|
1
|
Arnold M, Abnet CC, Neale RE, Vignat J,
Giovannucci EL, McGlynn KA and Bray F: Global burden of 5 major
types of gastrointestinal cancer. Gastroenterology.
159:335–349.e15. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Moore BW: A soluble protein characteristic
of the nervous system. Biochem Biophys Res Commun. 19:739–744.
1965. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zimmer DB, Cornwall EH, Landar A and Song
W: The S100 protein family: History, function, and expression.
Brain Res Bull. 37:417–429. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gonzalez LL, Garrie K and Turner MD: Role
of S100 proteins in health and disease. Biochim Biophys Acta Mol
Cell Res. 1867:1186772020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Marenholz I, Heizmann CW and Fritz G: S100
proteins in mouse and man: From evolution to function and pathology
(including an update of the nomenclature). Biochem Biophys Res
Commun. 322:1111–1122. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Donato R: Functional roles of S100
proteins, calcium-binding proteins of the EF-hand type. Biochim
Biophys Acta. 1450:191–231. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Delangre E, Oppliger E, Berkcan S,
Gjorgjieva M, Correia de Sousa M and Foti M: S100 proteins in fatty
liver disease and hepatocellular carcinoma. Int J Mol Sci.
23:110302022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
You X, Li M, Cai H, Zhang W, Hong Y, Gao
W, Liu Y, Liang X, Wu T, Chen F and Su D: Calcium binding protein
S100A16 expedites proliferation, invasion and
epithelial-mesenchymal transition process in gastric cancer. Front
Cell Dev Biol. 9:7369292021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ohuchida K, Mizumoto K, Miyasaka Y, Yu J,
Cui L, Yamaguchi H, Toma H, Takahata S, Sato N, Nagai E, et al:
Over-expression of S100A2 in pancreatic cancer correlates with
progression and poor prognosis. J Pathol. 213:275–282. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zeng ML, Zhu XJ, Liu J, Shi PC, Kang YL,
Lin Z and Cao YP: An integrated bioinformatic analysis of the S100
gene family for the prognosis of colorectal cancer. Biomed Res Int.
2020:47469292020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Heizmann CW: Intracellular calcium-binding
proteins: Structure and possible functions. J Cardiovasc Pharmacol.
8 (Suppl 8):S7–S12. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Schäfer BW and Heizmann CW: The S100
family of EF-hand calcium-binding proteins: Functions and
pathology. Trends Biochem Sci. 21:134–140. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wright NT, Cannon BR, Wilder PT, Morgan
MT, Varney KM, Zimmer DB and Weber DJ: Solution structure of S100A1
bound to the CapZ peptide (TRTK12). J Mol Biol. 386:1265–1277.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Malashkevich VN, Varney KM, Garrett SC,
Wilder PT, Knight D, Charpentier TH, Ramagopal UA, Almo SC, Weber
DJ and Bresnick AR: Structure of Ca2+-bound S100A4 and its
interaction with peptides derived from nonmuscle myosin-IIA.
Biochemistry. 47:5111–5126. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Donato R, Cannon BR, Sorci G, Riuzzi F,
Hsu K, Weber DJ and Geczy CL: Functions of S100 proteins. Curr Mol
Med. 13:24–57. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xia C, Braunstein Z, Toomey AC, Zhong J
and Rao X: S100 proteins as an important regulator of macrophage
inflammation. Front Immunol. 8:19082018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gilston BA, Skaar EP and Chazin WJ:
Binding of transition metals to S100 proteins. Sci China Life Sci.
