Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2025 Volume 66 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 66 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review)

  • Authors:
    • Khaled S. Allemailem
    • Arshad Husain Rahmani
    • Nahlah Makki Almansour
    • Fahad M. Aldakheel
    • Ghadah Mohammad Albalawi
    • Ghadeer Mohammed Albalawi
    • Amjad Ali Khan
  • View Affiliations / Copyright

    Affiliations: Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia, Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia, Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk 47717, Saudi Arabia, Department of Laboratory and Blood Bank, Maternity and Children Hospital, Tabuk 47717, Saudi Arabia, Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
    Copyright: © Allemailem et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 42
    |
    Published online on: May 6, 2025
       https://doi.org/10.3892/ijo.2025.5748
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

For centuries, a competitive evolutionary race between prokaryotes and related phages or other mobile genetic elements has led to the diversification of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR‑associated sequence (Cas) genome‑editing systems. Among the different CRISPR/Cas systems, the CRISPR/Cas9 system has been widely studied for its precise DNA manipulation; however, due to certain limitations of direct DNA targeting, off‑target effects and delivery challenges, researchers are looking to perform transient knockdown of gene expression by targeting RNA. In this context, the more recently discovered type VI CRISPR/Cas13 system, a programmable single‑subunit RNA‑guided endonuclease system that has the capacity to target and edit any RNA sequence of interest, has emerged as a powerful platform to modulate gene expression outcomes. All the Cas13 effectors known so far possess two distinct ribonuclease activities. Pre‑CRISPR RNA processing is performed by one RNase activity, whereas the two higher eukaryotes and prokaryotes nucleotide‑binding domains provide the other RNase activity required for target RNA degradation. Recent innovative applications of the type VI CRISPR/Cas13 system in nucleic acid detection, viral interference, transcriptome engineering and RNA imaging hold great promise for disease management. This genome editing system can also be employed by the Specific High Sensitivity Enzymatic Reporter Unlocking platform to identify any tumor DNA. The discovery of this system has added a new dimension to targeting, tracking and editing circulating microRNA/RNA/DNA/cancer proteins for the management of cancer. However, there is still a lack of thorough understanding of the mechanisms underlying some of their functions. The present review summarizes the recent updates on the type VI CRISPR/Cas system in terms of its structural and mechanistic properties and some novel applications of this genome‑editing tool in cancer management. However, some issues, such as collateral degradation of bystander RNA, impose major limitations on its in vivo application. Furthermore, additional challenges and future prospects for this genome editing system are described in the present review.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Marraffini LA: CRISPR-Cas immunity in prokaryotes. Nature. 526:55–61. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH and Khan AA: Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: An innovative strategy of cancer management. Cancer Commun (Lond). 42:1257–1287. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Piergentili R, Del Rio A, Signore F, Umani Ronchi F, Marinelli E and Zaami S: CRISPR-Cas and its wide-ranging applications: From human genome editing to environmental implications, technical limitations, hazards and bioethical issues. Cells. 10:9692021. View Article : Google Scholar : PubMed/NCBI

4 

Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AAA, et al: Recent updates of the CRISPR/ Cas9 genome editing system: Novel approaches to regulate its spatiotemporal control by genetic and physicochemical strategies. Int J Nanomedicine. 31:5335–5363. 2024. View Article : Google Scholar

5 

Meng X, Wu TG, Lou QY, Niu KY, Jiang L, Xiao QZ, Xu T and Zhang L: Optimization of CRISPR-Cas system for clinical cancer therapy. Bioeng Transl Med. 8:e104742022. View Article : Google Scholar

6 

Heler R, Marraffini LA and Bikard D: Adapting to new threats: The generation of memory by CRISPR-Cas immune systems. Mol Microbial. 93:1–9. 2014. View Article : Google Scholar

7 

Faure G, Shmakov SA, Yan WX, Cheng DR, Scott DA, Peters JE, Makarova KS and Koonin EV: CRISPR-Cas in mobile genetic elements: Counter-defence and beyond. Nat Rev Microbiol. 17:513–525. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Hille F, Richter H, Wong SP, Bratovič M, Ressel S and Charpentier E: The biology of CRISPR-Cas: Backward and forward. Cell. 172:1239–1259. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Van Der Oost J, Westra ER, Jackson RN and Wiedenheft B: Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 12:479–492. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN and Hsu PD: Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 173:665–676.e14. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR and Scott DA: Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell. 70:327–339.e5. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Zhao F, Zhang T, Sun X, Zhang X, Chen L, Wang H, Li J, Fan P, Lai L, Sui T and Li Z: A strategy for Cas13 miniaturization based on the structure and AlphaFold. Nat Commun. 14:55452023. View Article : Google Scholar : PubMed/NCBI

