Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2024 Volume 64 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 64 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Current data and future perspectives on DNA methylation in ovarian cancer (Review)

  • Authors:
    • Mengyu Fu
    • Fengying Deng
    • Jie Chen
    • Li Fu
    • Jiahui Lei
    • Ting Xu
    • Youguo Chen
    • Jinhua Zhou
    • Qinqin Gao
    • Hongmei Ding
  • View Affiliations / Copyright

    Affiliations: Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
    Copyright: © Fu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 62
    |
    Published online on: May 8, 2024
       https://doi.org/10.3892/ijo.2024.5650
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ovarian cancer (OC) represents the most prevalent malignancy of the female reproductive system. Its distinguishing features include a high aggressiveness, substantial morbidity and mortality, and a lack of apparent symptoms, which collectively pose significant challenges for early detection. Given that aberrant DNA methylation events leading to altered gene expression are characteristic of numerous tumor types, there has been extensive research into epigenetic mechanisms, particularly DNA methylation, in human cancers. In the context of OC, DNA methylation is often associated with the regulation of critical genes, such as BRCA1/2 and Ras‑association domain family 1A. Methylation modifications within the promoter regions of these genes not only contribute to the pathogenesis of OC, but also induce medication resistance and influence the prognosis of patients with OC. As such, a more in‑depth understanding of DNA methylation underpinning carcinogenesis could potentially facilitate the development of more effective therapeutic approaches for this intricate disease. The present review focuses on classical tumor suppressor genes, oncogenes, signaling pathways and associated microRNAs in an aim to elucidate the influence of DNA methylation on the development and progression of OC. The advantages and limitations of employing DNA methylation in the diagnosis, treatment and prevention of OC are also discussed. On the whole, the present literature review indicates that the DNA methylation of specific genes could potentially serve as a prognostic biomarker for OC and a therapeutic target for personalized treatment strategies. Further investigations in this field may yield more efficacious diagnostic and therapeutic alternatives for patients with OC.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Lumish MA, Kohn EC and Tew WP: Top advances of the year: Ovarian cancer. Cancer. 130:837–845. 2024.

2 

Tang H, Kulkarni S, Peters C, Eddison J, Al-Ani M and Madhusudan S: The current status of DNA-repair-directed precision oncology strategies in epithelial ovarian cancers. Int J Mol Sci. 24:72932023.

3 

Feng J, Xu L, Chen Y, Lin R, Li H and He H: Trends in incidence and mortality for ovarian cancer in China from 1990 to 2019 and its forecasted levels in 30 years. J Ovarian Res. 16:1392023.

4 

Bodelon C, Killian JK, Sampson JN, Anderson WF, Matsuno R, Brinton LA, Lissowska J, Anglesio MS, Bowtell DDL, Doherty JA, et al: Molecular classification of epithelial ovarian cancer based on methylation profiling: Evidence for survival heterogeneity. Clin Cancer Res. 25:5937–5946. 2019.

5 

Zhang M, Cheng S, Jin Y, Zhao Y and Wang Y: Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim Biophys Acta Rev Cancer. 1875:1885032021.

6 

Lheureux S, Braunstein M and Oza AM: Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin. 69:280–304. 2019.

7 

Natanzon Y, Goode EL and Cunningham JM: Epigenetics in ovarian cancer. Semin Cancer Biol. 51:160–169. 2018.

8 

Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez-Acevedo M, Villagra A and Chiappinelli KB: Epigenetic therapy for ovarian cancer: Promise and progress. Clin Epigenetics. 11:72019.

9 

Peng S, Zhang X and Wu Y: Potential applications of DNA methylation testing technology in female tumors and screening methods. Biochim Biophys Acta Rev Cancer. 1878:1889412023.

10 

Antonino M, Nicolò M, Jerome Renee L, Federico M, Chiara V, Stefano S, Maria S, Salvatore C, Antonio B, Calvo-Henriquez C, et al: Single-nucleotide polymorphism in chronic rhinosinusitis: A systematic review. Clin Otolaryngol. 47:14–23. 2022.

11 

Matei D and Nephew KP: Epigenetic attire in ovarian cancer: The emperor's new clothes. Cancer Res. 80:3775–3785. 2020.

12 

Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y, Berry WA, Huang T and Nephew KP: Epigenetic resensitization to platinum in ovarian cancer. Cancer Res. 72:2197–2205. 2012.

13 

Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y and Cao L: DNA methylation, its mediators and genome integrity. Int J Biol Sci. 11:604–617. 2015.

14 

Singh A, Gupta S and Sachan M: Epigenetic biomarkers in the management of ovarian cancer: Current prospectives. Front Cell Dev Biol. 7:1822019.

15 

Ma L, Li C, Yin H, Huang J, Yu S, Zhao J, Tang Y, Yu M, Lin J, Ding L and Cui Q: The mechanism of DNA methylation and miRNA in breast cancer. Int J Mol Sci. 24:93602023.

16 

Coughlan AY and Testa G: Exploiting epigenetic dependencies in ovarian cancer therapy. Int J Cancer. 149:1732–1743. 2021.

17 

Xie W, Sun H, Li X, Lin F, Wang Z and Wang X: Ovarian cancer: Epigenetics, drug resistance, and progression. Cancer Cell Int. 21:4342021.

18 

Klymenko Y and Nephew KP: Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: A therapeutic road less traveled. Cancers (Basel). 10:2952018.

19 

Yang Y, Wu L, Shu X, Lu Y, Shu XO, Cai Q, Beeghly-Fadiel A, Li B, Ye F, Berchuck A, et al: Genetic data from nearly 63,000 women of european descent predicts DNA methylation biomarkers and epithelial ovarian cancer risk. Cancer Res. 79:505–517. 2019.

20 

Lo Riso P, Villa CE, Gasparoni G, Vingiani A, Luongo R, Manfredi A, Jungmann A, Bertolotti A, Borgo F, Garbi A, et al: A cell-of-origin epigenetic tracer reveals clinically distinct subtypes of high-grade serous ovarian cancer. Genome Med. 12:942020.