59:792–801. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kuberappa PH, Bagalad BS, Ananthaneni A,
Kiresur MA and Srinivas GV: Certainty of S100 from physiology to
pathology. J Clin Diagn Res. 10:ZE10–ZE15. 2016.PubMed/NCBI
|
|
19
|
Wang S, Song R, Wang Z, Jing Z, Wang S and
Ma J: S100A8/A9 in inflammation. Front Immunol. 9:12982018.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bresnick AR, Weber DJ and Zimmer DB: S100
proteins in cancer. Nat Rev Cancer. 15:96–109. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Abdelfattah N, Kumar P, Wang C, Leu JS,
Flynn WF, Gao R, Baskin DS, Pichumani K, Ijare OB, Wood SL, et al:
Single-cell analysis of human glioma and immune cells identifies
S100A4 as an immunotherapy target. Nat Commun. 13:7672022.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Peng G, Tsukamoto S, Okumura K, Ogawa H,
Ikeda S and Niyonsaba F: A pancancer analysis of the oncogenic role
of S100 calcium binding protein A7 (S100A7) in human tumors.
Biology (Basel). 11:2842022.PubMed/NCBI
|
|
23
|
Chen B, Zheng D, Liu C, Bhandari A,
Hirachan S, Shen C, Mainali S, Li H, Jiang W, Xu J, et al: S100A6
promotes the development of thyroid cancer and inhibits apoptosis
of thyroid cancer cells through the PI3K/AKT/mTOR pathway. Pathol
Res Pract. 242:1543252023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Christensen MV, Høgdall CK, Jochumsen KM
and Høgdall EVS: Annexin A2 and cancer: A systematic review. Int J
Oncol. 52:5–18. 2018.PubMed/NCBI
|
|
25
|
Basnet S, Sharma S, Costea DE and Sapkota
D: Expression profile and functional role of S100A14 in human
cancer. Oncotarget. 10:2996–3012. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Guo J, Bian Y, Wang Y, Chen L, Yu A and
Sun X: FAM107B is regulated by S100A4 and mediates the effect of
S100A4 on the proliferation and migration of MGC803 gastric cancer
cells. Cell Biol Int. 41:1103–1109. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yu A, Wang Y, Bian Y, Chen L, Guo J, Shen
W, Chen D, Liu S and Sun X: IL-1β promotes the nuclear
translocaiton of S100A4 protein in gastric cancer cells MGC803 and
the cell's stem-like properties through PI3K pathway. J Cell
Biochem. 119:8163–8173. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bian Y, Guo J, Qiao L and Sun X:
miR-3189-3p mimics enhance the effects of S100A4 siRNA on the
inhibition of proliferation and migration of gastric cancer cells
by targeting CFL2. Int J Mol Sci. 19:2362018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fan B, Zhang LH, Jia YN, Zhong XY, Liu YQ,
Cheng XJ, Wang XH, Xing XF, Hu Y, Li YA, et al: Presence of
S100A9-positive inflammatory cells in cancer tissues correlates
with an early stage cancer and a better prognosis in patients with
gastric cancer. BMC Cancer. 12:3162012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhao Z, Zhang C and Zhao Q: S100A9 as a
novel diagnostic and prognostic biomarker in human gastric cancer.
Scand J Gastroenterol. 55:338–346. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ghavami S, Chitayat S, Hashemi M, Eshraghi
M, Chazin WJ, Halayko AJ and Kerkhoff C: S100A8/A9: A Janus-faced
molecule in cancer therapy and tumorgenesis. Eur J Pharmacol.
625:73–83. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shabani F, Farasat A, Mahdavi M and Gheibi
N: Calprotectin (S100A8/S100A9): A key protein between inflammation
and cancer. Inflamm Res. 67:801–812. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ghavami S, Rashedi I, Dattilo BM, Eshraghi
M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C and Los M:
S100A8/A9 at low concentration promotes tumor cell growth via RAGE
ligation and MAP kinase-dependent pathway. J Leukoc Biol.