13 

Zhang B, Ye Y, Ye W, Perčulija V, Jiang H, Chen Y, Li Y, Chen J, Lin J, Wang S, et al: Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Nat Commun. 10:25442019. View Article : Google Scholar : PubMed/NCBI

14 

Shan Y, Zhou X, Huang R and Xing D: High-fidelity and rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity. Anal Chem. 91:5278–5285. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Yang H and Patel DJ: Structures, mechanisms and applications of RNA-centric CRISPR-Cas13. Nat Chem Biol. 20:673–688. 2024. View Article : Google Scholar : PubMed/NCBI

16 

Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T and Yang S: Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI

17 

Allemailem KS, Almatroodi SA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin WAI, Aljamaan AN, Rahmani AH and Khan AA: Recent advances in genome-editing technology with CRISPR/Cas9 variants and stimuli-responsive targeting approaches within tumor cells: A future perspective of cancer management. Int J Mol Sci. 24:70522023. View Article : Google Scholar : PubMed/NCBI

18 

Pulumati A, Pulumati A, Dwarakanath BS, Verma A and Papineni RVL: Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken). 6:e17642023. View Article : Google Scholar : PubMed/NCBI

19 

Wang L, Dai C, Jiang L, Tong G, Xiong Y, Khan K, Tang Z, Chen X and Zeng H: Advanced devices for tumor diagnosis and therapy. Small. 17:e21000032021. View Article : Google Scholar : PubMed/NCBI

20 

Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH and Khan AA: Innovative strategies of reprogramming immune system cells by targeting CRISPR/Cas9-based genome-editing tools: A new era of cancer management. Int J Nanomedicine. 18:5531–5559. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Allemailem KS, Almatroudi A, Alrumaihi F, Alradhi AE, Theyab A, Algahtani M, Alhawas MO, Dobie G, Moawad AA, Rahmani AH and Khan AA: Current updates of CRISPR/Cas system and anti-CRISPR proteins: Innovative applications to improve the genome editing strategies. Int J Nanomedicine. 19:10185–10212. 2024. View Article : Google Scholar : PubMed/NCBI

22 

Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A and Ozsoz M: CRISPR-Cas13 system as a promising and versatile tool for cancer diagnosis, therapy, and research. ACS Synth Biol. 10:1245–1267. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Durán-Vinet B, Araya-Castro K, Calderón J, Vergara L, Weber H, Retamales J, Araya-Castro P and Leal-Rojas P: CRISPR/ Cas13-based platforms for a potential next-generation diagnosis of colorectal cancer through exosomes micro-RNA detection: A review. Cancers (Basel). 13:46402021. View Article : Google Scholar

24 

Xu D, Cai Y, Tang L, Han X, Gao F, Cao H, Qi F and Kapranov P: A CRISPR/Cas13-based approach demonstrates biological relevance of vlinc class of long non-coding RNAs in anticancer drug response. Sci Rep. 10:17942020. View Article : Google Scholar : PubMed/NCBI

25 

Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, et al: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 353:aaf55732016. View Article : Google Scholar : PubMed/NCBI

26 

Núñez-Álvarez Y, Espie-Caullet T, Buhagiar G, Rubio-Zulaika A, Alonso-Marañón J, Luna-Pérez E, Blazquez L and Luco RF: A CRISPR-dCas13 RNA-editing tool to study alternative splicing. Nucleic Acids Res. 52:11926–11939. 2024. View Article : Google Scholar : PubMed/NCBI

27 

Apostolopoulos A, Kawamoto N, Chow SYA, Tsuiji H, Ikeuchi Y, Shichino Y and Iwasaki S: dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat Commun. 15:22052024. View Article : Google Scholar : PubMed/NCBI

28 

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471:602–607. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA and Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315:1709–1712. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Rananaware SR, Vesco EK, Shoemaker GM, Anekar SS, Sandoval LSW, Meister KS, Macaluso NC, Nguyen LT and Jain PK: Programmable RNA detection with CRISPR-Cas12a. Nat Commun. 14:54092023. View Article : Google Scholar : PubMed/NCBI

31 

Allemailem KS: Recent advances in understanding the molecular mechanisms of multidrug resistance and novel approaches of CRISPR/Cas9-based genome-editing to combat this health emergency. Int J Nanomedicine. 19:1125–1143. 2024. View Article : Google Scholar : PubMed/NCBI

32 

McGinn J and Marraffini LA: Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat Rev Microbiol. 17:7–12. 2019. View Article : Google Scholar

33 

Makarova KS, Wolf YI and Koonin EV: Evolutionary classification of CRISPR-Cas systems. Crispr: Biology and Applications. 13–38. 2022. View Article : Google Scholar