21 

Tomar T, Alkema NG, Schreuder L, Meersma GJ, de Meyer T, van Criekinge W, Klip HG, Fiegl H, van Nieuwenhuysen E, Vergote I, et al: Methylome analysis of extreme chemoresponsive patients identifies novel markers of platinum sensitivity in high-grade serous ovarian cancer. BMC Med. 15:1162017.

22 

Feng LY, Yan BB, Huang YZ and Li L: Abnormal methylation characteristics predict chemoresistance and poor prognosis in advanced high-grade serous ovarian cancer. Clin Epigenetics. 13:1412021.

23 

Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK and Zhang W: Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 306:1557–1565. 2011.

24 

Chan KY, Ozçelik H, Cheung AN, Ngan HY and Khoo US: Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res. 62:4151–4156. 2002.

25 

Stewart C, Ralyea C and Lockwood S: Ovarian cancer: An integrated review. Semin Oncol Nurs. 35:151–156. 2019.

26 

Moschetta M, George A, Kaye SB and Banerjee S: BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol. 27:1449–1455. 2016.

27 

Glajzer J, Castillo-Tong DC, Richter R, Vergote I, Kulbe H, Vanderstichele A, Ruscito I, Trillsch F, Mustea A, Kreuzinger C, et al: Impact of BRCA mutation status on tumor dissemination pattern, surgical outcome and patient survival in primary and recurrent high-grade serous ovarian cancer: A multicenter retrospective study by the ovarian cancer therapy-innovative models prolong survival (OCTIPS) consortium. Ann Surg Oncol. 30:35–45. 2023.

28 

Jung Y, Hur S, Liu J, Lee S, Kang BS, Kim M and Choi YJ: Peripheral blood BRCA1 methylation profiling to predict familial ovarian cancer. J Gynecol Oncol. 32:e232021.

29 

Barrett JE, Jones A, Evans I, Reisel D, Herzog C, Chindera K, Kristiansen M, Leavy OC, Manchanda R, Bjørge L, et al: The DNA methylome of cervical cells can predict the presence of ovarian cancer. Nat Commun. 13:4482022.

30 

Wu TI, Huang RL, Su PH, Mao SP, Wu CH and Lai HC: Ovarian cancer detection by DNA methylation in cervical scrapings. Clin Epigenetics. 11:1662019.

31 

Bartlett TE, Chindera K, McDermott J, Breeze CE, Cooke WR, Jones A, Reisel D, Karegodar ST, Arora R, Beck S, et al: Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution. Nat Commun. 7:116202016.

32 

Ibragimova I and Cairns P: Assays for hypermethylation of the BRCA1 gene promoter in tumor cells to predict sensitivity to PARP-inhibitor therapy. Methods Mol Biol. 780:277–291. 2011.

33 

Sahnane N, Carnevali I, Formenti G, Casarin J, Facchi S, Bombelli R, Di Lauro E, Memoli D, Salvati A, Rizzo F, et al: BRCA methylation testing identifies a subset of ovarian carcinomas without germline variants that can benefit from PARP inhibitor. Int J Mol Sci. 21:97082020.

34 

Taniguchi T, Tischkowitz M, Ameziane N, Hodgson SV, Mathew CG, Joenje H, Mok SC and D'Andrea AD: Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 9:568–574. 2003.

35 

Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature. 474:609–615. 2011.

36 

Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J, Dobrovic A, Birrer MJ, Webb PM, Stewart C, et al: BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian ovarian cancer study group. J Clin Oncol. 30:2654–2663. 2012.

37 

Mikeska T, Alsop K; Australian Ovarian Cancer Study Group; Mitchell G, Bowtell DD and Dobrovic A: No evidence for PALB2 methylation in high-grade serous ovarian cancer. J Ovarian Res. 6:262013.

38 

McAlpine JN, Porter H, Köbel M, Nelson BH, Prentice LM, Kalloger SE, Senz J, Milne K, Ding J, Shah SP, et al: BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma. Mod Pathol. 25:740–750. 2012.

39 

Shariati-Kohbanani M, Zare-Bidaki M, Taghavi MM, Taghipour Z, Shabanizadeh A, Kennedy D, Dahim H, Salahshoor MR, Jalili C and Kazemi Arababadi M: DNA methylation and microRNA patterns are in association with the expression of BRCA1 in ovarian cancer. Cell Mol Biol (Noisy-le-grand). 62:16–23. 2016.

40 

Soslow RA, Han G, Park KJ, Garg K, Olvera N, Spriggs DR, Kauff ND and Levine DA: Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod Pathol. 25:625–536. 2012.

41 

Kraya AA, Maxwell KN, Eiva MA, Wubbenhorst B, Pluta J, Feldman M, Nayak A, Powell DJ Jr, Domchek SM, Vonderheide RH and Nathanson KL: PTEN loss and BRCA1 promoter hypermethylation negatively predict for immunogenicity in BRCA-deficient ovarian cancer. JCO Precis Oncol. 6:e21001592022.

42 

Ebata T, Yamashita S, Takeshima H, Yoshida H, Kawata Y, Kino N, Yasugi T, Terao Y, Yonemori K, Kato T and Ushijima T: DNA methylation of the immediate upstream region of BRCA1 major transcription start sites is an independent favorable prognostic factor in patients with high-grade serous ovarian cancer. Gynecol Oncol. 167:513–518. 2022.

43 

Bai X, Fu Y, Xue H, Guo K, Song Z, Yu Z, Jia T, Yan Y, Zhao L, Mi X, et al: BRCA1 promoter hypermethylation in sporadic epithelial ovarian carcinoma: Association with low expression of BRCA1, improved survival and co-expression of DNA methyltransferases. Oncol Lett. 7:1088–1096. 2014.

44 

Pradjatmo H: Methylation status and expression of BRCA2 in epithelial ovarian cancers in Indonesia. Asian Pac J Cancer Prev. 16:8599–8604. 2015.

45 

Lane DP: p53 and human cancers. Br Med Bull. 50:582–599. 1994.

46 

Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012.

47 

Chen YC, Young MJ, Chang HP, Liu CY, Lee CC, Tseng YL, Wang YC, Chang WC and Hung JJ: Estradiol-mediated inhibition of DNMT1 decreases p53 expression to induce M2-macrophage polarization in lung cancer progression. Oncogenesis. 11:252022.