83:1484–1492. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shabani F, Mahdavi M, Imani M,
Hosseinpour-Feizi MA and Gheibi N: Calprotectin
(S100A8/S100A9)-induced cytotoxicity and apoptosis in human gastric
cancer AGS cells: Alteration in expression levels of Bax, Bcl-2,
and ERK2. Hum Exp Toxicol. 39:1031–1045. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang C, Luo J, Rong J, He S, Zhang L and
Zheng F: Distinct prognostic roles of S100 mRNA expression in
gastric cancer. Pathol Res Pract. 215:127–136. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kwon CH, Moon HJ, Park HJ, Choi JH and
Park DY: S100A8 and S100A9 promotes invasion and migration through
p38 mitogen-activated protein kinase-dependent NF-κB activation in
gastric cancer cells. Mol Cells. 35:226–234. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Swann JB, Vesely MD, Silva A, Sharkey J,
Akira S, Schreiber RD and Smyth MJ: Demonstration of
inflammation-induced cancer and cancer immunoediting during primary
tumorigenesis. Proc Natl Acad Sci USA. 105:652–656. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Katono K, Sato Y, Jiang SX, Kobayashi M,
Saito K, Nagashio R, Ryuge S, Satoh Y, Saegusa M and Masuda N:
Clinicopathological significance of S100A10 expression in lung
adenocarcinomas. Asian Pac J Cancer Prev. 17:289–294. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhao JT, Chi BJ, Sun Y, Chi NN, Zhang XM,
Sun JB, Chen Y and Xia Y: LINC00174 is an oncogenic lncRNA of
hepatocellular carcinoma and regulates miR-320/S100A10 axis. Cell
Biochem Funct. 38:859–869. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li Y, Li XY, Li LX, Zhou RC, Sikong Y, Gu
X, Jin BY, Li B, Li YQ and Zuo XL: S100A10 accelerates aerobic
glycolysis and malignant growth by activating mTOR-signaling
pathway in gastric cancer. Front Cell Dev Biol. 8:5594862020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang C, Zhang C, Li X, Shen J, Xu Y, Shi
H, Mu X, Pan J, Zhao T, Li M, et al: CPT1A-mediated succinylation
of S100A10 increases human gastric cancer invasion. J Cell Mol Med.
23:293–305. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Koh SA and Lee KH: HGF-mediated S100A11
overexpression enhances proliferation and invasion of gastric
cancer. Am J Transl Res. 10:3385–3394. 2018.PubMed/NCBI
|
|
43
|
Cui Y, Li L, Li Z, Yin J, Lane J, Ji J and
Jiang WG: Dual effects of targeting S100A11 on suppressing cellular
metastatic properties and sensitizing drug response in gastric
cancer. Cancer Cell Int. 21:2432021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jiang Y, Yu X, Zhao Y, Huang J, Li T, Chen
H, Zhou J, Huang Z and Yang Z: ADAMTS19 suppresses cell migration
and invasion by targeting S100A16 via the NF-κB pathway in human
gastric cancer. Biomolecules. 11:5612021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lv H, Hou H, Lei H, Nie C, Chen B, Bie L,
Han L and Chen X: MicroRNA-6884-5p regulates the proliferation,
invasion, and EMT of gastric cancer cells by directly targeting
S100A16. Oncol Res. 28:225–236. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang Y, Song L, Liu M, Ge R, Zhou Q, Liu
W, Li R, Qie J, Zhen B, Wang Y, et al: A proteomics landscape of
circadian clock in mouse liver. Nat Commun. 9:15532018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kang JH, Toita R and Murata M: Liver
cell-targeted delivery of therapeutic molecules. Crit Rev
Biotechnol. 36:132–143. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N
and Zhao Y: Recent progress in treatment of hepatocellular
carcinoma. Am J Cancer Res. 10:2993–3036. 2020.PubMed/NCBI
|
|
49
|
Liu Z, Liu H, Pan H, Du Q and Liang J:
Clinicopathological significance of S100A4 expression in human
hepatocellular carcinoma. J Int Med Res. 41:457–462. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhai X, Zhu H, Wang W, Zhang S, Zhang Y
and Mao G: Abnormal expression of EMT-related proteins, S100A4,
vimentin and E-cadherin, is correlated with clinicopathological
features and prognosis in HCC. Med Oncol. 31:9702014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang J, Zhang DL, Jiao XL and Dong Q:
S100A4 regulates migration and invasion in hepatocellular carcinoma
HepG2 cells via NF-κB-dependent MMP-9 signal. Eur Rev Med Pharmacol
Sci. 17:2372–2382. 2013.PubMed/NCBI
|
|
52
|
Grotterød I, Maelandsmo GM and Boye K:
Signal transduction mechanisms involved in S100A4-induced
activation of the transcription factor NF-kappaB. BMC Cancer.
