-2 family members to promote mitochondrial
apoptosis. Mol Cell. 44:698–709. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yoo BH, Khan IA, Koomson A, Gowda P,
Sasazuki T, Shirasawa S, Gujar S and Rosen KV: Oncogenic
RAS-induced downregulation of ATG12 is required for survival of
malignant intestinal epithelial cells. Autophagy. 14:134–151. 2018.
View Article : Google Scholar :
|
|
71
|
Radoshevich L, Murrow L, Chen N, Fernandez
E, Roy S, Fung C and Debnath J: ATG12 conjugation to ATG3 regulates
mitochondrial homeostasis and cell death. Cell. 142:590–600. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu H, He Z, Germič N, Ademi H, Frangež Ž,
Felser A, Peng S, Riether C, Djonov V, Nuoffer JM, et al: ATG12
deficiency leads to tumor cell oncosis owing to diminished
mitochondrial biogenesis and reduced cellular bioenergetics. Cell
Death Differ. 27:1965–1980. 2020. View Article : Google Scholar :
|
|
73
|
Ni Z, He J, Wu Y, Hu C, Dai X, Yan X, Li
B, Li X, Xiong H, Li Y, et al: AKT-mediated phosphorylation of
ATG4B impairs mitochondrial activity and enhances the Warburg
effect in hepatocellular carcinoma cells. Autophagy. 14:685–701.
2018. View Article : Google Scholar :
|
|
74
|
Wu W, Wang X, Berleth N, Deitersen J,
Wallot-Hieke N, Böhler P, Schlütermann D, Stuhldreier F, Cox J,
Schmitz K, et al: The autophagy-initiating kinase ULK1 Controls
RIPK1-mediated cell death. Cell Rep. 31:1075472020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Joshi A, Iyengar R, Joo JH, Li-Harms XJ,
Wright C, Marino R, Winborn BJ, Phillips A, Temirov J, Sciarretta
S, et al: Nuclear ULK1 promotes cell death in response to oxidative
stress through PARP1. Cell Death Differ. 23:216–230. 2016.
View Article : Google Scholar :
|
|
76
|
Satyavarapu EM, Das R and Mandal C,
Mukhopadhyay A and Mandal C: Autophagy-independent induction of
LC3B through oxidative stress reveals its non-canonical role in
anoikis of ovarian cancer cells. Cell Death Dis. 9:9342018.
View Article : Google Scholar
|
|
77
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Aiello NM, Maddipati R, Norgard RJ, Balli
D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE, et al:
EMT subtype influences epithelial plasticity and mode of cell
migration. Dev Cell. 45:681–695.e4. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM
and Kim DR: Control of the epithelial-to-mesenchymal transition and
cancer metastasis by autophagy-dependent SNAI1 degradation. Cells.
8:1292019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Han JH, Kim YK, Kim H, Lee J, Oh MJ, Kim
SB, Kim M, Kim KH, Yoon HJ, Lee MS, et al: Snail acetylation by
autophagy-derived acetyl-coenzyme A promotes invasion and
metastasis of KRAS-LKB1 co-mutated lung cancer cells. Cancer Commun
(Lond). 42:716–749. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sharifi MN, Mowers EE, Drake LE, Collier
C, Chen H, Zamora M, Mui S and Macleod KF: Autophagy promotes focal
adhesion disassembly and cell motility of metastatic tumor cells
through the direct interaction of paxillin with LC3. Cell Rep.
15:1660–1672. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Santarosa M and Maestro R: The autophagic
route of E-Cadherin and cell adhesion molecules in cancer
progression. Cancers (Basel). 13:63282021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Martinez-Lopez N, Athonvarangkul D,
Mishall P, Sahu S and Singh R: Autophagy proteins regulate ERK
phosphorylation. Nat Commun. 4:27992013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rohatgi RA, Janusis J, Leonard D, Bellvé
KD, Fogarty KE, Baehrecke EH, Corvera S and Shaw LM: Beclin 1
regulates growth factor receptor signaling in breast cancer.