48 

Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng G, et al: MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 32:772–778. 2011.

49 

Cunningham JM, Winham SJ, Wang C, Weiglt B, Fu Z, Armasu SM, McCauley BM, Brand AH, Chiew YE, Elishaev E, et al: DNA methylation profiles of ovarian clear cell carcinoma. Cancer Epidemiol Biomarkers Prev. 31:132–141. 2022.

50 

Chmelarova M, Krepinska E, Spacek J, Laco J, Beranek M and Palicka V: Methylation in the p53 promoter in epithelial ovarian cancer. Clin Transl Oncol. 15:160–163. 2013.

51 

Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R and Berberich SJ: YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res. 70:3566–3575. 2010.

52 

Abdollahi A: LOT1 (ZAC1/PLAGL1) and its family members: Mechanisms and functions. J Cell Physiol. 210:16–25. 2007.

53 

Su HC, Wu SC, Yen LC, Chiao LK, Wang JK, Chiu YL, Ho CL and Huang SM: Gene expression profiling identifies the role of Zac1 in cervical cancer metastasis. Sci Rep. 10:118372020.

54 

Cheng JC, Auersperg N and Leung PC: Inhibition of p53 represses E-cadherin expression by increasing DNA methyltransferase-1 and promoter methylation in serous borderline ovarian tumor cells. Oncogene. 30:3930–3942. 2011.

55 

Bin Y, Ding Y, Xiao W and Liao A: RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta. 504:98–108. 2020.

56 

Wei B, Wu F, Xing W, Sun H, Yan C, Zhao C, Wang D, Chen X, Chen Y, Li M and Ma J: A panel of DNA methylation biomarkers for detection and improving diagnostic efficiency of lung cancer. Sci Rep. 11:167822021.

57 

Tang Q, Cheng J, Cao X, Surowy H and Burwinkel B: Blood-based DNA methylation as biomarker for breast cancer: A systematic review. Clin Epigenetics. 8:1152016.

58 

Shi H, Li Y, Wang X, Lu C, Yang L, Gu C, Xiong J, Huang Y, Wang S and Lu M: Association between RASSF1A promoter methylation and ovarian cancer: A meta-analysis. PLoS One. 8:e767872013.

59 

Dammann R, Schagdarsurengin U, Strunnikova M, Rastetter M, Seidel C, Liu L, Tommasi S and Pfeifer GP: Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol Histopathol. 18:665–677. 2003.

60 

Terp SK, Stoico MP, Dybkaer K and Pedersen IS: Early diagnosis of ovarian cancer based on methylation profiles in peripheral blood cell-free DNA: A systematic review. Clin Epigenetics. 15:242023.

61 

Rezk NA, Mohamed RH, Alnemr AA and Harira M: Promoter methylation of RASSF1A gene in egyptian patients with ovarian cancer. Appl Biochem Biotechnol. 185:153–162. 2018.

62 

Bhagat R, Chadaga S, Premalata CS, Ramesh G, Ramesh C, Pallavi VR and Krishnamoorthy L: Aberrant promoter methylation of the RASSF1A and APC genes in epithelial ovarian carcinoma development. Cell Oncol (Dordr). 35:473–479. 2012.

63 

Xing BL, Li T, Tang ZH, Jiao L, Ge SM, Qiang X and OuYang J: Cumulative methylation alternations of gene promoters and protein markers for diagnosis of epithelial ovarian cancer. Genet Mol Res. 14:4532–4540. 2015.

64 

Vo LT, Thuan TB, Thu DM, Uyen NQ, Ha NT and To TV: Methylation profile of BRCA1, RASSF1A and ER in Vietnamese women with ovarian cancer. Asian Pac J Cancer Prev. 14:7713–7718. 2013.

65 

Wang H, Cui M, Zhang S, He J, Song L and Chen Y: Relationship between RAS association domain family protein 1A promoter methylation and the clinicopathological characteristics in patients with ovarian cancer: A systematic meta-analysis. Gynecol Obstet Invest. 83:349–357. 2018.

66 

Ho CM, Yen TL, Chien TY and Huang SH: Distinct promotor methylation at tumor suppressive genes in ovarian cancer stromal progenitor cells and ovarian cancer and its clinical implication. Am J Cancer Res. 12:5325–5341. 2022.

67 

Ho CM, Shih DTB, Hsiao CC, Huang SH, Chang SF and Cheng WF: Gene methylation of human ovarian carcinoma stromal progenitor cells promotes tumorigenesis. J Transl Med. 13:3672015.

68 

Reyes HD, Devor EJ, Warrier A, Newtson AM, Mattson J, Wagner V, Duncan GN, Leslie KK and Gonzalez-Bosquet J: Differential DNA methylation in high-grade serous ovarian cancer (HGSOC) is associated with tumor behavior. Sci Rep. 9:179962019.

69 

Feng Q, Deftereos G, Hawes SE, Stern JE, Willner JB, Swisher EM, Xi L, Drescher C, Urban N and Kiviat N: DNA hypermethylation, Her-2/neu overexpression and p53 mutations in ovarian carcinoma. Gynecol Oncol. 111:320–329. 2008.

70 

Xie G, Hu C and Huang M: Methylation status of RASSF1A and clinical efficacy of neoadjuvant therapy in patients with advanced epithelial ovarian cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 36:631–633. 2011.In Chinese.

71 

Giannopoulou L, Chebouti I, Pavlakis K, Kasimir-Bauer S and Lianidou ES: RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA. Oncotarget. 8:21429–21443. 2017.

72 

S SK, Swamy SN, Premalatha CS, Pallavi VR and Gawari R: Aberrant promoter hypermethylation of RASSF1a and BRCA1 in circulating cell-free tumor DNA serves as a biomarker of ovarian carcinoma. Asian Pac J Cancer Prev. 20:3001–3005. 2019.

73 

Marfella CG and Imbalzano AN: The Chd family of chromatin remodelers. Mutat Res. 618:30–40. 2007.