10:2412010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Guo Q, Wang J, Cao Z, Tang Y, Feng C and
Huang F: Interaction of S100A1 with LATS1 promotes cell growth
through regulation of the Hippo pathway in hepatocellular
carcinoma. Int J Oncol. 53:592–602. 2018.PubMed/NCBI
|
|
54
|
Zhu K, Huang W, Wang W, Liao L, Li S, Yang
S, Xu J, Li L, Meng M, Xie Y, et al: Up-regulation of S100A4
expression by HBx protein promotes proliferation of hepatocellular
carcinoma cells and its correlation with clinical survival. Gene.
749:1446792020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cui JF, Liu YK, Pan BS, Song HY, Zhang Y,
Sun RX, Chen J, Feng JT, Tang ZY, Yu YL, et al: Differential
proteomic analysis of human hepatocellular carcinoma cell line
metastasis-associated proteins. J Cancer Res Clin Oncol.
130:615–622. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Schmidt-Hansen B, Ornås D, Grigorian M,
Klingelhöfer J, Tulchinsky E, Lukanidin E and Ambartsumian N:
Extracellular S100A4(mts1) stimulates invasive growth of mouse
endothelial cells and modulates MMP-13 matrix metalloproteinase
activity. Oncogene. 23:5487–5495. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN,
Fu CJ, Chen HX, Yuan HF, Li ZW, Shi L, et al: Hepatocellular
carcinoma-associated mesenchymal stem cells promote hepatocarcinoma
progression: Role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology.
57:2274–2286. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sun H, Wang C, Hu B, Gao X, Zou T, Luo Q,
Chen M, Fu Y, Sheng Y, Zhang K, et al: Exosomal S100A4 derived from
highly metastatic hepatocellular carcinoma cells promotes
metastasis by activating STAT3. Signal Transduct Target Ther.
6:1872021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hua Z, Chen J, Sun B, Zhao G, Zhang Y,
Fong Y, Jia Z and Yao L: Specific expression of osteopontin and
S100A6 in hepatocellular carcinoma. Surgery. 149:783–791. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Arai K, Yamada T and Nozawa R:
Immunohistochemical investigation of migration inhibitory
factor-related protein (MRP)-14 expression in hepatocellular
carcinoma. Med Oncol. 17:183–188. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kittaka N, Takemasa I, Takeda Y, Marubashi
S, Nagano H, Umeshita K, Dono K, Matsubara K, Matsuura N and Monden
M: Molecular mapping of human hepatocellular carcinoma provides
deeper biological insight from genomic data. Eur J Cancer.
44:885–897. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sobolewski C, Abegg D, Berthou F, Dolicka
D, Calo N, Sempoux C, Fournier M, Maeder C, Ay AS, Clavien PA, et
al: S100A11/ANXA2 belongs to a tumour suppressor/oncogene network
deregulated early with steatosis and involved in inflammation and
hepatocellular carcinoma development. Gut. 69:1841–1854. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang C, Yao R, Chen J, Zou Q and Zeng L:
S100 family members: Potential therapeutic target in patients with
hepatocellular carcinoma: A STROBE study. Medicine (Baltimore).
100:e241352021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Song D, Xu B, Shi D, Li S and Cai Y:
S100A6 promotes proliferation and migration of HepG2 cells via
increased ubiquitin-dependent degradation of p53. Open Med (Wars).