34 

Koonin EV, Makarova KS and Zhang F: Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 37:67–78. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Yan F, Wang W and Zhang J: CRISPR-Cas12 and Cas13: The lesser known siblings of CRISPR-Cas9. Cell Biol Toxicol. 35:489–492. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al: Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 9:467–477. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Steens JA, Bravo JPK, Salazar CR, Yildiz C, Amieiro AM, Köstlbacher S, Prinsen SHP, Andres AS, Patinios C, Bardis A, et al: Type III-B CRISPR-Cas cascade of proteolytic cleavages. Science. 383:512–519. 2024. View Article : Google Scholar : PubMed/NCBI

38 

Shabalina SA and Koonin EV: Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 23:578–587. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, et al: Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol. 18:67–83. 2020. View Article : Google Scholar

40 

Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV and Van Der Oost J: Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 321:960–964. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Chen XD, Chen Z, Wythes G, Zhang Y, Orr BC, Sun G, Chao YK, Navarro Torres A, Thao K, Vallurupalli M, et al: Helicase-assisted continuous editing for programmable mutagenesis of endogenous genomes. Science. 386:eadn58762024. View Article : Google Scholar : PubMed/NCBI

42 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Chylinski K, Makarova KS, Charpentier E and Koonin EV: Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res. 42:6091–6105. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Marraffini LA and Sontheimer EJ: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 322:1843–1845. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Stella G and Marraffini L: Type III CRISPR-Cas: Beyond the Cas10 effector complex. Trends Biochem Sci. 49:28–37. 2024. View Article : Google Scholar :

46 

Zhou Y, Bravo JPK, Taylor HN, Steens JA, Jackson RN, Staals RHJ and Taylor DW: Structure of a type IV CRISPR-Cas ribonucleoprotein complex. iScience. 24:1022012021. View Article : Google Scholar : PubMed/NCBI

47 

Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, et al: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163:759–771. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Gao P, Yang H, Rajashankar KR, Huang Z and Patel DJ: Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26:901–913. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DB, Kellner MJ, Regev A, et al: RNA targeting with CRISPR-Cas13. Nature. 550:280–284. 2017. View Article : Google Scholar : PubMed/NCBI

50 

van Beljouw SPB, Sanders J, Rodríguez-Molina A and Brouns SJJ: RNA-targeting CRISPR-Cas systems. Nat Rev Microbiol. 21:21–34. 2023. View Article : Google Scholar

51 

Liu L, Li X, Ma J, Li Z, You L, Wang J, Wang M, Zhang X and Wang Y: The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell. 170:714–726.e10. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, Cao B, Dong X, Bai W, Wang Y, et al: Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods. 18:499–506. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Perčulija V, Lin J, Zhang B and Ouyang S: Functional features and current applications of the RNA-targeting type VI CRISPR-Cas systems. Adv Sci (Weinh). 8:20046852021. View Article : Google Scholar

54 

Hu Y, Chen Y, Xu J, Wang X, Luo S, Mao B, Zhou Q and Li W: Metagenomic discovery of novel CRISPR-Cas13 systems. Cell Discov. 8:1072022. View Article : Google Scholar : PubMed/NCBI

55 

O'Connell MR: Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems. J Mol Biol. 431:66–87. 2019. View Article : Google Scholar

56 

Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, et al: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 356:438–442. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Tambe A, East-Seletsky A, Knott GJ, Doudna JA and O'Connell MR: RNA binding and HEPN-nuclease activation are decoupled in CRISPR-Cas13a. Cell Rep. 24:1025–1036. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Meeske AJ, Nakandakari-Higa S and Marraffini LA: Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature. 570:241–245. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Tong H, Huang J, Xiao Q, He B, Dong X, Liu Y, Yang X, Han D, Wang Z, Wang X, et al: High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat Biotechnol. 41:108–119. 2023. View Article : Google Scholar

60 

VanderWal AR, Park JU, Polevoda B, Kellogg EH and O'Connell MR: CRISPR-Csx28 forms a Cas13b-activated membrane pore required for robust CRISPR-Cas adaptive immunity. Science. 380:66432023.