74 

Zhao R, Yan Q, Lv J, Huang H, Zheng W, Zhang B and Ma W: CHD5, a tumor suppressor that is epigenetically silenced in lung cancer. Lung Cancer. 76:324–231. 2012.

75 

Xie CR, Li Z, Sun HG, Wang FQ, Sun Y, Zhao WX, Zhang S, Zhao WX, Wang XM and Yin ZY: Mutual regulation between CHD5 and EZH2 in hepatocellular carcinoma. Oncotarget. 6:40940–40952. 2015.

76 

Qu Y, Dang S and Hou P: Gene methylation in gastric cancer. Clin Chim Acta. 424:53–65. 2013.

77 

Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q and Tao Q: The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget. 7:21618–21630. 2016.

78 

Ma Z, Song J, Liu S, Han L, Chen Y, Wang Y, Yu C and Hou L: Decreased expression of the CHD5 gene and its clinicopathological significance in breast cancer: Correlation with aberrant DNA methylation. Oncol Lett. 12:4021–4026. 2016.

79 

Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, et al: Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 23:316–331. 2013.

80 

Li H, Qi Z, Niu Y, Yang Y, Li M, Pang Y, Liu M, Cheng X, Xu M and Wang Z: FBP1 regulates proliferation, metastasis, and chemoresistance by participating in C-MYC/STAT3 signaling axis in ovarian cancer. Oncogene. 40:5938–5949. 2021.

81 

Wang Y, Shao F and Chen L: ALDH1A2 suppresses epithelial ovarian cancer cell proliferation and migration by downregulating STAT3. Onco Targets Ther. 11:599–608. 2018.

82 

Choi JA, Kwon H, Cho H, Chung JY, Hewitt SM and Kim JH: ALDH1A2 is a candidate tumor suppressor gene in ovarian cancer. Cancers (Basel). 11:15532019.

83 

Zhu L, Zhang S and Jin Y: Foxd3 suppresses NFAT-mediated differentiation to maintain self-renewal of embryonic stem cells. EMBO Rep. 15:1286–1296. 2014.

84 

He GY, Hu JL, Zhou L, Zhu XH, Xin SN, Zhang D, Lu GF, Liao WT, Ding YQ and Liang L: The FOXD3/miR-214/MED19 axis suppresses tumour growth and metastasis in human colorectal cancer. Br J Cancer. 115:1367–1378. 2016.

85 

Cheng AS, Li MS, Kang W, Cheng VY, Chou JL, Lau SS, Go MY, Lee CC, Ling TK, Ng EK, et al: Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology. 144:122–133.e9. 2013.

86 

Luo GF, Chen CY, Wang J, Yue HY, Tian Y, Yang P, Li YK and Li Y: FOXD3 may be a new cellular target biomarker as a hypermethylation gene in human ovarian cancer. Cancer Cell Int. 19:442019.

87 

Katsaros D, Yu H, Levesque MA, Danese S, Genta F, Richiardi G, Fracchioli S, Khosravi MJ, Diamandi A, Gordini G, et al: IGFBP-3 in epithelial ovarian carcinoma and its association with clinico-pathological features and patient survival. Eur J Cancer. 37:478–485. 2001.

88 

Wiley A, Katsaros D, Fracchioli S and Yu H: Methylation of the insulin-like growth factor binding protein-3 gene and prognosis of epithelial ovarian cancer. Int J Gynecol Cancer. 16:210–218. 2006.

89 

Torng PL, Lin CW, Chan MW, Yang HW, Huang SC and Lin CT: Promoter methylation of IGFBP-3 and p53 expression in ovarian endometrioid carcinoma. Mol Cancer. 8:1202009.

90 

Urrutia R: KRAB-containing zinc-finger repressor proteins. Genome Biol. 4:2312003.

91 

Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, Li J, Srivastava G, Ng MH, Fukagawa T, Wu X, et al: KRAB zinc finger protein ZNF382 is a proapoptotic tumor suppressor that represses multiple oncogenes and is commonly silenced in multiple carcinomas. Cancer Res. 70:6516–6526. 2010.

92 

Mase S, Shinjo K, Totani H, Katsushima K, Arakawa A, Takahashi S, Lai HC, Lin RI, Chan MWY, Sugiura-Ogasawara M and Kondo Y: ZNF671 DNA methylation as a molecular predictor for the early recurrence of serous ovarian cancer. Cancer Sci. 110:1105–1116. 2019.

93 

Yan J, Zhang J, Zhang X, Li X, Li L, Li Z, Chen R, Zhang L, Wu J, Wang X, et al: SPARC is down-regulated by DNA methylation and functions as a tumor suppressor in T-cell lymphoma. Exp Cell Res. 364:125–132. 2018.

94 

Nagaraju GP and El-Rayes BF: SPARC and DNA methylation: Possible diagnostic and therapeutic implications in gastrointestinal cancers. Cancer Lett. 328:10–17. 2013.

95 

Singh A, Gupta S and Sachan M: Evaluation of the diagnostic potential of candidate hypermethylated genes in epithelial ovarian cancer in North Indian population. Front Mol Biosci. 8:7190562021.

96 

Niskakoski A, Kaur S, Staff S, Renkonen-Sinisalo L, Lassus H, Järvinen HJ, Mecklin JP, Bützow R and Peltomäki P: Epigenetic analysis of sporadic and Lynch-associated ovarian cancers reveals histology-specific patterns of DNA methylation. Epigenetics. 9:1577–1587. 2014.

97 

Socha MJ, Said N, Dai Y, Kwong J, Ramalingam P, Trieu V, Desai N, Mok SC and Motamed K: Aberrant promoter methylation of SPARC in ovarian cancer. Neoplasia. 11:126–135. 2009.

98 

Gusyatiner O and Hegi ME: Glioma epigenetics: From subclassification to novel treatment options. Semin Cancer Biol. 51:50–58. 2018.

99 

Shilpa V, Bhagat R, Premalata CS, Pallavi VR, Ramesh G and Krishnamoorthy L: Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer. Indian J Med Res. 140:616–623. 2014.

100 

Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, et al: A compendium of mutational cancer driver genes. Nat Rev Cancer. 20:555–572. 2020.