15:317–326. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Németh J, Stein I, Haag D, Riehl A,
Longerich T, Horwitz E, Breuhahn K, Gebhardt C, Schirmacher P, Hahn
M, et al: S100A8 and S100A9 are novel nuclear factor kappa B target
genes during malignant progression of murine and human liver
carcinogenesis. Hepatology. 50:1251–1262. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liao J, Li JZ, Xu J, Xu Y, Wen WP, Zheng L
and Li L: High S100A9+ cell density predicts a poor
prognosis in hepatocellular carcinoma patients after curative
resection. Aging (Albany NY). 13:16367–16380. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Duan L, Wu R, Zhang X, Wang D, You Y,
Zhang Y, Zhou L and Chen W: HBx-induced S100A9 in NF-κB dependent
manner promotes growth and metastasis of hepatocellular carcinoma
cells. Cell Death Dis. 9:6292018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Luo X, Xie H, Long X, Zhou M, Xu Z, Shi B,
Jiang H and Li Z: EGFRvIII mediates hepatocellular carcinoma cell
invasion by promoting S100 calcium binding protein A11 expression.
PLoS One. 8:e833322013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zheng M, Meng H, Li Y, Shi J, Han Y, Zhao
C, Chen J, Han J, Liang J, Chen Y, et al: S100A11 promotes
metastasis via AKT and ERK signaling pathways and has a diagnostic
role in hepatocellular carcinoma. Int J Med Sci. 20:318–328. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bachet JB, Maréchal R, Demetter P,
Bonnetain F, Cros J, Svrcek M, Bardier-Dupas A, Hammel P, Sauvanet
A, Louvet C, et al: S100A2 is a predictive biomarker of adjuvant
therapy benefit in pancreatic adenocarcinoma. Eur J Cancer.
49:2643–2653. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen Y, Wang C, Song J, Xu R, Ruze R and
Zhao Y: S100A2 is a prognostic biomarker involved in immune
infiltration and predict immunotherapy response in pancreatic
cancer. Front Immunol. 12:7580042021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Che P, Yang Y, Han X, Hu M, Sellers JC,
Londono-Joshi AI, Cai GQ, Buchsbaum DJ, Christein JD, Tang Q, et
al: S100A4 promotes pancreatic cancer progression through a dual
signaling pathway mediated by Src and focal adhesion kinase. Sci
Rep. 5:84532015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tsukamoto N, Egawa S, Akada M, Abe K,
Saiki Y, Kaneko N, Yokoyama S, Shima K, Yamamura A, Motoi F, et al:
The expression of S100A4 in human pancreatic cancer is associated
with invasion. Pancreas. 42:1027–1033. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jia F, Liu M, Li X, Zhang F, Yue S and Liu
J: Relationship between S100A4 protein expression and pre-operative
serum CA19.9 levels in pancreatic carcinoma and its prognostic
significance. World J Surg Oncol. 17:1632019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Woo T, Okudela K, Mitsui H, Tajiri M, Rino
Y, Ohashi K and Masuda M: Up-regulation of S100A11 in lung
adenocarcinoma-its potential relationship with cancer progression.
PLoS One. 10:e01426422015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Anania MC, Miranda C, Vizioli MG, Mazzoni
M, Cleris L, Pagliardini S, Manenti G, Borrello MG, Pierotti MA and
Greco A: S100A11 overexpression contributes to the malignant
phenotype of papillary thyroid carcinoma. J Clin Endocrinol Metab.
98:E1591–E1600. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xiao MB, Jiang F, Ni WK, Chen BY, Lu CH,
Li XY and Ni RZ: High expression of S100A11 in pancreatic
adenocarcinoma is an unfavorable prognostic marker. Med Oncol.
29:1886–1891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xiao M, Li T, Ji Y, Jiang F, Ni W, Zhu J,
Bao B, Lu C and Ni R: S100A11 promotes human pancreatic cancer
PANC-1 cell proliferation and is involved in the PI3K/AKT signaling
pathway. Oncol Lett. 15:175–182. 2018.PubMed/NCBI
|
|
80
|
Ji YF, Li T, Jiang F, Ni WK, Guan CQ, Liu
ZX, Lu CH, Ni RZ, Wu W and Xiao MB: Correlation between S100A11 and
the TGF-β1/SMAD4 pathway and its effects on the
proliferation and apoptosis of pancreatic cancer cell line PANC-1.