61 

Guan J, Oromí-Bosch A, Mendoza SD, Karambelkar S, Berry J and Bondy-Denomy J: RNA targeting with CRISPR-Cas13a facilitates bacteriophage genome engineering. BioRxiv. View Article : Google Scholar

62 

Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, et al: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 60:385–397. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Deng X, Osikpa E, Yang J, Oladeji SJ, Smith J, Gao X and Gao Y: Structural basis for the activation of a compact CRISPR-Cas13 nuclease. Nat Commun. 14:58452023. View Article : Google Scholar : PubMed/NCBI

64 

East-Seletsky A, O'Connell MR, Burstein D, Knott GJ and Doudna JA: RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol Cell. 66:373–383.e3. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Knott GJ, East-Seletsky A, Cofsky JC, Holton JM, Charles E, O'Connell MR and Doudna JA: Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat Struct Mol Biol. 24:825–833. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Liu L, Li X, Wang J, Wang M, Chen P, Yin M, Li J, Sheng G and Wang Y: Two distant catalytic sites are responsible for C2c2 RNase activities. Cell. 168:121–134.e12. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Charles EJ, Kim SE, Knott GJ, Smock D, Doudna J and Savage DF: Engineering improved Cas13 effectors for targeted post-transcriptional regulation of gene expression. BioRxiv. View Article : Google Scholar

68 

Molina Vargas AM, Sinha S, Osborn R, Arantes PR, Patel A, Dewhurst S, Hardy DJ, Cameron A, Palermo G and O'Connell MR: New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity. Nucleic Acids Res. 52:921–939. 2024. View Article : Google Scholar :

69 

East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JHD, Tjian R and Doudna JA: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 538:270–273. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Ai Y, Liang D and Wilusz JE: CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res. 50:e652022. View Article : Google Scholar : PubMed/NCBI

71 

Zhang T, Zhao Y, Ye J, Cao X, Xu C, Chen B, An H, Jiao Y, Zhang F, Yang X and Zhou G: Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J. 17:1185–1187. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Kick LM, Von Wrisberg MK, Runtsch LS and Schneider S: Structure and mechanism of the RNA dependent RNase Cas13a from Rhodobacter capsulatus. Commun Biol. 5:712022. View Article : Google Scholar : PubMed/NCBI

73 

Smargon AA, Cox DBT, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS, Abudayyeh OA, Essletzbichler P, Shmakov S, Makarova KS, et al: Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell. 65:618–630.e7. 2017. View Article : Google Scholar : PubMed/NCBI

74 

VanderWal AR, Park JU, Polevoda B, Nicosia JK, Molina Vargas AM, Kellogg EH and O'Connell MR: Csx28 is a membrane pore that enhances CRISPR-Cas13b-dependent antiphage defense. Science. 380:410–415. 2023. View Article : Google Scholar : PubMed/NCBI

75 

Zhang B, Ye W, Ye Y, Zhou H, Saeed AFUH, Chen J, Lin J, Perčulija V, Chen Q, Chen CJ, et al: Structural insights into Cas13b-guided CRISPR RNA maturation and recognition. Cell Res. 28:1198–1201. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Slaymaker IM, Mesa P, Kellner MJ, Kannan S, Brignole E, Koob J, Feliciano PR, Stella S, Abudayyeh OO, Gootenberg JS, et al: High-resolution structure of Cas13b and biochemical characterization of RNA targeting and cleavage. Cell Rep. 26:3741–3751.e5. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Bhoobalan-Chitty Y, Stouf M and De Paepe M: Genetic manipulation of Bacteriophage T4 utilizing the CRISPR-Cas13b system. bioRxiv. View Article : Google Scholar

78 

Liu L and Pei DS: Insights gained from RNA editing targeted by the CRISPR-Cas13 family. Int J Mol Sci. 23:114002022. View Article : Google Scholar : PubMed/NCBI

79 

Kavuri NR, Ramasamy M, Qi Y and Mandadi K: Applications of CRISPR/Cas13-based RNA editing in plants. Cells. 11:26652022. View Article : Google Scholar : PubMed/NCBI

80 

Umaña A and Slade DJ: CRISPR-Cas systems in Fusobacterium: An untapped genetic frontier. bioRxiv. View Article : Google Scholar

81 

Hussein M, Liu Y, Vink M, Kroon PZ, Das AT, Berkhout B and Herrera-Carrillo E: Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage. Mol Ther Nucleic Acids. 35:1022782024. View Article : Google Scholar : PubMed/NCBI

82 

Wessels HH, Stirn A, Méndez-Mancilla A, Kim EJ, Hart SK, Knowles DA and Sanjana NE: Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning. Nat Biotechnol. 42:628–637. 2024. View Article : Google Scholar

83 

Gupta R, Ghosh A, Chakravarti R, Singh R, Ravichandiran V, Swarnakar S and Ghosh D: Cas13d: A new molecular scissor for transcriptome engineering. Front Cell Dev Biol. 10:8668002022. View Article : Google Scholar : PubMed/NCBI

84 

Tang XZ, Tan SX, Hoon S and Yeo GW: Pre-existing adaptive immunity to the RNA-editing enzyme Cas13d in humans. Nat Med. 28:1372–1376. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Kordyś M, Sen R and Warkocki Z: Applications of the versatile CRISPR-Cas13 RNA targeting system. Wiley Interdiscip Rev RNA. 13:e16942022. View Article : Google Scholar

