You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Kamrani A, Hosseinzadeh R, Shomali N, Heris JA, Shahabi P, Mohammadinasab R, Sadeghvand S, Ghahremanzadeh K, Sadeghi M and Akbari M: New immunotherapeutic approaches for cancer treatment. Pathol Res Pract. 248:1546322023. View Article : Google Scholar : PubMed/NCBI | |
|
Ragusa M, Barbagallo C, Cirnigliaro M, Battaglia R, Brex D, Caponnetto A, Barbagallo D, Di Pietro C and Purrello M: Asymmetric RNA distribution among cells and their secreted exosomes: Biomedical meaning and considerations on diagnostic applications. Front Mol Biosci. 4:662027. View Article : Google Scholar | |
|
Betz C, Lenard A, Belting HG and Affolter M: Cell behaviors and dynamics during angiogenesis. Development. 143:2249–2260. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Szekanecz Z and Koch AE: Mechanisms of Disease: Angiogenesis in inflammatory diseases. Nat Clin Pract Rheumatol. 3:635–643. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nachmany I, Bogoch Y, Friedlander-Malik G, Amar O, Bondar E, Zohar N, Hantisteanu S, Fainaru O, Lubezky N, Klausner JM and Pencovich N: The transcriptional profile of circulating myeloid derived suppressor cells correlates with tumor development and progression in mouse. Genes Immun. 20:589–598. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang FT, Sun W, Zhang JT and Fan YZ: Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett. 17:3055–3065. 2019.PubMed/NCBI | |
|
Gasparics A, Kokeny G, Fintha A, Bencs R, Mozes MM, Agoston EI, Buday A, Ivics Z, Hamar P, Gyorffy B, et al: Alterations in SCAI expression during cell plasticity, fibrosis and cancer. Pathol Oncol Res. 24:641–651. 2018. View Article : Google Scholar | |
|
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar | |
|
Zeisberg EM, Potenta S, Xie L, Zeisberg M and Kalluri R: Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zhang L, Montgomery KC, Jiang L, Lyon CJ and Hu TY: Advanced technologies for molecular diagnosis of cancer: State of pre-clinical tumor-derived exosome liquid biopsies. Mater Today Bio. 18:1005382022. View Article : Google Scholar | |
|
Liao J, Liu R, Yin L and Pu Y: Expression profiling of exosomal miRNAs derived from human esophageal cancer cells by solexa High-Throughput sequencing. Int J Mol Sci. 15:15530–15551. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Saunderson SC, Dunn AC, Crocker PR and McLellan AD: CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 123:208–216. 2014. View Article : Google Scholar : | |
|
Andersen JS and Mann M: Organellar proteomics: Turning inventories into insights. EMBO Rep. 7:874–879. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Darband SG, Mirza-Aghazadeh-Attari M, Kaviani M, Mihanfar A, Sadighparvar S, Yousefi B and Majidinia M: Exosomes: Natural nanoparticles as bio shuttles for RNAi delivery. J Control Rel. 289:158–170. 2018. View Article : Google Scholar | |
|
Wang S, Wang J, Wei W and Ma G: Exosomes: The indispensable messenger in tumor pathogenesis and the rising star in antitumor applications. Adv Biosyst. 3:e19000082019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Wu D, Ma X, Wang J, Hou W and Zhang W: Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother. 128:1102372020. View Article : Google Scholar : PubMed/NCBI | |
|
Rashed M, Bayraktar EK, Helal G, Abd-Ellah M, Amero P, Chavez-Reyes A and Rodriguez-Aguayo C: Exosomes: From garbage bins to promising therapeutic targets. Int J Mol Sci. 18:5382017. View Article : Google Scholar | |
|
Mannavola F, D'Oronzo S, Cives M, Stucci LS, Ranieri G, Silvestris F and Tucci M: Extracellular vesicles and epigenetic modifications are hallmarks of melanoma progression. Int J Mol Sci. 21:522019. View Article : Google Scholar : PubMed/NCBI | |
|
He C, Zheng S, Luo Y and Wang B: Exosome theranostics: Biology and translational medicine. Theranostics. 8:237–255. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Kim SY, Tu W, Kim J, Xu A, Yang YM, Matsuda M, Reolizo L, Tsuchiya T, Billet S, et al: Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 35:1209–1226.e13. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu H, Sun T, An J, Wen L, Liu F, Bu Z, Cui Y and Feng J: Potential roles of exosomes in Parkinson's Disease: From pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol. 8:862020. View Article : Google Scholar : PubMed/NCBI | |
|
Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, Nabavi SM, Curti V and Daglia M: Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv. 36:328–334. 2018. View Article : Google Scholar | |
|
Doyle L and Wang M: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:7272019. View Article : Google Scholar : PubMed/NCBI | |
|
Das CK, Jena BC, Banerjee I, Das S, Parekh A, Bhutia SK and Mandal M: Exosome as a novel shuttle for delivery of therapeutics across biological barriers. Mol Pharm. 16:24–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang M and Zhou F: Biological functions and clinical applications of exosomal long non-coding RNAs in cancer. J Cell Mol Med. 24:11656–11666. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tai Y, Chen KC, Hsieh JT and Shen TL: Exosomes in cancer development and clinical applications. Cancer Sci. 109:2364–2374. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pan X, Li X, Dong L, Liu T, Zhang M, Zhang L, Zhang X, Huang L, Shi W, Sun H, et al: Tumour vasculature at single-cell resolution. Nature. 632:429–436. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shashni B, Nishikawa Y and Nagasaki Y: Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials. 269:1206452021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Qu X, Cao B, Yang T, Bao Q, Yue H, Zhang L, Zhang G, Wang L, Qiu P, et al: Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage. Adv Mater. 32:e20012602020. View Article : Google Scholar : PubMed/NCBI | |
|
Schaaf MB, Garg AD and Agostinis P: Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 9:1152018. View Article : Google Scholar : PubMed/NCBI | |
|
Arneth B: Tumor microenvironment. Medicina (Kaunas). 56:152019. View Article : Google Scholar | |
|
Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Vesely MD, Kershaw MH, Schreiber RD and Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 29:235–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Blankenstein T, Coulie PG, Gilboa E and Jaffee EM: The determinants of tumour immunogenicity. Nat Rev Cancer. 12:307–313. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lugano R, Ramachandran M and Dimberg A: Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 77:1745–1770. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Baeriswyl V and Christofori G: The angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ntellas P, Mavroeidis L, Gkoura S, Gazouli I, Amylidi AL, Papadaki A, Zarkavelis G, Mauri D, Karpathiou G, Kolettas E, et al: Old Player-new tricks: Non angiogenic effects of the VEGF/VEGFR pathway in cancer. Cancers (Basel). 12:31452020. View Article : Google Scholar : PubMed/NCBI | |
|
Welti J, Loges S, Dimmeler S and Carmeliet P: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 123:3190–3200. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chouaib S, Noman MZ, Kosmatopoulos K and Curran MA: Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene. 36:439–445. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Reardon DA: Update on the use of angiogenesis inhibitors in adult patients with brain tumors. Clin Adv Hematol Oncol. 12:293–303. 2014.PubMed/NCBI | |
|
Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, et al: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation. Cancer Cell. 6:553–563. 2004.PubMed/NCBI | |
|
Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, Van Ginderachter JoA, Tamagnone L and Mazzone M: Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell. 24:695–709. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rivera Lee B, Meyronet D, Hervieu V, Frederick, Mitchell J, Bergsland E and Bergers G: Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Reports. 11:577–591. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D and Jain RK: Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 7:383–388. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Stylianopoulos T and Jain RK: Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci USA. 110:18632–18637. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Weiss SA, Han SW, Lui K, Tchack J, Shapiro R, Berman R, Zhong J, Krogsgaard M, Osman I and Darvishian F: Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma. Hum Pathol. 57:16–125. 2016. View Article : Google Scholar | |
|
Park JS, Kim IK, Han S, Park I, Kim C, Bae J, Oh SJ, Lee S, Kim JH, Woo DC, et al: Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell. 30:953–967. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Maes H, Olmeda D, Soengas MS and Agostinis P: Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. FEBS J. 283:25–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kofler NM, Shawber CJ, Kangsamaksin T, Reed HO, Galatioto J and Kitajewski J: Notch signaling in developmental and tumor angiogenesis. Genes Cancer. 2:1106–1116. 2011. View Article : Google Scholar | |
|
Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, Quaegebeur A, Schoors S, Georgiadou M, Wouters J, et al: Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 26:190–206. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liang X, De Vera ME, Buchser WJ, de Vivar Chavez AR, Loughran P, Stolz DB, Basse P, Wang T, Van Houten B, Zeh HJ III and Lotze MT: Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res. 72:2791–2801. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI | |
|
Goel S, Wong AH and Jain RK: Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med. 2:a0064862012. View Article : Google Scholar : PubMed/NCBI | |
|
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI | |
|
Guerrouahen BS, Pasquier J, Kaoud NA, Maleki M, Beauchamp MC, Yasmeen A, Ghiabi P, Lis R, Vidal F, Saleh A, et al: Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer. Mol Cancer Ther. 13:3123–3136. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Eyler CE and Rich JN: Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
McMillin DW, Negri JM and Mitsiades CS: The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat Rev Drug Discov. 12:217–228. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jayson GC, Hicklin DJ and Ellis LM: Antiangiogenic therapy-evolving view based on clinical trial results. Nat Rev Clin Oncol. 9:297–303. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Arbiser J, D'Amato RJ, D'Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, et al: Forty-year journey of angiogenesis translational research. Sci Transl Med. 3:114rv32011. View Article : Google Scholar : PubMed/NCBI | |
|
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Tang T, Huang X, Zhang G, Hong Z, Bai X and Liang T: Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther. 6:722021. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Fu Y, Xie Q, Zhu B, Wang J and Zhang B: Anti-angiogenic agents in combination with immune checkpoint inhibitors: A promising strategy for cancer treatment. Front Immunol. 11:19562020. View Article : Google Scholar : PubMed/NCBI | |
|
Ciciola P, Cascetta P, Bianco C, Formisano L and Bianco R: Combining immune checkpoint inhibitors with anti-angiogenic agents. J Clin Med. 9:6752020. View Article : Google Scholar : PubMed/NCBI | |
|
Yi M, Jiao D, Qin S, Chu Q, Wu K and Li A: Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer. 18:602019. View Article : Google Scholar : PubMed/NCBI | |
|
Neves KB, Montezano AC, Lang NN and Touyz RM: Vascular toxicity associated with anti-angiogenic drugs. Clin Sci (Lond). 134:2503–2520. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hilmi M, Neuzillet C, Calderaro J, Lafdil F, Pawlotsky JM and Rousseau B: Angiogenesis and immune checkpoint inhibitors as therapies for hepatocellular carcinoma: Current knowledge and future research directions. J Immunother Cancer. 7:3332019. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao L, Yan K, Yang Y, Chen N, Li Y, Deng X, Wang L, Liu Y, Mu L, Li R, et al: Anti-vascular endothelial growth factor treatment induces blood flow recovery through vascular remodeling in high-fat diet induced diabetic mice. Microvasc Re. 105:70–76. 2016. View Article : Google Scholar | |