Mol Cell Biochem. 450:53–64. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Takamatsu H, Yamamoto KI, Tomonobu N,
Murata H, Inoue Y, Yamauchi A, Sumardika IW, Chen Y, Kinoshita R,
Yamamura M, et al: Extracellular S100A11 plays a critical role in
spread of the fibroblast population in pancreatic cancers. Oncol
Res. 27:713–727. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pietas A, Schlüns K, Marenholz I, Schäfer
BW, Heizmann CW and Petersen I: Molecular cloning and
characterization of the human S100A14 gene encoding a novel member
of the S100 family. Genomics. 79:513–522. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhu H, Gao W, Li X, Yu L, Luo D, Liu Y and
Yu X: S100A14 promotes progression and gemcitabine resistance in
pancreatic cancer. Pancreatology. 21:589–598. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhuang H, Chen X, Dong F, Zhang Z, Zhou Z,
Ma Z, Huang S, Chen B, Zhang C and Hou B: Prognostic values and
immune suppression of the S100A family in pancreatic cancer. J Cell
Mol Med. 25:3006–3018. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang C, Chen Y, Xinpeng Y, Xu R, Song J,
Ruze R, Xu Q and Zhao Y: Construction of immune-related signature
and identification of S100A14 determining immune-suppressive
microenvironment in pancreatic cancer. BMC Cancer. 22:8792022.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fang D, Zhang C, Xu P, Liu Y, Mo X, Sun Q,
Abdelatty A, Hu C, Xu H, Zhou G, et al: S100A16 promotes metastasis
and progression of pancreatic cancer through FGF19-mediated AKT and
ERK1/2 pathways. Cell Biol Toxicol. 37:555–571. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen T, Xia DM, Qian C and Liu SR:
Integrated analysis identifies S100A16 as a potential prognostic
marker for pancreatic cancer. Am J Transl Res. 13:5720–5730.
2021.PubMed/NCBI
|
|
88
|
Li T, Ren T, Huang C, Li Y, Yang P, Che G,
Luo L, Chen Y, Peng S, Lin Y and Zeng L: S100A16 induces
epithelial-mesenchymal transition in human PDAC cells and is a new
therapeutic target for pancreatic cancer treatment that synergizes
with gemcitabine. Biochem Pharmacol. 189:1143962021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Borroni EM, Savino B, Bonecchi R and
Locati M: Chemokines sound the alarmin: The role of atypical
chemokine in inflammation and cancer. Semin Immunol. 38:63–71.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tu G, Gao W, Li Y, Dian Y, Xue B, Niu L,
Yu X and Zhu H: Expressional and prognostic value of S100A16 in
pancreatic cancer via integrated bioinformatics analyses. Front
Cell Dev Biol. 9:6456412021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Baidoun F, Elshiwy K, Elkeraie Y, Merjaneh
Z, Khoudari G, Sarmini MT, Gad M, Al-Husseini M and Saad A:
Colorectal cancer epidemiology: Recent trends and impact on
outcomes. Curr Drug Targets. 22:998–1009. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Fukuda Y, Tanaka Y, Eto K, Ukai N, Sonobe
S, Takahashi H, Ikegami M and Shimoda M: S100-stained perineural
invasion is associated with worse prognosis in stage I/II
colorectal cancer: Its possible association with immunosuppression
in the tumor. Pathol Int. 72:117–127. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kaya T and Dursun A: Can lymphovascular
and perineural invasion be additional staging criteria in
colorectal cancer? J Coll Physicians Surg Pak. 31:657–662. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Alotaibi AM, Lee JL, Kim J, Lim SB, Yu CS,
Kim TW, Kim JH and Kim JC: Prognostic and oncologic significance of
perineural invasion in sporadic colorectal cancer. Ann Surg Oncol.
24:1626–1634. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hatthakarnkul P, Ammar A, Pennel KAF,
Officer-Jones L, Cusumano S, Quinn JA, Matly AAM, Alexander PG, Hay
J, Andersen D, et al: Protein expression of S100A2 reveals it
association with patient prognosis and immune infiltration profile
in colorectal cancer. J Cancer. 14:1837–1847. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yang Y, Zeng Z, Li L, Lei S, Wu Y, Chen T
and Zhang J: Sinapine thiocyanate exhibited anti-colorectal cancer
effects by inhibiting KRT6A/S100A2 axis. Cancer Biol Ther.