86 

Liu Y, Jing P, Zhou Y, Zhang J, Shi J, Zhang M, Yang H and Fei J: The effects of length and sequence of gRNA on Cas13b and Cas13d activity in vitro and in vivo. Biotechnol J. 18:e23000022023. View Article : Google Scholar : PubMed/NCBI

87 

Zhang C, Konermann S, Brideau NJ, Lotfy P, Wu X, Novick SJ, Strutzenberg T, Griffin PR, Hsu PD and Lyumkis D: Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell. 175:212–223.e17. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Zhang K, Zhang Z, Kang J, Chen J, Liu J, Gao N, Fan L, Zheng P, Wang Y and Sun J: CRISPR/Cas13d-mediated microbial RNA knockdown. Front Bioeng Biotechnol. 8:8562020. View Article : Google Scholar : PubMed/NCBI

89 

Nakagawa R, Kannan S, Altae-Tran H, Takeda SN, Tomita A, Hirano H, Kusakizako T, Nishizawa T, Yamashita K, Zhang F, et al: Structure and engineering of the minimal type VI CRISPR-Cas13bt3. Mol Cell. 82:3178–3192.e5. 2022. View Article : Google Scholar : PubMed/NCBI

90 

Mahas A, Wang Q, Marsic T and Mahfouz MM: A novel miniature CRISPR-Cas13 system for SARS-CoV-2 diagnostics. ACS Synth Biol. 10:2541–2551. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Mehta A and Merkel OM: Immunogenicity of Cas9 protein. J Pharm Sci. 109:62–67. 2020. View Article : Google Scholar :

92 

Kushawah G, Hernandez-Huertas L, Abugattas-Nuñez Del Prado J, Martinez-Morales JR, DeVore ML, Hassan H, Moreno-Sanchez I, Tomas-Gallardo L, Diaz-Moscoso A, Monges DE, et al: CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev Cell. 54:805–817.e7. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Zhou C, Hu X, Tang C, Liu W, Wang S, Zhou Y, Zhao Q, Bo Q, Shi L, Sun X, et al: CasRx-mediated RNA targeting prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Natl Sci Rev. 7:835–837. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang BO, Wu W, Sun Y, et al: Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell. 181:590–603.e16. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Granados-Riveron JT and Aquino-Jarquin G: CRISPR-Cas13 precision transcriptome engineering in cancer. Cancer Res. 78:4107–4113. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Yazdi ZF, Roshannezhad S, Sharif S and Abbaszadegan MR: Recent progress in prompt molecular detection of liquid biopsy using Cas enzymes: Innovative approaches for cancer diagnosis and analysis. J Transl Med. 22:11732024. View Article : Google Scholar

97 

Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO and Zhang F: SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat Protoc. 14:2986–3012. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, Meesawat P, Sappakhaw K, Leelahakorn N, Ruenkam T, Wongsatit T, et al: Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 4:1140–1149. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Gao J, Luo T, Lin N, Zhang S and Wang J: A new tool for CRISPR-Cas13a-based cancer gene therapy. Mol Ther Oncolytics. 19:79–92. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Usuba W, Urabe F, Yamamoto Y, Matsuzaki J, Sasaki H, Ichikawa M, Takizawa S, Aoki Y, Niida S, Kato K, et al: Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci. 110:408–419. 2019. View Article : Google Scholar :

101 

Liu R, Chen X, Du Y, Yao W, Shen L, Wang C, Hu Z, Zhuang R, Ning G, Zhang C, et al: Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem. 58:610–618. 2012. View Article : Google Scholar

102 

Shi J, Li X, Zhang F, Zhang C, Guan Q, Cao X, Zhu W, Zhang X, Cheng Y, Ou K, et al: Circulating lncRNAs associated with occurrence of colorectal cancer progression. Am J Cancer Res. 5:2258–2265. 2015.PubMed/NCBI

103 

Sheng Y, Zhang T, Zhang S, Johnston M, Zheng X, Shan Y, Liu T, Huang Z, Qian F, Xie Z, et al: A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosens Bioelectron. 178:1130272021. View Article : Google Scholar : PubMed/NCBI

104 

Cescon DW, Bratman SV, Chan SM and Siu LL: Circulating tumor DNA and liquid biopsy in oncology. Nat Cancer. 1:276–290. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Rothwell DG, Ayub M, Cook N, Thistlethwaite F, Carter L, Dean E, Smith N, Villa S, Dransfield J, Clipson A, et al: Utility of ctDNA to support patient selection for early phase clinical trials: The TARGET study. Nat Med. 25:738–743. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Zhang X, Tian Y, Xu L, Fan Z, Cao Y, Ma Y, Li H and Ren F: CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection. Hepatol Int. 16:306–315. 2022. View Article : Google Scholar : PubMed/NCBI