|
Broekman F, Giovannetti E and Peters GJ: Tyrosine kinase inhibitors: Multi-targeted or single-targeted? Mol Cancer Ther. 2:80–93. 2011. | |
|
Hutzen B, Bid HK, Houghton PJ, Pierson CR, Powell K, Bratasz A, Raffel C and Studebaker AW: Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer. 14:2062014. View Article : Google Scholar : PubMed/NCBI | |
|
Mohajeri A, Pilehvar-Soltanahmadi Y, Pourhassan-Moghaddam M, Abdolalizadeh J, Karimi P and Zarghami N: Cloning and expression of recombinant human endostatin in periplasm of escherichia coli expression system. Adv Pharm Bull. 6:187–194. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Matejuk A, Collet G, Nadim M, Grillon C and Kieda C: MicroRNAs and tumor vasculature normalization: Impact on Anti-Tumor immune response. Arch Immunol Ther Exp (Warsz). 61:285–299. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yin R, Guo L, Zhang W and Zheng J: The pleiotropic effects of miRNAs on tumor angiogenesis. J Cell Biochem. 116:1807–1815. 2015. View Article : Google Scholar | |
|
Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC and Martelli F: MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 283:15878–15883. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Karaa ZS, Iacovoni JS, Bastide A, Lacazette E, Touriol C and Prats H: The VEGF IRESes are differentially susceptible to translation inhibition by miR-16. RNA. 15:249–524. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X and Wang N: Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis. 18:373–382. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A, Pawlowski S, Rajan S and Doetschman T: Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn. 238:431–442. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Piera-Velazquez S and Jimenez SA: Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol Rev. 99:1281–1324. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Piera-Velazquez S, Li Z and Jimenez SA: Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Medici D and Olsen BR: The role of endothelial-mesenchymal transition in heterotopic ossification. J Bone Miner Res. 27:1619–1622. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
van Meeteren LA and ten Dijke P: Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 347:177–186. 2011. View Article : Google Scholar | |
|
Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Heldin CH and Moustakas A: Role of Smads in TGFβ signaling. Cell Tissue Res. 347:21–36. 2011. View Article : Google Scholar | |
|
Yeon JH, Jeong HE, Seo H, Cho S, Kim K, Na D Chung S, Park J, Choi N and Kang JY: Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomater. 76:146–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada NO, Heishima K, Akao Y and Senda T: Extracellular vesicles containing MicroRNA-92a-3p facilitate partial Endothelial-mesenchymal transition and angiogenesis in endothelial cells. Int J Mol Sci. 20:44062019. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Lee C, Kim I, Ro J, Kim J, Min Y, Park J, Sunkara V, Park YS, Michael I, et al: Three-dimensional human liver-chip emulating premetastatic niche formation by breast cancer-derived extracellular vesicles. ACS Nano. 14:14971–14988. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Z and Wang L: Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med. 55:1058–1069. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Z, Dong C, Jiang K, Xu Z, Li R, Guo K, Shao S and Wang L: Heterogeneity of cancer-associated fibroblasts and roles in the progression, prognosis, and therapy of hepatocellular carcinoma. J Hematol Oncol. 12:1012019. View Article : Google Scholar : PubMed/NCBI | |
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M and Worthley DL: Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 16:282–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016. View Article : Google Scholar | |
|
Huang M, Liu T, Ma P, Mitteer RA, Zhang Z, Kim HJ, Yeo E, Zhang D, Cai P, Li C, et al: c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 126:1801–1814. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nie L, Lyros O, Medda R, Jovanovic N, Schmidt JL, Otterson MF, Johnson CP, Behmaram B, Shaker R and Rafiee P: Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: Role of IL-1β and TGF-β2. Am J Physiol Cell Physiol. 307:C859–C877. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Ma W, Xu H, Huang M, Zhang D, He Z, Zhang L, Brem S, O'Rourke DM, Gong Y, et al: PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat Commun. 9:34392018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu K, Pan Q, Jia LQ, Dai Z, Ke AW, Zeng HY, Tang ZY, Fan J and Zhou J: MiR-302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelial-mesenchymal transition of endothelial cells. Sci Rep. 4:55242014. View Article : Google Scholar : PubMed/NCBI | |
|
Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu-Kaoud N, Halabi N, Guerrouahen BS, Rafii S and Rafii A: Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 13:272015. View Article : Google Scholar : PubMed/NCBI | |
|
Valastyan S and Weinberg RA: Tumor metastasis: Molecular insights and evolving paradigms. Cell. 147:275–292. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimatsu Y, Wakabayashi I, Kimuro S, Takahashi N, Takahashi K, Kobayashi M, Maishi N, Podyma-Inoue KA, Hida K, Miyazono K and Watabe T: TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation. Cancer Sci. 111:2385–2399. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, et al: Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Smeda M, Kieronska A, Adamski MG, Proniewski B, Sternak M, Mohaissen T, Przyborowski K, Derszniak K, Kaczor D, Stojak M, et al: Nitric oxide deficiency and endothelial-mesenchymal transition of pulmonary endothelium in the progression of 4T1 metastatic breast cancer in mice. Breast Cancer Res. 20:862018. View Article : Google Scholar : PubMed/NCBI | |
|