Oncogene. 34:5352–5362. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wijshake T, Zou Z, Chen B, Zhong L, Xiao
G, Xie Y, Doench JG, Bennett L and Levine B: Tumor-suppressor
function of Beclin 1 in breast cancer cells requires E-cadherin.
Proc Natl Acad Sci USA. 118:e20204781182021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wong M, Ganapathy AS, Suchanec E, Laidler
L, Ma T and Nighot P: Intestinal epithelial tight junction barrier
regulation by autophagy-related protein ATG6/beclin 1. Am J
Physiol, Cell Physiol. 316:C753–C765. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Damiano V, Spessotto P, Vanin G, Perin T,
Maestro R and Santarosa M: The autophagy machinery contributes to
E-cadherin turnover in breast cancer. Front Cell Dev Biol.
8:5452020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Baisamy L, Cavin S, Jurisch N and Diviani
D: The ubiquitin-like protein LC3 regulates the Rho-GEF activity of
AKAP-Lbc. J Biol Chem. 284:28232–28242. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhong Y, Long T, Gu CS, Tang JY, Gao LF,
Zhu JX, Hu ZY, Wang X, Ma YD, Ding YQ, et al: MYH9-dependent
polarization of ATG9B promotes colorectal cancer metastasis by
accelerating focal adhesion assembly. Cell Death Differ.
28:3251–3269. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Galluzzi L and Green DR:
Autophagy-Independent functions of the autophagy machinery. Cell.
177:1682–1699. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ishibashi K, Uemura T, Waguri S and Fukuda
M: Atg16L1, an essential factor for canonical autophagy,
participates in hormone secretion from PC12 cells independently of
autophagic activity. Mol Biol Cell. 23:3193–3202. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Guo H, Chitiprolu M, Roncevic L, Javalet
C, Hemming FJ, Trung MT, Meng L, Latreille E, Tanese de Souza C,
McCulloch D, et al: Atg5 Disassociates the V1V0-ATPase to promote
exosome production and tumor metastasis independent of canonical
macroautophagy. Dev Cell. 43:716–730.e7. 2017. View Article : Google Scholar
|
|
93
|
Ponpuak M, Mandell MA, Kimura T, Chauhan
S, Cleyrat C and Deretic V: Secretory autophagy. Curr Opin Cell
Biol. 35:106–116. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li X, Wei Z, Yu H, Xu Y, He W, Zhou X and
Gou X: Secretory autophagy-induced bladder tumour-derived
extracellular vesicle secretion promotes angiogenesis by activating
the TPX2-mediated phosphorylation of the AURKA-PI3K-AKT axis.
Cancer Lett. 523:10–28. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tzeng HT, Yang JL, Tseng YJ, Lee CH, Chen
WJ and Chyuan IT: Plasminogen activator inhibitor-1 secretion by
autophagy contributes to melanoma resistance to chemotherapy
through tumor microenvironment modulation. Cancers (Basel).
13:12532021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
New J, Arnold L, Ananth M, Alvi S,
Thornton M, Werner L, Tawfik O, Dai H, Shnayder Y, Kakarala K, et
al: Secretory autophagy in cancer-associated fibroblasts promotes
head and neck cancer progression and offers a novel therapeutic
target. Cancer Res. 77:6679–6691. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Cunha LD, Yang M, Carter R, Guy C, Harris
L, Crawford JC, Quarato G, Boada-Romero E, Kalkavan H, Johnson MDL,
et al: LC3-Associated phagocytosis in myeloid cells promotes tumor
immune tolerance. Cell. 175:429–441.e16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu X, Zhang W, Xu Y, Xu X, Jiang Q, Ruan
J, Wu Y, Zhou Y, Saw PE and Luo B: Targeting PI3Kγ/AKT Pathway
Remodels LC3-Associated phagocytosis induced immunosuppression
after radiofrequency ablation. Adv Sci (Weinh). 9:e21021822022.