107 

Antropov DN and Stepanov GA: Molecular mechanisms underlying CRISPR/Cas-based assays for nucleic acid detection. Curr Issues Mol Biol. 45:649–662. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ and Zhang F: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 360:439–444. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, et al: Field-deployable viral diagnostics using CRISPR-Cas13. Science. 360:444–448. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Bianchi F, Nicassio F, Marzi M, Belloni E, Dall'Olio V, Bernard L, Pelosi G, Maisonneuve P, Veronesi G and Di Fiore PP: A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med. 3:495–503. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Zhang L, Xu Y, Jin X, Wang Z, Wu Y, Zhao D, Chen G, Li D, Wang X, Cao H, et al: A circulating miRNA signature as a diagnostic biomarker for non-invasive early detection of breast cancer. Breast Cancer Res Treat. 154:423–434. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Zhou T, Huang R, Huang M, Shen J, Shan Y and Xing D: CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection. Adv Sci (Weinh). 7:19036612020. View Article : Google Scholar : PubMed/NCBI

113 

Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C and Urban GA: CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater. 31:e19053112019. View Article : Google Scholar : PubMed/NCBI

114 

Bruch R, Johnston M, Kling A, Mattmüller T, Baaske J, Partel S, Madlener S, Weber W, Urban GA and Dincer C: CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosens Bioelectron. 177:1128872021. View Article : Google Scholar : PubMed/NCBI

115 

Ruivo CF, Adem B, Silva M and Melo SA: The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 77:6480–6488. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Contreras-Naranjo JC, Wu HJ and Ugaz VM: Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab Chip. 17:3558–3577. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Li W, Li C, Zhou T, Liu X, Liu X, Li X and Chen D: Role of exosomal proteins in cancer diagnosis. Mol Cancer. 16:1452017. View Article : Google Scholar : PubMed/NCBI

118 

Li A, Zhang T, Zheng M, Liu Y and Chen Z: Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol. 10:1752017. View Article : Google Scholar : PubMed/NCBI

119 

Shao H, Im H, Castro CM, Breakefield X, Weissleder R and Lee H: New technologies for analysis of extracellular vesicles. Chem Rev. 118:1917–1950. 2018. View Article : Google Scholar : PubMed/NCBI

120 

He Y, Wu Y, Wang Y, Wang X, Xing S, Li H, Guo S, Yu X, Dai S, Zhang G, et al: Applying CRISPR/Cas13 to construct exosomal PD-L1 ultrasensitive biosensors for dynamic monitoring of tumor progression in immunotherapy. Adv Therap. 3:20000932020. View Article : Google Scholar

121 

Chen Q, Tian T, Xiong E, Wang P and Zhou X: CRISPR/Cas13a signal amplification linked immunosorbent assay for femtomolar protein detection. Anal Chem. 92:573–577. 2020. View Article : Google Scholar

122 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Chen Y, Jiang H, Wang T, He D, Tian R, Cui Z, Tian X, Gao Q, Ma X, Yang J, et al: In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/ E7 mRNAs' cleavage by CRISPR/Cas13a system. Antiviral Res. 178:1047942020. View Article : Google Scholar

124 

Zhang Z, Wang Q, Liu Q, Zheng Y, Zheng C, Yi K, Zhao Y, Gu Y, Wang Y, Wang C, et al: Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy. Adv Mater. 31:e19057512019. View Article : Google Scholar : PubMed/NCBI

125 

Jiang W, Li H, Liu X, Zhang J, Li T, Liu L and Yu X: Precise and efficient silencing of mutant KrasG12D by CRISPR-CasRx controls pancreatic cancer progression. Theranostics. 10:115072020. View Article : Google Scholar :

126 

Yue H, Huang R, Shan Y and Xing D: Delivery of Cas13a/ crRNA by self-degradable black phosphorus nanosheets to specifically inhibit Mcl-1 for breast cancer therapy. J Mater Chem B. 8:11096–11106. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Lin P, Qin S, Pu Q, Wang Z, Wu Q, Gao P, Schettler J, Guo K, Li R, Li G, et al: CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells. Mol Cell. 78:850–861. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Meeske AJ, Jia N, Cassel AK, Kozlova A, Liao J, Wiedmann M, Patel DJ and Marraffini LA: A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science. 369:54–59. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A, Waldhauer MC, Börner K, Fakhiri J, Schmelas C, Dietz L, et al: Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat Methods. 15:924–927. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Lee J, Mou H, Ibraheim R, Liang SQ, Liu P, Xue W and Sontheimer EJ: Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA. 25:1421–1431. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Fan J, Liu Y, Liu L, Huang Y, Li X and Huang W: A multifunction lipid-based CRISPR-Cas13a genetic circuit delivery system for bladder cancer gene therapy. ACS Synth Biol. 9:343–355. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Kopparapu PK, Boorjian SA, Robinson BD, Downes M, Gudas LJ, Mongan NP and Persson JL: Expression of VEGF and its receptors VEGFR1/VEGFR2 is associated with invasiveness of bladder cancer. Anticancer Res. 33:2381–2390. 2013.PubMed/NCBI