Krizbai IA, Gasparics A, Nagyoszi P, Fazakas C, Molnar J, Wilhelm I, Bencs R, Rosivall L and Sebe A: Endothelial-mesenchymal transition of brain endothelial cells: Possible role during metastatic extravasation. PLoS One. 10:e01196552015. View Article : Google Scholar : PubMed/NCBI | |
|
Choi SH, Kim AR, Nam JK, Kim JM, Kim JY, Seo HR, Lee HJ, Cho J and Lee YJ: Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6+ cancer cell and macrophage polarization. Nat Commun. 9:51082018. View Article : Google Scholar : | |
|
Ribas A: Adaptive immune resistance: How cancer protects from immune attack. Cancer Discovery. 5:915–919. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT and Gajewski TF: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 5:200ra1162013. View Article : Google Scholar : PubMed/NCBI | |
|
Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wölfel T, Hölzel M and Tüting T: Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 490:412–416. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM, Gad EA, Smorlesi A and Disis ML: Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol. 177:1526–1533. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, et al: Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69:2887–2895. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fan C, Chen LL, Hsu TA, Chen CC, Chua KV, LiC P and Huang TS: Endothelial-mesenchymal transition harnesses HSP90α-secreting M2-macrophages to exacerbate pancreatic ductal adenocarcinoma. J Hematol Oncol. 12:1382019. View Article : Google Scholar | |
|
Liu X, Hoft DF and Peng G: Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol. 43:132–147. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Riegler J, Gill H, Ogasawara A, Hedehus M, Javinal V, Oeh J, Ferl GZ, Marik J, Williams S, Sampath D, et al: VCAM-1 density and tumor perfusion predict T-cell infiltration and treatment response in preclinical models. Neoplasia. 21:1036–1050. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
|
Borriello L, Seeger RC, Asgharzadeh S and DeClerck YA: More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett. 380:304–314. 2016. View Article : Google Scholar | |
|
Marques P, Grossman AB and Korbonits M: The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol. 58:1008522020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L and Yu D: Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 1871:455–468. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, et al: Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. ELife. 5:e102502016. View Article : Google Scholar : PubMed/NCBI | |
|
Whiteside TL: Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 174:103–141. 2016. View Article : Google Scholar | |
|
Hu YB, Yan C, Mu L, Mi YL, Zhao H, Hu H, Li XL, Tao DD, Wu YQ, Gong JP and Qin JC: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene. 38:1951–1965. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Liu J, Zhang Q, Liu B, Cheng Y, Zhang Y, Sun Y, Ge H and Liu Y: Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J Exp Clin Cancer Res. 39:652020. View Article : Google Scholar : PubMed/NCBI | |
|
Pan S, Deng Y, Fu J, Zhang Y, Zhang Z and Qin X: N6-methyladenosine upregulates miR-181d-5p in exosomes derived from cancer-associated fibroblasts to inhibit 5-FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 60:142022. View Article : Google Scholar : | |
|
Yuan H, Chen B, Chai R, Gong W, Wan Z, Zheng B, Hu X, Guo Y, Gao S, Dai Q, et al: Loss of exosomal micro-RNA-200b-3p from hypoxia cancer-associated fibroblasts reduces sensitivity to 5-flourouracil in colorectal cancer through targeting high-mobility group box 3. Front Oncol. 12:9201312022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Qiu Q, Jing X, Song Z, Zhang Y, Wang C, Liu K, Ye F, Ji X, Luo F and Zhao R: Cancer-associated fibroblast-derived exosome miR-181b-3p promotes the occurrence and development of colorectal cancer by regulating SNX2 expression. Biochem Biophys Res Commun. 641:177–185. 2023. View Article : Google Scholar | |
|
Shi W, Liu Y, Qiu X, Yang L and Lin G: Cancer-associated fibroblasts-derived exosome-mediated transfer of miR-345-5p promotes the progression of colorectal cancer by targeting CDKN1A. Carcinogenesis. 44:317–327. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Li J, Tang Y and Yang M: Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J Transl Med. 19:82021. View Article : Google Scholar : PubMed/NCBI | |
|
Qu Z, Yang KD, Luo BH and Zhang F: CAFs-secreted exosomal cricN4BP2L2 promoted colorectal cancer stemness and chemoresistance by interacting with EIF4A3. Exp Cell Res. 418:1132662022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Li Y, Zou L and Zhu Z: Role of exosomes in crosstalk between Cancer-associated fibroblasts and cancer cells. Front Oncol. 9:3561029. View Article : Google Scholar | |
|
Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q, Shi L, Li H, Yin C, Luo H, Hao C, et al: Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis. 12:11202021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Du R, Li X, Liu C, Wang D, He X, Li G, Zhang K, Wang S, Hao Q, et al: CD63+ cancer-associated fibroblasts confer CDK4/6 inhibitor resistance to breast cancer cells by exosomal miR-20. Cancer Lett. 588:2167472024. View Article : Google Scholar | |
|
Fang Y, Zhou W, Rong Y, Kuang T, Xu X, Wu W, Wang D and Lou W: Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res. 383:1115432019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao M, Zhuang A, Fang Y and Chatterjee S: Cancer-Associated fibroblast-derived exosomal miRNA-320a promotes macrophage M2 polarization in vitro by regulating PTEN/PI3Kγ signaling in pancreatic cancer. J Oncol. 2022:95146972022. View Article : Google Scholar | |
|