View Article : Google Scholar
|
|
99
|
Grimm WA, Messer JS, Murphy SF, Nero T,
Lodolce JP, Weber CR, Logsdon MF, Bartulis S, Sylvester BE,
Springer A, et al: The Thr300Ala variant in ATG16L1 is associated
with improved survival in human colorectal cancer and enhanced
production of type I interferon. Gut. 65:456–464. 2016. View Article : Google Scholar
|
|
100
|
Peng Y and Croce CM: The role of MicroRNAs
in human cancer. Signal Transduct Target Ther. 1:150042016.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Chipman LB and Pasquinelli AE: miRNA
Targeting: Growing beyond the Seed. Trends Genet. 35:215–222. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
de la Cruz-Ojeda P, Flores-Campos R,
Navarro-Villarán E and Muntané J: The role of non-coding RNAs in
autophagy during carcinogenesis. Front Cell Dev Biol.
10:7993922022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang
Y, Gao J, Zhou Z, Li X, Liu C, et al: The emerging roles of
autophagy-related MicroRNAs in cancer. Int J Biol Sci. 17:134–150.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X,
Liu CG and Yang JM: Regulation of autophagy by a beclin 1-targeted
microRNA, miR-30a, in cancer cells. Autophagy. 5:816–823. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang ZC, Huang FZ, Xu HB, Sun JC and Wang
CF: MicroRNA-137 inhibits autophagy and chemosensitizes pancreatic
cancer cells by targeting ATG5. Int J Biochem Cell Biol. 111:63–71.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chen Y, Zhou J, Wu X, Huang J, Chen W, Liu
D, Zhang J, Huang Y and Xue W: miR-30a-3p inhibits renal cancer
cell invasion and metastasis through targeting ATG12. Transl Androl
Urol. 9:646–653. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Hu JL, He GY, Lan XL, Zeng ZC, Guan J,
Ding Y, Qian XL, Liao WT, Ding YQ and Liang L: Inhibition of
ATG12-mediated autophagy by miR-214 enhances radiosensitivity in
colorectal cancer. Oncogenesis. 7:162018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Pan X, Chen Y, Shen Y and Tantai J:
Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in
A549/DDP cells by regulating miR-138-5p/ATG7. Cell Death Dis.
10:4292019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Chang Y, Yan W, He X, Zhang L, Li C, Huang
H, Nace G, Geller DA, Lin J and Tsung A: miR-375 inhibits autophagy
and reduces viability of hepatocellular carcinoma cells under
hypoxic conditions. Gastroenterology. 143:177–187.e8. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang X, Shi H, Lin S, Ba M and Cui S:
MicroRNA-216a enhances the radiosensitivity of pancreatic cancer
cells by inhibiting beclin-1-mediated autophagy. Oncol Rep.
34:1557–1564. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li M, Chen XM, Wang DM, Gan L and Qiao Y:
Effects of miR-26a on the expression of Beclin 1 in retinoblastoma
cells. Genet Mol Res. 15:2016.
|
|
112
|
Hou W, Song L, Zhao Y, Liu Q and Zhang S:
Inhibition of beclin-1-mediated autophagy by MicroRNA-17-5p
enhanced the radiosensitivity of glioma cells. Oncol Res. 25:43–53.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang F, Wang B, Long H, Yu J, Li F, Hou H
and Yang Q: Decreased miR-124-3p expression prompted breast cancer
cell progression mainly by targeting Beclin-1. Clin Lab.
62:1139–1145. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Tan S, Shi H, Ba M, Lin S, Tang H, Zeng X
and Zhang X: miR-409-3p sensitizes colon cancer cells to
oxaliplatin by inhibiting Beclin-1-mediated autophagy. Int J Mol
Med. 37:1030–1038. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang Y, Li J, Shao C, Tang X, Du Y, Xu T,
Zhao Z, Hu H, Sheng Y, Hu C and Xi Y: Systematic profiling of
diagnostic and prognostic value of autophagy-related genes for
sarcoma patients. BMC Cancer. 21:582021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Yang Q, Sun K, Xia W, Li Y, Zhong M and
Lei K: Autophagy-related prognostic signature for survival
prediction of triple negative breast cancer. PeerJ. 10:e128782022.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Sivridis E, Koukourakis MI, Zois CE,
Ledaki I, Ferguson DJ, Harris AL, Gatter KC and Giatromanolaki A:
LC3A-positive light microscopy detected patterns of autophagy and
prognosis in operable breast carcinomas. Am J Pathol.