101 

Eun Kwon H and Taylor HS: The role of HOX genes in human implantation. Ann N Y Acad Sci. 1034:1–18. 2004.

102 

Widschwendter M, Apostolidou S, Jones AA, Fourkala EO, Arora R, Pearce CL, Frasco MA, Ayhan A, Zikan M, Cibula D, et al: HOXA methylation in normal endometrium from premenopausal women is associated with the presence of ovarian cancer: A proof of principle study. Int J Cancer. 125:2214–2218. 2009.

103 

Wu Q, Lothe RA, Ahlquist T, Silins I, Tropé CG, Micci F, Nesland JM, Suo Z and Lind GE: DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Mol Cancer. 6:452007.

104 

Montavon C, Gloss BS, Warton K, Barton CA, Statham AL, Scurry JP, Tabor B, Nguyen TV, Qu W, Samimi G, et al: Prognostic and diagnostic significance of DNA methylation patterns in high grade serous ovarian cancer. Gynecol Oncol. 124:582–588. 2012.

105 

Singh A, Gupta S, Badarukhiya JA and Sachan M: Detection of aberrant methylation of HOXA9 and HIC1 through multiplex MethyLight assay in serum DNA for the early detection of epithelial ovarian cancer. Int J Cancer. 147:1740–1752. 2020.

106 

Faaborg L, Fredslund Andersen R, Waldstrøm M, Høgdall E, Høgdall C, Adimi P, Jakobsen A and Dahl Steffensen K: Analysis of HOXA9 methylated ctDNA in ovarian cancer using sense-antisense measurement. Clin Chim Acta. 522:152–157. 2021.

107 

Rusan M, Andersen RF, Jakobsen A and Steffensen KD: Circulating HOXA9-methylated tumour DNA: A novel biomarker of response to poly (ADP-ribose) polymerase inhibition in BRCA-mutated epithelial ovarian cancer. Eur J Cancer. 125:121–129. 2020.

108 

van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR and Wu Z: Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone. 143:1156592021.

109 

Lin J, Chen L, Wu D, Lin J, Liu B and Guo C: Potential diagnostic and prognostic values of CBX8 Expression in liver hepatocellular carcinoma, kidney renal clear cell carcinoma, and ovarian cancer: A study based on TCGA data mining. Comput Math Methods Med. 2022:13728792022.

110 

Li Q, Pan Y, Cao Z and Zhao S: Comprehensive analysis of prognostic value and immune infiltration of chromobox family members in colorectal cancer. Front Oncol. 10:5826672020.

111 

Sung HY, Yang SD, Park AK, Ju W and Ahn JH: Aberrant hypomethylation of solute carrier family 6 member 12 promoter induces metastasis of ovarian cancer. Yonsei Med J. 58:27–34. 2017.

112 

Higa A, Mulot A, Delom F, Bouchecareilh M, Nguyên DT, Boismenu D, Wise MJ and Chevet E: Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) in the control of endoplasmic reticulum homeostasis. J Biol Chem. 286:44855–44868. 2011.

113 

Zhang S, Liu Q, Wei Y, Xiong Y, Gu Y, Huang Y, Tang F and Ouyang Y: Anterior gradient-2 regulates cell communication by coordinating cytokine-chemokine signaling and immune infiltration in breast cancer. Cancer Sci. 114:2238–2253. 2023.

114 

He J, Fu Y, Hu J, Chen J and Lou G: Hypomethylation-mediated AGR2 overexpression facilitates cell proliferation, migration, and invasion of lung adenocarcinoma. Cancer Manag Res. 13:5177–5185. 2021.

115 

Sung HY, Choi EN, Lyu D, Park AK, Ju W and Ahn JH: Aberrant hypomethylation-mediated AGR2 overexpression induces an aggressive phenotype in ovarian cancer cells. Oncol Rep. 32:815–820. 2014.

116 

Chan DW, Lam WY, Chen F, Yung MMH, Chan YS, Chan WS, He F, Liu SS, Chan KKL, Li B and Ngan HYS: Genome-wide DNA methylome analysis identifies methylation signatures associated with survival and drug resistance of ovarian cancers. Clin Epigenetics. 13:1422021.

117 

Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017.

118 

Li HJ, Ke FY, Lin CC, Lu MY, Kuo YH, Wang YP, Liang KH, Lin SC, Chang YH, Chen HY, et al: ENO1 promotes lung cancer metastasis via HGFR and WNT signaling-driven epithelial-to-mesenchymal transition. Cancer Res. 81:4094–4109. 2021.

119 

Xu X, Zhang M, Xu F and Jiang S: Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer. 19:1652020.

120 

Hu W, Li M, Chen Y and Gu X: UBE2S promotes the progression and Olaparib resistance of ovarian cancer through Wnt/β-catenin signaling pathway. J Ovarian Res. 14:1212021.

121 

Deshmukh A, Arfuso F, Newsholme P and Dharmarajan A: Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signalling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol. 109:23–32. 2019.

122 

Takada T, Yagi Y, Maekita T, Imura M, Nakagawa S, Tsao SW, Miyamoto K, Yoshino O, Yasugi T, Taketani Y and Ushijima T: Methylation-associated silencing of the Wnt antagonist SFRP1 gene in human ovarian cancers. Cancer Sci. 95:741–744. 2004.

123 

Yen HY, Tsao CW, Lin YW, Kuo CC, Tsao CH and Liu CY: Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep. 9:172672019.

124 

Ho CM, Lai HC, Huang SH, Chien TY, Lin MC and Chang SF: Promoter methylation of sFRP5 in patients with ovarian clear cell adenocarcinoma. Eur J Clin Invest. 40:310–318. 2010.

125 

Ho CM, Huang CJ, Huang CY, Wu YY, Chang SF and Cheng WF: Promoter methylation status of HIN-1 associated with outcomes of ovarian clear cell adenocarcinoma. Mol Cancer. 11:532012.

126 

Lin HW, Fu CF, Chang MC, Lu TP, Lin HP, Chiang YC, Chen CA and Cheng WF: CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics. 10:1397–1413. 2018.