Wang Z, Zhang M, Liu L, Yang Y, Qiu J, Yu Y and Li J: Prognostic and immunological role of cancer-associated fibroblasts-derived exosomal protein in esophageal squamous cell carcinoma. Int Immunopharmacol. 124:1108372023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao G, Li H, Guo Q, Zhou A, Wang X, Li P and Zhang S: Exosomal Sonic Hedgehog derived from cancer-associated fibroblasts promotes proliferation and migration of esophageal squamous cell carcinoma. Cancer Med. 9:2500–2513. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Z, Jiang T, Cao B, Sun X and Liu J: CAF-derived exosomes deliver LINC01410 to promote epithelial-mesenchymal transition of esophageal squamous cell carcinoma. Exp Cell Res. 412:1130332022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Yan Y, Yang Y, Hong X, Wang M, Yang Z, Liu B and Ye L: MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell Signal. 73:1096752020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Zhang P and Li HX: CAFs-Derived Exosomal miRNA-130a confers Cisplatin resistance of NSCLC cells through PUM2-dependent packaging. Int J Nanomedicine. 16:561–577. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu L, Huang J, Mo J, Da X, Li Q, Fan M and Lu H: Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett. 27:172022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Tang W, Zhuo H, Zhu D, Rong D, Sun J and Song J: Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/nuclear factor-kappa B (NF-κB) pathway. Bioengineered. 13:4786–4797. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, Huang R, Yan J and Guo H: TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep. 5:119242015. View Article : Google Scholar | |
|
Wang Y, Li T, Yang L, Zhang X, Wang X, Su X, Ji C and Wang Z: Cancer-associated fibroblast-released extracellular vesicles carrying miR-199a-5p induces the progression of gastric cancer through regulation of FKBP5-mediated AKT1/mTORC1 signaling pathway. Cell Cycle. 21:2590–2601. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI | |
|
Yugawa K, Yoshizumi T, Mano Y, Itoh S, Harada N, Ikegami T, Kohashi K, Oda Y and Mori M: Cancer-associated fibroblasts promote hepatocellular carcinoma progression through downregulation of exosomal miR-150-3p. Eur J Surg Oncol. 47:384–393. 2021. View Article : Google Scholar | |
|
Chen X, Ren X, E J, Zhou Y and Bian R: Exosome-transmitted circ IFNGR2 modulates ovarian cancer metastasis via miR-378/ST5 Axis. Mol Cell Biol. 43:22–42. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Wang L, Dong L and Wang X: Emerging role of exosome signalling in maintaining cancer stem cell dynamic equilibrium. J Cell Mol Med. 22:3719–3728. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Liao K and Zhou W: Exosomes regulate the transformation of cancer cells in cancer stem cell homeostasis. Stem Cells Int. 2018:48373702018. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Zhang L, Guo B, Deng J, Wu S, Li F, Wang Y, Lu J and Zhou Y: Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFκB/c-Myc signaling in female esophageal carcinoma. Mol Cancer. 18:222019. View Article : Google Scholar | |
|
Wang L, Yang G, Zhao D, Wang J, Bai Y, Peng Q, Wang H, Fang R, Chen G, Wang Z, et al: CD103-positive CSC exosome promotes EMT of clear cell renal cell carcinoma: Role of remote MiR-19b-3p. Mol Cancer. 18:862019. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Z, Lei Z, Yang P, Si A, Xiang D, Tang X, Guo G, Zhou J and Hüser N: Exosome-transmitted p120-catenin suppresses hepatocellular carcinoma progression via STAT3 pathways. Mol Carcinog. 58:1389–1399. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zheng Y and Zhao M: Exosome-Based cancer therapy: Implication for targeting cancer stem cells. Front Pharmacol. 7:5332017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Zhao N, Cui J, Wu H, Xiong J and Peng T: Exosomes derived from cancer stem cells of gemcitabine-resistant pancreatic cancer cells enhance drug resistance by delivering miR-210. Cell Oncol. 43:123–136. 2019. View Article : Google Scholar | |
|
Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H, et al: Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 159:499–513. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yao H, Liu N, Lin MC and Zheng J: Positive feedback loop between cancer stem cells and angiogenesis in hepatocellular carcinoma. Cancer Lett. 379:213–219. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang ZF, Liao F, Wu H and Dai J: Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma. J Exp Clin Cancer Res. 38:2012019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D, Li D, Shen L, Hu D, Tang B, Guo W, Wang Z, Zhang Z, Wei G and He D: Exosomes derived from Piwil2-induced cancer stem cells transform fibroblasts into cancer-associated fibroblasts. Oncol Rep. 43:1125–1132. 2020.PubMed/NCBI | |
|
Wang L, He J, Hu H, Tu L, Sun Z, Liu Y and Luo F: Lung CSC-derived exosomal miR-210-3p contributes to a pro-metastatic phenotype in lung cancer by targeting FGFRL1. J Cell Mol Med. 24:6324–6339. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dai W, Jin X, Han L, Huang H, Ji Z, Xu X, Tang M, Jiang B and Chen W: Exosomal lncRNA DOCK9-AS2 derived from cancer stem cell-like cells activated Wnt/β-catenin pathway to aggravate stemness, proliferation, migration, and invasion in papillary thyroid carcinoma. Cell Death Dis. 11:7432020. View Article : Google Scholar | |
|
Wu Q, He Y, Liu X, Luo F, Jiang Y, Xiang M and Zhao R: Cancer stem cell-like cells-derived exosomal CDKN2B-AS1 stabilizes CDKN2B to promote the growth and metastasis of thyroid cancer via TGF-β1/Smad2/3 signaling. Exp Cell Res. 419:1132682022. View Article : Google Scholar | |
|
Wu Q, He Y, Liu X, Luo F, Jiang Y, Xiang M and Zhao R: Cancer stem cell-like cells-derived exosomal lncRNA CDKN2B-AS1 promotes biological characteristics in thyroid cancer via miR-122-5p/P4HA1 axis. Exp Cell Res. 22:19–29. 2023. | |
|
Li X, Liu D, Chen H, Zeng B, Zhao Q, Zhang Y, Chen Y, Wang J and Xing HR: Melanoma stem cells promote metastasis via exosomal miR-1268a inactivation of autophagy. Biol Res. 55:292022. View Article : Google Scholar : PubMed/NCBI | |
|
Han T, Chen L and Li K, Hu Q, Zhang Y, You X, Han L, Chen T and Li K: Significant CircRNAs in liver cancer stem cell exosomes: Mediator of malignant propagation in liver cancer? Mol Cancer. 22:1972023. View Article : Google Scholar : PubMed/NCBI | |
|