176:2477–2489. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Gachechiladze M, Uberall I, Skanderova D,
Matchavariani J, Ibrahim M, Shani I, Smickova P, Kolek V, Cierna L,
Klein J, et al: LC3A positive 'stone like structures' are
differentially associated with survival outcomes and CD68
macrophage infiltration in patients with lung adenocarcinoma and
squamous cell carcinoma. Lung Cancer. 156:129–135. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Terabe T, Uchida F, Nagai H, Omori S,
Ishibashi-Kanno N, Hasegawa S, Yamagata K, Gosho M, Yanagawa T and
Bukawa H: Expression of autophagy-related markers at the surgical
margin of oral squamous cell carcinoma correlates with poor
prognosis and tumor recurrence. Hum Pathol. 73:156–163. 2018.
View Article : Google Scholar
|
|
120
|
Giatromanolaki A, Koukourakis MI, Georgiou
I, Kouroupi M and Sivridis E: LC3A, LC3B and Beclin-1 Expression in
gastric cancer. Anticancer Res. 38:6827–6833. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Bortnik S, Tessier-Cloutier B, Leung S, Xu
J, Asleh K, Burugu S, Magrill J, Greening K, Derakhshan F, Yip S,
et al: Differential expression and prognostic relevance of
autophagy-related markers ATG4B, GABARAP, and LC3B in breast
cancer. Breast Cancer Res Treat. 183:525–547. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kim JW, Jun SY, Kim JM, Oh YH, Yoon G,
Hong SM and Chung JY: Prognostic value of LC3B and p62 expression
in small intestinal adenocarcinoma. J Clin Med. 10:53982021.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Langer R, Neppl C, Keller MD, Schmid RA,
Tschan MP and Berezowska S: Expression analysis of autophagy
related markers LC3B, p62 and HMGB1 indicate an
autophagy-independent negative prognostic impact of High p62
expression in pulmonary squamous cell carcinomas. Cancers (Basel).
10:2812018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Mathew R, Karp CM, Beaudoin B, Vuong N,
Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al:
Autophagy suppresses tumorigenesis through elimination of p62.
Cell. 137:1062–1075. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Islam MA, Sooro MA and Zhang P: Autophagic
regulation of p62 is critical for cancer therapy. Int J Mol Sci.
19:14052018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ruan H, Xu J, Wang L, Zhao Z, Kong L, Lan
B and Li X: The prognostic value of p62 in solid tumor patients: A
meta-analysis. Oncotarget. 9:4258–4266. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Sánchez-Martín P, Saito T and Komatsu M:
p62/SQSTM1: 'Jack of all trades' in health and cancer. FEBS J.
286:8–23. 2019. View Article : Google Scholar
|
|
128
|
Laddha SV, Ganesan S, Chan CS and White E:
Mutational landscape of the essential autophagy gene BECN1 in human
cancers. Mol Cancer Res. 12:485–490. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Delaney JR, Patel CB, Bapat J, Jones CM,
Ramos-Zapatero M, Ortell KK, Tanios R, Haghighiabyaneh M, Axelrod
J, DeStefano JW, et al: Autophagy gene haploinsufficiency drives
chromosome instability, increases migration, and promotes early
ovarian tumors. PLoS Genet. 16:e10085582020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh
H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, et al:
Promotion of tumorigenesis by heterozygous disruption of the beclin
1 autophagy gene. J Clin Invest. 112:1809–1820. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Ajazi A and Foiani M: Vps30/Atg6/BECN1 at
the crossroads between cell metabolism and DNA damage response.