133 

Liu L, Liu Y, Zhang T, Wu H, Lin M, Wang C, Zhan Y, Zhou Q, Qiao B, Sun X, et al: Synthetic Bax-Anti Bcl2 combination module actuated by super artificial hTERT promoter selectively inhibits malignant phenotypes of bladder cancer. J Exp Clin Cancer Res. 35:32016. View Article : Google Scholar : PubMed/NCBI

134 

Wang D, Tang H, Xu X, Dai W, Wu J and Wang J: Control the intracellular NF-κB activity by a sensor consisting of miRNA and decoy. Int J Biochem Cell Biol. 95:43–52. 2018. View Article : Google Scholar

135 

Dai W, Wu J, Wang D and Wang J: Cancer gene therapy by NF-κB-activated cancer cell-specific expression of CRISPR/ Cas9 targeting telomeres. Gene Ther. 27:266–280. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Wang D, Dai W and Wang J: A cell-specific nuclear factor-kappa B-activating gene expression strategy for delivering cancer immunotherapy. Hum Gene Ther. 30:471–484. 2019. View Article : Google Scholar

137 

Rahib L, Wehner MR, Matrisian LM and Nead KT: Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open. 4:e2147082021. View Article : Google Scholar : PubMed/NCBI

138 

Halbrook CJ, Lyssiotis CA, di Magliano MP and Maitra A: Pancreatic cancer: Advances and challenges. Cell. 186:1729–1754. 2023. View Article : Google Scholar : PubMed/NCBI

139 

Linehan A, O'Reilly M, McDermott R and O'Kane GM: Targeting KRAS mutations in pancreatic cancer: Opportunities for future strategies. Front Med (Lausanne). 11:13691362024. View Article : Google Scholar : PubMed/NCBI

140 

Amintas S, Cullot G, Boubaddi M, Rébillard J, Karembe L, Turcq B, Prouzet-Mauléon V, Bedel A, Moreau-Gaudry F, Cappellen D and Dabernat S: Integrating allele-specific PCR with CRISPR-Cas13a for sensitive KRAS mutation detection in pancreatic cancer. J Biol Eng. 18:532024. View Article : Google Scholar : PubMed/NCBI

141 

Zhao X, Liu L, Lang J, Cheng K, Wang Y, Li X, Shi J, Wang Y and Nie G: A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett. 431:171–181. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Zhang Y, Li S, Li R, Qiu X, Fan T, Wang B, Zhang B and Zhang L: Advances in application of CRISPR-Cas13a system. Front Cell Infect Microbiol. 14:12915572024. View Article : Google Scholar : PubMed/NCBI

143 

Kluth LA, Black PC, Bochner BH, Catto J, Lerner SP, Stenzl A, Sylvester R, Vickers AJ, Xylinas E and Shariat SF: Prognostic and prediction tools in bladder cancer: A comprehensive review of the literature. Eur Urol. 68:238–253. 2015. View Article : Google Scholar : PubMed/NCBI

144 

Wéber A, Vignat J, Shah R, Morgan E, Laversanne M, Nagy P, Kenessey I and Znaor A: Global burden of bladder cancer mortality in 2020 and 2040 according to GLOBOCAN estimates. World J Urol. 42:2372024. View Article : Google Scholar : PubMed/NCBI

145 

Liang M, Wang Y, Liu L, Deng D, Yan Z, Feng L, Kong C, Li C, Li Y and Li G: Synergistic intravesical instillation for bladder cancer: CRISPR-Cas13a and fenbendazole combination therapy. J Exp Clin Cancer Res. 43:2232024. View Article : Google Scholar : PubMed/NCBI

146 

Zhou L, Li Y, Wang H, Qin R, Han Z and Li R: Global cervical cancer elimination: Quantifying the status, progress, and gaps. BMC Med. 23:672025. View Article : Google Scholar : PubMed/NCBI

147 

Matsukura T and Sugase M: Pitfalls in the epidemiologic classification of human papillomavirus types associated with cervical cancer using polymerase chain reaction: Driver and passenger. Int J Gynecol Cancer. 18:1042–1050. 2008. View Article : Google Scholar : PubMed/NCBI

148 

Goodwin EC and DiMaio D: Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA. 97:12513–12518. 2000. View Article : Google Scholar : PubMed/NCBI