Deng H, Sun C, Sun Y, Li H, Yang L, Wu D, Gao Q and Jiang X: Lipid, Protein, and MicroRNA composition within mesenchymal stem Cell-derived exosomes. Cell Cell Reprogram. 20:178–186. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma A: Role of stem cell derived exosomes in tumor biology. Int J Cancer. 142:1086–1092. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang YP, Nguyen PNN, Ma HI, Ho WJ, Chen YW, Chien Y, Yarmishyn AA, Huang PI, Lo WL, Wang CY, et al: Tumor mesenchymal stromal cells regulate cell migration of atypical teratoid rhabdoid tumor through Exosome-mediated miR155/SMARCA4 pathway. Cancers (Basel). 11:7202019. View Article : Google Scholar : PubMed/NCBI | |
|
Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, Bean AJ, Calin GA, Fueyo J, Walters ET, et al: Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of Glioma Stem-like cells via transfer of miR-1587. Cancer Res. 77:5808–5819. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Toh WS, Lai RC, Zhang B and Lim SK: MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans. 46:843–853. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A and Kourembanas S: Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 126:2601–2611. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N and Javan M: MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol. 40:457–470. 2017. View Article : Google Scholar | |
|
Biswas S, Mandal G, Roy Chowdhury S, Purohit S, Payne KK, Anadon C, Gupta A, Swanson P, Yu X, Conejo-Garcia JR and Bhattacharyya A: Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-Polarized macrophages in breast cancer. J Immunol. 203:3447–3460. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, Hong J, Yu H and Qi L: Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res Ther. 10:3812019. View Article : Google Scholar | |
|
Xu Z, Zhou X, Wu J, Cui X, Wang M, Wang X and Gao Z: Mesenchymal stem cell-derived exosomes carrying microRNA-150 suppresses the proliferation and migration of osteosarcoma cells via targeting IGF2BP1. Transl Cancer Res. 9:5323–5335. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Qi J, Zhang R and Wang Y: Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1. J Cell Mol Med. 25:11016–11030. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Wan Y, Su Z, Li J, Han M and Zhou C: Mesenchymal stem Cell-derived exosomal microRNA-3940-5p inhibits colorectal cancer metastasis by targeting integrin α6. Dig Dis Sci. 66:1916–1927. 2020. View Article : Google Scholar | |
|
Gu H, Yan C, Wan H, Wu L, Liu J, Zhu Z and Gao D: Mesenchymal stem cell-derived exosomes block malignant behaviors of hepatocellular carcinoma stem cells through a lncRNA C5orf66-AS1/microRNA-127-3p/DUSP1/ERK axis. Human Cell. 34:1812–1829. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu ZZ, Li M, Yang MY, Han M and Yang Z: Exosome-mediated transfer of circRNA563 promoting hepatocellular carcinoma by targeting the microRNA148a-3p/metal-regulatory transcription factor-1 pathway. World J Gastroenterol. 29:6060–6075. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yong SB, Chung JY, Song Y, Kim J, Ra S and Kim YH: Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials. 219:1194012019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Fan Z, Zhang L, You Q and Wang L: Strategies for targeting Serine/Threonine protein phosphatases with small molecules in cancer. J Med Chem. 64:8916–8938. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, Feng B, Shang C and Wang D: Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L1 in gastric cancer. Front Cell Dev Biol. 8:5726892020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Zhou L, Shen N, Ning X, Wu D, Jiang K and Huang X: M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis. 13:1832022. View Article : Google Scholar | |
|
Li X and Tang M: Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med. 9:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, Zou Y and Chen S: Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res. 38:3102019. View Article : Google Scholar | |
|
Mi X, Xu R, Hong S, Xu T, Zhang W and Liu M: M2 Macrophage-Derived exosomal lncRNA AFAP1-AS1 and MicroRNA-26a affect cell migration and metastasis in esophageal cancer. Mol Ther Nucl Acids. 22:779–790. 2020. View Article : Google Scholar | |
|
Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, Zhang K, Teng B, Cao J, Wu W, et al: M2 Macrophage-Derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by Targeting E2F2. Mol Ther. 29:1226–1238. 2021. View Article : Google Scholar : | |
|
Chen S, Lv M, Fang S, Ye W, Gao Y and Xu Y: Poly(I:C) enhanced anti-cervical cancer immunities induced by dendritic cells-derived exosomes. Int J Biol Macromol. 113:1182–1187. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Viaud S, Terme M, Flament C, Taieb J, André F, Novault S, Escudier B, Robert C, Caillat-Zucman S, Tursz T, et al: Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: A role for NKG2D ligands and IL-15Ralpha. PLoS One. 4:e49422009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, Xu H and Wang S: Granulocytic Myeloid-Derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9. Adv Sci (Weinh). 6:19012782019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou JH, Yao ZX, Zheng Z, Yang J, Wang R, Fu SJ, Pan XF, Liu ZH and Wu K: G-MDSCs-derived Exosomal miRNA-143-3p promotes proliferation via targeting of ITM2B in lung cancer. Onco Targets Ther. 13:9701–9719. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K and Li MQ: CD45RO-CD8+ T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics. 11:5330–5345. 2021. View Article : Google Scholar : | |
|
Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X and Wang J: Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 188:5954–5961. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Zhang X, Zhao T, Li W and Xiang J: Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma. Biochem Biophys Res Commun. 438:152–155. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Guyon N, Garnier D, Briand J, Nadaradjane A, Bougras-Cartron G, Raimbourg J, Campone M, Heymann D, Vallette FM, Frenel JS and Cartron PF: Anti-PD1 therapy induces lymphocyte-derived exosomal miRNA-4315 release inhibiting Bim-mediated apoptosis of tumor cells. Cell Death Dis. 11:10482020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Li R, Yang Y, Shi C, Shen Y, Lu C, Chen Y, Zhou W, Lin A, Yu L, et al: Specific decrease in B-cell-derived extracellular vesicles enhances post-chemotherapeutic CD8+ T cell responses. Immunity. 50:738–750.e7. 2019. View Article : Google Scholar | |