Autophagy. 18:1202–1204. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Tang H, Sebti S, Titone R, Zhou Y, Isidoro
C, Ross TS, Hibshoosh H, Xiao G, Packer M, Xie Y and Levine B:
Decreased BECN1 mRNA expression in human breast cancer is
associated with estrogen receptor-negative subtypes and poor
prognosis. EBioMedicine. 2:255–263. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Liu C, Yan X, Wang HQ, Gao YY, Liu J, Hu
Z, Liu D, Gao J and Lin B: Autophagy-independent enhancing effects
of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by
proteasome inhibitors. BMC Cancer. 12:6222012. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Xu C, Zang Y, Zhao Y, Cui W, Zhang H, Zhu
Y and Xu M: comprehensive pan-cancer analysis confirmed that ATG5
Promoted the maintenance of tumor metabolism and the occurrence of
tumor immune escape. Front Oncol. 11:6522112021. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Zhou S, Wang X, Ding J, Yang H and Xie Y:
Increased ATG5 expression predicts poor prognosis and promotes EMT
in cervical carcinoma. Front Cell Dev Biol. 9:7571842021.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Qin YQ, Liu SY, Lv ML and Sun WL: Ambra1
in cancer: Implications for clinical oncology. Apoptosis.
27:720–729. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Nitta T, Sato Y, Ren XS, Harada K, Sasaki
M, Hirano S and Nakanuma Y: Autophagy may promote carcinoma cell
invasion and correlate with poor prognosis in cholangiocarcinoma.
Int J Clin Exp Pathol. 7:4913–4921. 2014.PubMed/NCBI
|
|
138
|
Ko YH, Cho YS, Won HS, Jeon EK, An HJ,
Hong SU, Park JH and Lee MA: Prognostic significance of
autophagy-related protein expression in resected pancreatic ductal
adenocarcinoma. Pancreas. 42:829–835. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Falasca L, Torino F, Marconi M, Costantini
M, Pompeo V, Sentinelli S, De Salvo L, Patrizio M, Padula C,
Gallucci M, et al: AMBRA1 and SQSTM1 expression pattern in prostate
cancer. Apoptosis. 20:1577–1586. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Ieni A, Cardia R, Giuffrè G, Rigoli L,
Caruso RA and Tuccari G: Immunohistochemical expression of
autophagy-related proteins in advanced tubular gastric
adenocarcinomas and its implications. Cancers (Basel). 11:3892019.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Tang DY, Ellis RA and Lovat PE: Prognostic
impact of autophagy biomarkers for cutaneous melanoma. Front Oncol.
6:2362016. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Schaaf MB, Keulers TG, Vooijs MA and
Rouschop KM: LC3/GABARAP family proteins: Autophagy-(un)related
functions. FASEB J. 30:3961–3978. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
González-Rodríguez P, Klionsky DJ and
Joseph B: Autophagy regulation by RNA alternative splicing and
implications in human diseases. Nat Commun. 13:27352022. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Greer SU, Ogmundsdottir MH, Chen J, Lau
BT, Delacruz RGC, Sandoval IT, Kristjansdottir S, Jones DA, Haslem
DS, Romero R, et al: Genetic risk of cholangiocarcinoma is linked
to the autophagy gene ATG7. BioRxiv. 2019.
|
|
145
|
Ogmundsdottir MH, Fock V, Sooman L,
Pogenberg V, Dilshat R, Bindesbøll C, Ogmundsdottir HM, Simonsen A,
Wilmanns M and Steingrimsson E: A short isoform of ATG7 fails to
lipidate LC3/GABARAP. Sci Rep. 8:143912018. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Somlapura M, Gottschalk B, Lahiri P,
Kufferath I, Pabst D, Rülicke T, Graier WF, Denk H and Zatloukal K:
Different Roles of p62 (SQSTM1) isoforms in keratin-related protein
aggregation. Int J Mol Sci. 22:62272021. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Kageyama S, Saito T, Obata M, Koide RH,
Ichimura Y and Komatsu M: Negative Regulation of the Keap1-Nrf2
Pathway by a p62/Sqstm1 Splicing Variant. Mol Cell Biol.
38:e006422018. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Guo Q, Wang H, Duan J, Luo W, Zhao R, Shen
Y, Wang B, Tao S, Sun Y, Ye Q, et al: An alternatively spliced p62
isoform confers resistance to chemotherapy in breast cancer. Cancer
Res. 82:4001–4015. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Otomo C, Metlagel Z, Takaesu G and Otomo
T: Structure of the human ATG12~ATG5 conjugate required for LC3
lipidation in autophagy. Nat Struct Mol Biol. 20:59–66. 2013.
View Article : Google Scholar :
|