127 

Su HY, Lai HC, Lin YW, Liu CY, Chen CK, Chou YC, Lin SP, Lin WC, Lee HY and Yu MH: Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int J Cancer. 127:555–567. 2010.

128 

Kumar D, Patel SA, Hassan MK, Mohapatra N, Pattanaik N and Dixit M: Reduced IQGAP2 expression promotes EMT and inhibits apoptosis by modulating the MEK-ERK and p38 signaling in breast cancer irrespective of ER status. Cell Death Dis. 12:3892021.

129 

Deng Z, Wang L, Hou H, Zhou J and Li X: Epigenetic regulation of IQGAP2 promotes ovarian cancer progression via activating Wnt/β-catenin signaling. Int J Oncol. 48:153–160. 2016.

130 

Ge YX, Wang CH, Hu FY, Pan LX, Min J, Niu KY, Zhang L, Li J and Xu T: New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway. J Cell Physiol. 233:79–87. 2018.

131 

de Leon M, Cardenas H, Vieth E, Emerson R, Segar M, Liu Y, Nephew K and Matei D: Transmembrane protein 88 (TMEM88) promoter hypomethylation is associated with platinum resistance in ovarian cancer. Gynecol Oncol. 142:539–547. 2016.

132 

Yang L, Pang Y and Moses HL: TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31:220–227. 2010.

133 

Morikawa M, Derynck R and Miyazono K: TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016.

134 

Matsumura N, Huang Z, Mori S, Baba T, Fujii S, Konishi I, Iversen ES, Berchuck A and Murphy SK: Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer. Genome Res. 21:74–82. 2011.

135 

Cardenas H, Vieth E, Lee J, Segar M, Liu Y, Nephew KP and Matei D: TGF-β induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells. Epigenetics. 9:1461–1472. 2014.

136 

Chou JL, Su HY, Chen LY, Liao YP, Hartman-Frey C, Lai YH, Yang HW, Deatherage DE, Kuo CT, Huang YW, et al: Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer. Lab Invest. 90:414–425. 2010.

137 

Chou JL, Huang RL, Shay J, Chen LY, Lin SJ, Yan PS, Chao WT, Lai YH, Lai YL, Chao TK, et al: Hypermethylation of the TGF-β target, ABCA1 is associated with poor prognosis in ovarian cancer patients. Clin Epigenetics. 7:12015.

138 

Wegner M: All purpose Sox: The many roles of Sox proteins in gene expression. Int J Biochem Cell Biol. 42:381–390. 2010.

139 

Shonibare Z, Monavarian M, O'Connell K, Altomare D, Shelton A, Mehta S, Jaskula-Sztul R, Phaeton R, Starr MD, Whitaker R, et al: Reciprocal SOX2 regulation by SMAD1-SMAD3 is critical for anoikis resistance and metastasis in cancer. Cell Rep. 40:1110662022.

140 

Ween MP, Oehler MK and Ricciardelli C: Transforming growth factor-beta-induced protein (TGFBI)/(βig-H3): A matrix protein with dual functions in ovarian cancer. Int J Mol Sci. 13:10461–10477. 2012.

141 

Wang N, Zhang H, Yao Q, Wang Y, Dai S and Yang X: TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer. J Exp Clin Cancer Res. 31:62012.

142 

Ho CM, Lin MC, Huang SH, Huang CJ, Lai HC, Chien TY and Chang SF: PTEN promoter methylation and LOH of 10q22-23 locus in PTEN expression of ovarian clear cell adenocarcinomas. Gynecol Oncol. 112:307–313. 2009.

143 

Ediriweera MK, Tennekoon KH and Samarakoon SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol. 59:147–160. 2019.

144 

Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, Huang TH, Kim S and Nephew KP: Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics. 2:342009.

145 

Li GN, Zhao XJ, Wang Z, Luo MS, Shi SN, Yan DM, Li HY, Liu JH, Yang Y, Tan JH, et al: Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation. Signal Transduct Target Ther. 7:3172022.

146 

Walch A, Specht K, Braselmann H, Stein H, Siewert JR, Hopt U, Höfler H and Werner M: Coamplification and coexpression of GRB7 and ERBB2 is found in high grade intraepithelial neoplasia and in invasive Barrett's carcinoma. Int J Cancer. 112:747–753. 2004.

147 

Chen K, Liu MX, Mak CS, Yung MM, Leung TH, Xu D, Ngu SF, Chan KK, Yang H, Ngan HY and Chan DW: Methylation-associated silencing of miR-193a-3p promotes ovarian cancer aggressiveness by targeting GRB7 and MAPK/ERK pathways. Theranostics. 8:423–436. 2018.

148 

Sung HY, Yang SD, Ju W and Ahn JH: Aberrant epigenetic regulation of GABRP associates with aggressive phenotype of ovarian cancer. Exp Mol Med. 49:e3352017.

149 

He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.

150 

Kuhlmann JD, Rasch J, Wimberger P and Kasimir-Bauer S: microRNA and the pathogenesis of ovarian cancer-a new horizon for molecular diagnostics and treatment? Clin Chem Lab Med. 50:601–615. 2012.

151 

Cairns RA: Drivers of the Warburg phenotype. Cancer J. 21:56–61. 2015.

152 

Zhou Y, Zheng X, Lu J, Chen W, Li X and Zhao L: Ginsenoside 20(S)-Rg3 inhibits the Warburg effect via modulating DNMT3A/MiR-532-3p/HK2 pathway in ovarian cancer cells. Cell Physiol Biochem. 45:2548–2559. 2018.

153 

Zhang S, Pei M, Li Z, Li H, Liu Y and Li J: Double-negative feedback interaction between DNA methyltransferase 3A and microRNA-145 in the Warburg effect of ovarian cancer cells. Cancer Sci. 109:2734–2745. 2018.

154 

Li J, Zhang S, Zou Y, Wu L, Pei M and Jiang Y: miR-145 promotes miR-133b expression through c-myc and DNMT3A-mediated methylation in ovarian cancer cells. J Cell Physiol. 235:4291–4301. 2020.