|
Yang Z, Wang W, Zhao L, Wang X, Gimple RC, Xu L, Wang Y, Rich JN and Zhou S: Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Sci Adv. 7:eabb07372021. View Article : Google Scholar : PubMed/NCBI | |
|
Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON and Lopez-Gonzalez JS: Contribution of angiogenesis to inflammation and cancer. Front Oncol. 9:13992019. View Article : Google Scholar | |
|
Dominiak A, Chełstowska B, Olejarz W and Nowicka G: Communication in the cancer microenvironment as a target for therapeutic interventions. Cancers (Basel). 12:12322020. View Article : Google Scholar : PubMed/NCBI | |
|
Stec M, Baj-Krzyworzeka M, Baran J, Węglarczyk K and Zembala M, Barbasz J, Szczepanik A and Zembala M: Isolation and characterization of circulating micro(nano)vesicles in the plasma of colorectal cancer patients and their interactions with tumor cells. Oncol Rep. 34:2768–2775. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T and Kharaziha P: Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 234:16885–16903. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H and Liu B: Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci. 254:1169002020. View Article : Google Scholar | |
|
Folkman J, Merler E, Abernathy C and Williams G: Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 133:275–288. 1971. View Article : Google Scholar : PubMed/NCBI | |
|
Weinstein N, Mendoza L, Gitler I and Klapp J: A Network model to explore the effect of the Micro-environment on endothelial cell behavior during angiogenesis. Front Physiol. 8:9602017. View Article : Google Scholar : PubMed/NCBI | |
|
Vavourakis V, Wijeratne PA, Shipley R, Loizidou M, Stylianopoulos T and Hawkes DJ: A validated multiscale In-silico model for mechano-sensitive tumour angiogenesis and growth. PLoS Comput Biol. 13:e10052592017. View Article : Google Scholar : PubMed/NCBI | |
|
Varberg KM, Winfree S, Dunn KW and Haneline LS: Kinetic analysis of vasculogenesis quantifies dynamics of vasculogenesis and angiogenesis in vitro. J Vis Exp. 57044:2018. View Article : Google Scholar | |
|
Ludwig N and Whiteside TL: Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets. 22:409–417. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, Mörgelin M, Bourseau-Guilmain E, Bengzon J and Belting M: Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA. 110:7312–7317. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur B, Cork SM, Sandberg EM, Devi NS, Zhang Z, Klenotic PA, Febbraio M, Shim H, Mao H, Tucker-Burden C, et al: Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res. 69:1212–1220. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, De Leo G and Alessandro R: Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer. 130:2033–2043. 2012. View Article : Google Scholar | |
|
Siemann DW and Horsman MR: Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther. 153:107–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hida K, Maishi N, Annan DA and Hida Y: Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci. 19:12722018. View Article : Google Scholar : PubMed/NCBI | |
|
Mao Y, Wang Y, Dong L, Zhang Y, Zhang Y, Wang C, Zhang Q, Yang S, Cao L, Zhang X, et al: Hypoxic exosomes facilitate angiogenesis and metastasis in esophageal squamous cell carcinoma through altering the phenotype and transcriptome of endothelial cells. Int J Mol Sci. 38:3892019. | |
|
Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, Wu CY and Kuo PL: Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 36:4929–4942. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sruthi TV, Edatt L, Raji GR, Kunhiraman H, Shankar SS, Shankar V, Ramachandran V, Poyyakkara A and Kumar SVB: Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J Cell Physiol. 233:3498–3514. 2018. View Article : Google Scholar | |
|
Gesierich S, Berezovskiy I, Ryschich E and Zöller M: Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res. 66:7083–7094. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RCA, et al: New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 116:2385–2394. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Tang MKS, Yue PYK, Ip PP, Huang RL, Lai HC, Cheung ANY, Tse KY, Ngan HYS and Wong AST: Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nature Commun. 9:22702018. View Article : Google Scholar | |
|
Svensson KJ, Kucharzewska P, Christianson HC, Sköld S, Löfstedt T, Johansson MC, Mörgelin M, Bengzon J, Ruf W and Belting M: Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci USA. 108:13147–13152. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K and Ohyashiki JH: Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 124:3748–3757. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu D, Deng S, Li L, Liu T, Zhang T, Li J, Yu Y and Xu Y: TGF-β1-mediated exosomal lnc-MMP2-2 increases blood-brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis. 12:7212021. View Article : Google Scholar | |
|
Dou R, Liu K, Yang C, Zheng J, Shi D, Lin X, Wei C, Zhang C, Fang Y, Huang S, et al: EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Cell Death Dis. 11:e5952021. | |
|
Liu K, Dou R, Yang C, Di Z, Shi D, Zhang C, Song J, Fang Y, Huang S, Xiang Z, et al: Exosome-transmitted miR-29a induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Carcinogenesis. 44:356–367. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Leng K, Yao Y, Kang P, Liao G, Han Y, Shi G, Ji D, Huang P, Zheng W, et al: Circular RNA, Cholangiocarcinoma-associated circular RNA 1, contributes to Cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. 73:1419–1435. 2021. View Article : Google Scholar | |
|
Li K, Xue W, Lu Z, Wang S, Zheng J, Lu K, Li M, Zong Y, Xu F, Dai J, et al: Tumor-derived exosomal ADAM17 promotes pre-metastatic niche formation by enhancing vascular permeability in colorectal cancer. J Exp Clin Cancer Res. 43:592024. View Article : Google Scholar : PubMed/NCBI | |