24:22491702023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Schwartz L, Seyfried T, Alfarouk KO, Da
Veiga Moreira J and Fais S: Out of Warburg effect: An effective
cancer treatment targeting the tumor specific metabolism and
dysregulated pH. Semin Cancer Biol. 43:134–138. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Li C, Chen Q, Zhou Y, Niu Y, Wang X, Li X,
Zheng H, Wei T, Zhao L and Gao H: S100A2 promotes glycolysis and
proliferation via GLUT1 regulation in colorectal cancer. FASEB J.
34:13333–13344. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Destek S and Gul VO: S100A4 may be a good
prognostic marker and a therapeutic target for colon cancer. J
Oncol. 2018:18287912018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Dahlmann M, Kobelt D, Walther W, Mudduluru
G and Stein U: S100A4 in cancer metastasis: Wnt signaling-driven
interventions for metastasis restriction. Cancers (Basel).
8:592016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Boye K and Maelandsmo GM: S100A4 and
metastasis: A small actor playing many roles. Am J Pathol.
176:528–535. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hsieh YY, Cheng YW, Wei PL and Yang PM:
Repurposing of ingenol mebutate for treating human colorectal
cancer by targeting S100 calcium-binding protein A4 (S100A4).
Toxicol Appl Pharmacol. 449:1161342022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ghoul A, Serova M, Astorgues-Xerri L,
Bieche I, Bousquet G, Varna M, Vidaud M, Phillips E, Weill S,
Benhadji KA, et al: Epithelial-to-mesenchymal transition and
resistance to ingenol 3-angelate, a novel protein kinase C
modulator, in colon cancer cells. Cancer Res. 69:4260–4269. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Sack U, Walther W, Scudiero D, Selby M,
Aumann J, Lemos C, Fichtner I, Schlag PM, Shoemaker RH and Stein U:
S100A4-induced cell motility and metastasis is restricted by the
Wnt/β-catenin pathway inhibitor calcimycin in colon cancer cells.
Mol Biol Cell. 22:3344–3354. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hernández-Maqueda JG, Luna-Ulloa LB,
Santoyo-Ramos P, Castañeda-Patlán MC and Robles-Flores M: Protein
kinase C delta negatively modulates canonical Wnt pathway and cell
proliferation in colon tumor cell lines. PLoS One. 8:e585402013.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Schöpe PC, Zinnow V, Ishfaq MA, Smith J,
Herrmann P, Shoemaker RH, Walther W and Stein U: Cantharidin and
its analogue norcantharidin inhibit metastasis-inducing genes
S100A4 and MACC1. Int J Mol Sci. 24:11792023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Srikrishna G: S100A8 and S100A9: New
insights into their roles in malignancy. J Innate Immun. 4:31–40.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li S, Xu F, Li H, Zhang J, Zhong A, Huang
B and Lai M: S100A8+ stroma cells predict a good
prognosis and inhibit aggressiveness in colorectal carcinoma.
Oncoimmunology. 6:e12602132016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li S, Zhang J, Qian S, Wu X, Sun L, Ling
T, Jin Y, Li W, Sun L, Lai M and Xu F: S100A8 promotes
epithelial-mesenchymal transition and metastasis under TGF-β/USF2
axis in colorectal cancer. Cancer Commun (Lond). 41:154–170. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Hashida H and Coffey RJ: Significance of a
calcium-binding protein S100A14 expression in colon cancer
progression. J Gastrointest Oncol. 13:149–162. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sun X, Wang T, Zhang C, Ning K, Guan ZR,
Chen SX, Hong TT and Hua D: S100A16 is a prognostic marker for
colorectal cancer. J Surg Oncol. 117:275–283. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ou S, Liao Y, Shi J, Tang J, Ye Y, Wu F,
Wang W, Fei J, Xie F and Bai L: S100A16 suppresses the
proliferation, migration and invasion of colorectal cancer cells in
part via the JNK/p38 MAPK pathway. Mol Med Rep. 23:1642021.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sood A, Mishra D, Kharbanda OP, Chauhan
SS, Gupta SD, Deo SSV, Yadav R, Ralhan R, Kumawat R and Kaur H:
Role of S100 A7 as a diagnostic biomarker in oral potentially
malignant disorders and oral cancer. J Oral Maxillofac Pathol.