155 

Teng Y, Zuo X, Hou M, Zhang Y, Li C, Luo W and Li X: A double-negative feedback interaction between MicroRNA-29b and DNMT3A/3B contributes to ovarian cancer progression. Cell Physiol Biochem. 39:2341–2352. 2016.

156 

Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM Jr and Nanjundan M: Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep. 11:62702021.

157 

Chen Q, Wang Y, Dang H and Wu X: MicroRNA-148a-3p inhibits the proliferation of cervical cancer cells by regulating the expression levels of DNMT1 and UTF1. Oncol Lett. 22:6172021.

158 

Wu YH, Huang YF, Wu PY, Chang TH, Huang SC and Chou CY: The downregulation of miR-509-3p expression by collagen type XI alpha 1-regulated hypermethylation facilitates cancer progression and chemoresistance via the DNA methyltransferase 1/Small ubiquitin-like modifier-3 axis in ovarian cancer cells. Res Sq. rs.3.rs–2592453. 2023.

159 

Han X, Zhen S, Ye Z, Lu J, Wang L, Li P, Li J, Zheng X, Li H, Chen W, et al: A feedback loop between miR-30a/c-5p and DNMT1 mediates cisplatin resistance in ovarian cancer cells. Cell Physiol Biochem. 41:973–986. 2017.

160 

Vera O, Jimenez J, Pernia O, Rodriguez-Antolin C, Rodriguez C, Sanchez Cabo F, Soto J, Rosas R, Lopez-Magallon S, Esteban Rodriguez I, et al: DNA methylation of miR-7 is a mechanism involved in platinum response through MAFG overexpression in cancer cells. Theranostics. 7:4118–4134. 2017.

161 

Li X, Pan Q, Wan X, Mao Y, Lu W, Xie X and Cheng X: Methylation-associated Has-miR-9 deregulation in paclitaxel-resistant epithelial ovarian carcinoma. BMC Cancer. 15:5092015.

162 

Yang C, Cai J, Wang Q, Tang H, Cao J, Wu L and Wang Z: Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol. 124:325–334. 2012.

163 

Xu S, Fu GB, Tao Z, OuYang J, Kong F, Jiang BH, Wan X and Chen K: MiR-497 decreases cisplatin resistance in ovarian cancer cells by targeting mTOR/P70S6K1. Oncotarget. 6:26457–26471. 2015.

164 

Han X, Liu D, Zhou Y, Wang L, Hou H, Chen H, Zhang L, Chen W, Li X and Zhao L: The negative feedback between miR-143 and DNMT3A regulates cisplatin resistance in ovarian cancer. Cell Biol Int. 45:227–237. 2021.

165 

He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J and Wu X: Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics. 9:8206–8220. 2019.

166 

Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, et al: MicroRNA signatures in human ovarian cancer. Cancer Res. 67:8699–8707. 2007.

167 

Loginov VI, Pronina IV, Filippova EA, Burdennyy AM, Lukina SS, Kazubskaya TP, Uroshlev LA, Fridman MV, Brovkina OI, Apanovich NV, et al: Aberrant methylation of 20 miRNA genes specifically involved in various steps of ovarian carcinoma spread: From primary tumors to peritoneal macroscopic metastases. Int J Mol Sci. 23:13002022.

168 

Deng Y, Zhao F, Hui L, Li X, Zhang D, Lin W, Chen Z and Ning Y: Suppressing miR-199a-3p by promoter methylation contributes to tumor aggressiveness and cisplatin resistance of ovarian cancer through promoting DDR1 expression. J Ovarian Res. 10:502017.

169 

Schmid G, Notaro S, Reimer D, Abdel-Azim S, Duggan-Peer M, Holly J, Fiegl H, Rössler J, Wiedemair A, Concin N, et al: Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer. 16:1022016.

170 

Zuberi M, Khan I, Mir R, Gandhi G, Ray PC and Saxena A: Utility of serum miR-125b as a diagnostic and prognostic indicator and its alliance with a panel of tumor suppressor genes in epithelial ovarian cancer. PLoS One. 11:e01539022016.

171 

He J, Xu Q, Jing Y, Agani F, Qian X, Carpenter R, Li Q, Wang XR, Peiper SS, Lu Z, et al: Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep. 13:1116–1122. 2012.

172 

Ye Z, Li J, Han X, Hou H, Chen H, Zheng X, Lu J, Wang L, Chen W, Li X and Zhao L: TET3 inhibits TGF-β1-induced epithelial-mesenchymal transition by demethylating miR-30d precursor gene in ovarian cancer cells. J Exp Clin Cancer Res. 35:722016.

173 

Vogt M, Munding J, Grüner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A and Hermeking H: Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458:313–322. 2011.

174 

Cai Y, Tsai HC, Yen RC, Zhang YW, Kong X, Wang W, Xia L and Baylin SB: Critical threshold levels of DNA methyltransferase 1 are required to maintain DNA methylation across the genome in human cancer cells. Genome Res. 27:533–544. 2017.

175 

Li H, Lei Y, Li S, Li F and Lei J: MicroRNA-20a-5p inhibits the autophagy and cisplatin resistance in ovarian cancer via regulating DNMT3B-mediated DNA methylation of RBP1. Reprod Toxicol. 109:93–100. 2022.

176 

Ye Z, Jiang Y and Wu J: DNMT3B attenuated the inhibition of TET3 on epithelial-mesenchymal transition in TGF-β1-induced ovarian cancer by methylating the TET3 promoter. Reprod Biol. 22:1007012022.

177 

Del Castillo Falconi VM, Díaz-Chávez J, Torres-Arciga K, Luna-Maldonado F, Gudiño-Gomez AA, Pedroza-Torres A, Castro-Hernández C, Cantú de León D and Herrera LA: Expression of DNA methyltransferase 3B isoforms is associated with DNA satellite 2 hypomethylation and clinical prognosis in advanced high-grade serous ovarian carcinoma. Int J Mol Sci. 23:127592022.

178 

Lyko F and Brown R: DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 97:1498–1506. 2005.