|
Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT and Zöller M: Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70:1668–1678. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hood JL, San RS and Wickline SA: Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71:3792–3801. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Akoto T and Saini S: Role of exosomes in prostate cancer metastasis. Int J Mol Sci. 22:35282021. View Article : Google Scholar : PubMed/NCBI | |
|
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Valencia K, Luis-Ravelo D, Bovy N, Antón I, Martínez-Canarias S, Zandueta C, Ormazábal C, Struman I, Tabruyn S, Rebmann V, et al: miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol. 8:689–703. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q and Kuca K: The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 41:1622–1643. 2021. View Article : Google Scholar | |
|
Mu W, Rana S and Zöller M: Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia. 15:875–887. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y and Xu T: Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 19:1122020. View Article : Google Scholar : PubMed/NCBI | |
|
Gomes FG, Sandim V, Almeida VH, Rondon AMR, Succar BB, Hottz ED, Leal AC, Verçoza BRF, Rodrigues JCF, Bozza PT, et al: Breast-cancer extracellular vesicles induce platelet activation and aggregation by tissue factor-independent and -dependent mechanisms. Thromb Res. 159:24–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J and Santos HA: Engineered extracellular vesicles for cancer therapy. Adv Mater. 33:e20057092021. View Article : Google Scholar : PubMed/NCBI | |
|
Peterson MF, Otoc N, Sethi JK, Gupta A and Antes TJ: Integrated systems for exosome investigation. Methods. 87:31–45. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Contreras-Naranjo JC, Wu HJ and Ugaz VM: Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab Chip. 17:3558–3577. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Casadei L, Choudhury A, Sarchet P, Mohana Sundaram P, Lopez G, Braggio D, Balakirsky G, Pollock R and Prakash S: Cross-flow microfiltration for isolation selective capture and release of liposarcoma extracellular vesicles. J Extracell Vesicles. 10:e120622021. View Article : Google Scholar | |
|
Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, Zhang W, Pu F and Shao Z: Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 343:107–117. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Li L, Lin Z, Li M, Hu X, Zhang Y, Peng M, Xia H and Han G: Enhancing osteosarcoma killing and CT imaging using ultrahigh drug loading and NIR-responsive bismuth Sulfide@ Mesoporous silica nanoparticles. Adv Healthc Mater. 7:e18006022018. View Article : Google Scholar | |
|
Raghav KP, Wang W, Liu S, Chavez-MacGregor M, Meng X, Hortobagyi GN, Mills GB, Meric-Bernstam F, Blumenschein GR and Gonzalez-Angulo AM: cMET and Phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res. 18:2269–2277. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Wu Y, Ding F, Yang J, Li J, Gao X, Zhang C and Feng J: Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale. 12:10854–10862. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gonçalves MS: Fluorescent labeling of biomolecules with organic probes. Clin Cancer Res. 109:190–212. 2009. | |
|
Gray WD, Mitchell AJ and Searles CD: An accurate, precise method for general labeling of extracellular vesicles. MethodsX. 2:360–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T and Takakura Y: Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 165:77–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire C, Chen JW, Tannous BA and Breakefield XO: Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano. 8:483–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bose RJC, Uday Kumar S, Zeng Y, Afjei R, Robinson E, Lau K, Bermudez A, Habte F, Pitteri SJ, Sinclair R, et al: Tumor cell-derived extracellular vesicle-coated nanocarriers: An efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents. ACS Nano. 12:10817–10832. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Wu T, Zhang K, Meng X, Dai W, Wang D, Dong H and Zhang X: Engineered exosome-mediated near-infrared-II region V(2)C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano. 13:1499–1510. 2019.PubMed/NCBI | |
|
Anguela XM and High KA: Entering the modern era of gene therapy. Annu Rev Med. 70:273–288. 2019. View Article : Google Scholar | |
|
Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : | |
|
Paunovska K, Loughrey D and Dahlman JE: Drug delivery systems for RNA therapeutics. Natu Rev Genet. 23:265–280. 2022. View Article : Google Scholar | |
|
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bose RJ, Kumar US, Garcia-Marques F, Zeng Y, Habte F, McCarthy JR, Pitteri S, Massoud TF and Paulmurugan R: Engineered cell-derived vesicles displaying targeting peptide and functionalized with nanocarriers for therapeutic microRNA delivery to triple-negative breast cancer in mice. Adv Healthc Mater. 11:e21013872022. View Article : Google Scholar : | |
|
Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A and Lorenc T: Exosomes in Angiogenesis and Anti-angiogenic therapy in cancers. Int J Mol Sci. 21:58402020. View Article : Google Scholar : PubMed/NCBI | |
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M and Taheri M: Non-coding RNAs regulate angiogenic processes. Vascular Pharmacol. 133-134:1067782020. View Article : Google Scholar | |
|
Yuan Y, Mei Z, Qu Z, Li G, Yu S, Liu Y, Liu K, Shen Z, Pu J, Wang Y, et al: Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure. Signal Transduct Target Ther. 8:1212023. View Article : Google Scholar : PubMed/NCBI | |
|
Caller T, Rotem I, Shaihov-Teper O, Lendengolts D, Schary Y, Shai R, Glick-Saar E, Dominissini D, Motiei M, Katzir I, et al: Small extracellular vesicles from infarcted and failing heart accelerate tumor growth. Circulation. 149:1729–1748. 2024. View Article : Google Scholar : PubMed/NCBI |