26:166–172. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tanigawa K, Tsukamoto S, Koma YI, Kitamura
Y, Urakami S, Shimizu M, Fujikawa M, Kodama T, Nishio M, Shigeoka
M, et al: S100A8/A9 induced by interaction with macrophages in
esophageal squamous cell carcinoma promotes the migration and
invasion of cancer cells via Akt and p38 MAPK pathways. Am J
Pathol. 192:536–552. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhong C, Niu Y, Liu W, Yuan Y, Li K, Shi
Y, Qiu Z, Li K, Lin Z, Huang Z, et al: S100A9 derived from
chemoembolization-induced hypoxia governs mitochondrial function in
hepatocellular carcinoma progression. Adv Sci (Weinh).
9:e22022062022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Low RRJ, Fung KY, Gao H, Preaudet A,
Dagley LF, Yousef J, Lee B, Emery-Corbin SJ, Nguyen PM, Larsen RH,
et al: S100 family proteins are linked to organoid morphology and
EMT in pancreatic cancer. Cell Death Differ. 30:1155–1165. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Dong JX, Zhang LF, Liu DB, Li ZG, Gao F,
Wang LP and Dong JH: Circular ribonucleic acid circ-FADS2 promotes
colorectal cancer cell proliferation and invasion by regulating
miR-498/S100A16. J Physiol Pharmacol. 73:2022.
|
|
119
|
Treese C, Hartl K, Pötzsch M, Dahlmann M,
von Winterfeld M, Berg E, Hummel M, Timm L, Rau B, Walther W, et
al: S100A4 is a strong negative prognostic marker and potential
therapeutic target in adenocarcinoma of the stomach and esophagus.
Cells. 11:10562022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Liao WC, Chen CT, Tsai YS, Wang XY, Chang
YT, Wu MS and Chow LP: S100A8, S100A9 and S100A8/A9 heterodimer as
novel cachexigenic factors for pancreatic cancer-induced cachexia.
BMC Cancer. 23:5132023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zeng X, Guo H, Liu Z, Qin Z, Cong Y, Ren
N, Zhang Y and Zhang N: S100A11 activates the pentose phosphate
pathway to induce malignant biological behaviour of pancreatic
ductal adenocarcinoma. Cell Death Dis. 13:5682022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhou X, Shi M, Cao J, Yuan T, Yu G, Chen
Y, Fang W and Li H: S100 calcium binding protein A10, a novel
oncogene, promotes the proliferation, invasion, and migration of
hepatocellular carcinoma. Front Genet. 12:6950362021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang X, Huang H, Sze KM, Wang J, Tian L,
Lu J, Tsui YM, Ma HT, Lee E, Chen A, et al: S100A10 promotes HCC
development and progression via transfer in extracellular vesicles
and regulating their protein cargos. Gut. 72:1370–1384. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Sun Q, Fu C, Liu J, Li S and Zheng J:
Knockdown of LPCAT1 repressed hepatocellular carcinoma growth and
invasion by targeting S100A11. Ann Clin Lab Sci. 53:212–221.
2023.PubMed/NCBI
|
|
125
|
Lin H, Yang P, Li B, Chang Y, Chen Y, Li
Y, Liu K, Liang X, Chen T, Dai Y, et al: S100A10 promotes
pancreatic ductal adenocarcinoma cells proliferation, migration and
adhesion through JNK/LAMB3-LAMC2 axis. Cancers (Basel). 15:2022022.
View Article : Google Scholar : PubMed/NCBI
|