149 

Pellerino A, Caccese M, Padovan M, Cerretti G and Lombardi G: Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging. 10:467–475. 2022. View Article : Google Scholar

150 

Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI

151 

Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan Y, Wu Y, Zhang S, Yi K and Kang C: The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells. Adv Sci (Weinh). 6:19012992019. View Article : Google Scholar : PubMed/NCBI

152 

Di Carlo E and Sorrentino C: State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res. 12:1562024. View Article : Google Scholar : PubMed/NCBI

153 

Azeez SS, Hamad RS, Hamad BK, Shekha MS and Bergsten P: Advances in CRISPR-Cas technology and its applications: Revolutionising precision medicine. Front Genome Ed. 6:15099242024. View Article : Google Scholar : PubMed/NCBI

154 

Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A and Mokhtari-Farsani A: Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer. 23:92024. View Article : Google Scholar : PubMed/NCBI

155 

Mousavi Kahaki SA, Ebrahimzadeh N, Fahimi H and Moshiri A: Development of an optimized protocol for generating knockout cancer cell lines using the CRISPR/Cas9 system, with emphasis on transient transfection. PLoS One. 19:e03103682024. View Article : Google Scholar : PubMed/NCBI

156 

Tian T, Shu B, Jiang Y, Ye M, Liu L, Guo Z, Han Z, Wang Z and Zhou X: An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano. 15:1167–1178. 2021. View Article : Google Scholar : PubMed/NCBI

157 

Zhou T, Huang M, Lin J, Huang R and Xing D: High-fidelity CRISPR/Cas13a trans-cleavage-triggered rolling circle amplified DNAzyme for visual profiling of microRNA. Anal Chem. 93:2038–2044. 2021. View Article : Google Scholar : PubMed/NCBI

158 

Sha Y, Huang R, Huang M, Yue H, Shan Y, Hu J and Xing D: Cascade CRISPR/cas enables amplification-free microRNA sensing with fM-sensitivity and single-base-specificity. Chem Commun (Camb). 57:247–250. 2021. View Article : Google Scholar

159 

Cui Y, Fan S, Yuan Z, Song M, Hu J, Qian D, Zhen D, Li J and Zhu B: Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta. 224:1218782021. View Article : Google Scholar : PubMed/NCBI

160 

Huang M, Huang R, Yue H, Shan Y and Xing D: Ultrasensitive and high-specific microRNA detection using hyper-branching rolling circle amplified CRISPR/Cas13a biosensor. Sens Actuat B Chem. 325:1287992020. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Allemailem KS, Rahmani AH, Almansour NM, Aldakheel FM, Albalawi GM, Albalawi GM and Khan AA: Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review). Int J Oncol 66: 42, 2025.
APA
Allemailem, K.S., Rahmani, A.H., Almansour, N.M., Aldakheel, F.M., Albalawi, G.M., Albalawi, G.M., & Khan, A.A. (2025). Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review). International Journal of Oncology, 66, 42. https://doi.org/10.3892/ijo.2025.5748
MLA
Allemailem, K. S., Rahmani, A. H., Almansour, N. M., Aldakheel, F. M., Albalawi, G. M., Albalawi, G. M., Khan, A. A."Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review)". International Journal of Oncology 66.5 (2025): 42.
Chicago
Allemailem, K. S., Rahmani, A. H., Almansour, N. M., Aldakheel, F. M., Albalawi, G. M., Albalawi, G. M., Khan, A. A."Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review)". International Journal of Oncology 66, no. 5 (2025): 42. https://doi.org/10.3892/ijo.2025.5748
Copy and paste a formatted citation
x
Spandidos Publications style
Allemailem KS, Rahmani AH, Almansour NM, Aldakheel FM, Albalawi GM, Albalawi GM and Khan AA: Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review). Int J Oncol 66: 42, 2025.
APA
Allemailem, K.S., Rahmani, A.H., Almansour, N.M., Aldakheel, F.M., Albalawi, G.M., Albalawi, G.M., & Khan, A.A. (2025). Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review). International Journal of Oncology, 66, 42. https://doi.org/10.3892/ijo.2025.5748
MLA
Allemailem, K. S., Rahmani, A. H., Almansour, N. M., Aldakheel, F. M., Albalawi, G. M., Albalawi, G. M., Khan, A. A."Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review)". International Journal of Oncology 66.5 (2025): 42.
Chicago
Allemailem, K. S., Rahmani, A. H., Almansour, N. M., Aldakheel, F. M., Albalawi, G. M., Albalawi, G. M., Khan, A. A."Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review)". International Journal of Oncology 66, no. 5 (2025): 42. https://doi.org/10.3892/ijo.2025.5748
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team