179 

Natoli M, Gallon J, Lu H, Amgheib A, Pinato DJ, Mauri FA, Marafioti T, Akarca AU, Ullmo I, Ip J, et al: Transcriptional analysis of multiple ovarian cancer cohorts reveals prognostic and immunomodulatory consequences of ERV expression. J Immunother Cancer. 9:e0015192021.

180 

Ma G, Li Y, Meng F, Sui C, Wang Y and Cheng D: Hsa_ circ_0000119 promoted ovarian cancer development via enhancing the methylation of CDH13 by sponging miR-142-5p. J Biochem Mol Toxicol. 37:e232642023.

181 

Wong-Brown MW, van der Westhuizen A and Bowden NA: Sequential azacitidine and carboplatin induces immune activation in platinum-resistant high-grade serous ovarian cancer cell lines and primes for checkpoint inhibitor immunotherapy. BMC Cancer. 22:1002022.

182 

Liu M, Thomas SL, DeWitt AK, Zhou W, Madaj ZB, Ohtani H, Baylin SB, Liang G and Jones PA: Dual inhibition of DNA and histone methyltransferases increases viral mimicry in ovarian cancer cells. Cancer Res. 78:5754–5766. 2018.

183 

Shim JI, Ryu JY, Jeong SY, Cho YJ, Choi JJ, Hwang JR, Choi JY, Sa JK and Lee JW: Combination effect of poly (ADP-ribose) polymerase inhibitor and DNA demethylating agents for treatment of epithelial ovarian cancer. Gynecol Oncol. 165:270–280. 2022.

184 

McDonald JI, Diab N, Arthofer E, Hadley M, Kanholm T, Rentia U, Gomez S, Yu A, Grundy EE, Cox O, et al: Epigenetic therapies in ovarian cancer alter repetitive element expression in a TP53-dependent manner. Cancer Res. 81:5176–5189. 2021.

185 

Steele N, Finn P, Brown R and Plumb JA: Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer. 100:758–763. 2009.

186 

Fang F, Balch C, Schilder J, Breen T, Zhang S, Shen C, Li L, Kulesavage C, Snyder AJ, Nephew KP and Matei DE: A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer. 116:4043–4053. 2010.

187 

Yin B, Ding J, Hu H, Yang M, Huang B, Dong W, Li F and Han L: Overexpressed CMTM6 improves prognosis and associated with immune infiltrates of ovarian cancer. Front Mol Biosci. 9:7690322022.

188 

Gomez S, Cox OL, Walker RR III, Rentia U, Hadley M, Arthofer E, Diab N, Grundy EE, Kanholm T, McDonald JI, et al: Inhibiting DNA methylation and RNA editing upregulates immunogenic RNA to transform the tumor microenvironment and prolong survival in ovarian cancer. J Immunother Cancer. 10:e0049742022.

189 

Giri AK and Aittokallio T: DNMT inhibitors increase methylation in the cancer genome. Front Pharmacol. 10:3852019.

190 

Bauerschlag DO, Ammerpohl O, Bräutigam K, Schem C, Lin Q, Weigel MT, Hilpert F, Arnold N, Maass N, Meinhold-Heerlein I and Wagner W: Progression-free survival in ovarian cancer is reflected in epigenetic DNA methylation profiles. Oncology. 80:12–20. 2011.

191 

Khajehnoori S, Zarei F, Mazaheri M and Dehghani-Firoozabadi A: Epidrug modulated expression of MiR-152 and MiR-148a reverse cisplatin resistance in ovarian cancer cells: An experimental in-vitro study. Iran J Pharm Res. 19:509–519. 2020.

192 

Belsky DW, Caspi A, Corcoran DL, Sugden K, Poulton R, Arseneault L, Baccarelli A, Chamarti K, Gao X, Hannon E, et al: DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife. 11:e734202022.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fu M, Deng F, Chen J, Fu L, Lei J, Xu T, Chen Y, Zhou J, Gao Q, Ding H, Ding H, et al: Current data and future perspectives on DNA methylation in ovarian cancer (Review). Int J Oncol 64: 62, 2024.
APA
Fu, M., Deng, F., Chen, J., Fu, L., Lei, J., Xu, T. ... Ding, H. (2024). Current data and future perspectives on DNA methylation in ovarian cancer (Review). International Journal of Oncology, 64, 62. https://doi.org/10.3892/ijo.2024.5650
MLA
Fu, M., Deng, F., Chen, J., Fu, L., Lei, J., Xu, T., Chen, Y., Zhou, J., Gao, Q., Ding, H."Current data and future perspectives on DNA methylation in ovarian cancer (Review)". International Journal of Oncology 64.6 (2024): 62.
Chicago
Fu, M., Deng, F., Chen, J., Fu, L., Lei, J., Xu, T., Chen, Y., Zhou, J., Gao, Q., Ding, H."Current data and future perspectives on DNA methylation in ovarian cancer (Review)". International Journal of Oncology 64, no. 6 (2024): 62. https://doi.org/10.3892/ijo.2024.5650
Copy and paste a formatted citation
x
Spandidos Publications style
Fu M, Deng F, Chen J, Fu L, Lei J, Xu T, Chen Y, Zhou J, Gao Q, Ding H, Ding H, et al: Current data and future perspectives on DNA methylation in ovarian cancer (Review). Int J Oncol 64: 62, 2024.
APA
Fu, M., Deng, F., Chen, J., Fu, L., Lei, J., Xu, T. ... Ding, H. (2024). Current data and future perspectives on DNA methylation in ovarian cancer (Review). International Journal of Oncology, 64, 62. https://doi.org/10.3892/ijo.2024.5650
MLA
Fu, M., Deng, F., Chen, J., Fu, L., Lei, J., Xu, T., Chen, Y., Zhou, J., Gao, Q., Ding, H."Current data and future perspectives on DNA methylation in ovarian cancer (Review)". International Journal of Oncology 64.6 (2024): 62.
Chicago
Fu, M., Deng, F., Chen, J., Fu, L., Lei, J., Xu, T., Chen, Y., Zhou, J., Gao, Q., Ding, H."Current data and future perspectives on DNA methylation in ovarian cancer (Review)". International Journal of Oncology 64, no. 6 (2024): 62. https://doi.org/10.3892/ijo.2024.5650
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team