
Protein lactylation and immunotherapy in gliomas: A novel regulatory axis in tumor metabolism (Review)
- Authors:
- Tao Luo
- Liang Liu
- Hao Wang
- Shuai Wen
-
Affiliations: Department of Neurosurgery, People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Ningxiang, Hunan 410699, P.R. China - Published online on: June 18, 2025 https://doi.org/10.3892/ijo.2025.5764
- Article Number: 58
-
Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Hatami M, Ma W and Skutella T: Vaccine-based immunotherapy and related preclinical models for glioma. Trends Mol Med. 30:965–981. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tariq R, Hussain N, Bajwa MH, Aziz HF, Shamim MS and Enam SA: Multicentric low-grade glioma: A systematic review of a rare neuro-oncological disease. Clin Neurol Neurosurg. 251:1088212025. View Article : Google Scholar : PubMed/NCBI | |
Weller M, Wen PY, Chang SM, Dirven L, Lim M, Monje M and Reifenberger G: Glioma. Nat Rev Dis Primers. 10:332024. View Article : Google Scholar : PubMed/NCBI | |
Awuah WA, Ben-Jaafar A, Roy S, Nkrumah-Boateng PA, Tan JK, Abdul-Rahman T and Atallah O: Predicting survival in malignant glioma using artificial intelligence. Eur J Med Res. 30:612025. View Article : Google Scholar : PubMed/NCBI | |
Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–87. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kampers LFC, Metselaar DS, Vinci M, Scirocchi F, Veldhuijzen van Zanten S, Eyrich M, Biassoni V, Hulleman E, Karremann M, Stucker W and Van Gool SW: The complexity of malignant glioma treatment. Cancers (Basel). 17:8792025. View Article : Google Scholar : PubMed/NCBI | |
Poorva P, Mast J, Cao B, Shah MV, Pollok KE and Shen J: Killing the killers: Natural killer cell therapy targeting glioma stem cells in high-grade glioma. Mol Ther. 33:2462–2478. 2025. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Sun C, Ding X, Xu J, Zhang Y, Deng T, Wang Y, Yang H, Ding R, Li H, et al: Mechanism analysis and targeted therapy of IDH gene mutation in glioma. Am J Cancer Res. 15:248–270. 2025. View Article : Google Scholar : PubMed/NCBI | |
Gong G, Jiang L, Zhou J and Su Y: Advancements in targeted and immunotherapy strategies for glioma: Toward precision treatment. Front Immunol. 15:15370132024. View Article : Google Scholar | |
Llibre A, Kucuk S, Gope A, Certo M and Mauro C: Lactate: A key regulator of the immune response. Immunity. 58:535–554. 2025. View Article : Google Scholar : PubMed/NCBI | |
Papaneophytou C: The warburg effect: Is it always an enemy? Front Biosci (Landmark Ed). 29:4022024. View Article : Google Scholar : PubMed/NCBI | |
Gong T, Wang QD, Loughran PA, Li YH, Scott MJ, Billiar TR, Liu YT and Fan J: Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: Role for CIRP-ZBP1-PANoptosis pathway. Mil Med Res. 11:712024.PubMed/NCBI | |
Iozzo M, Pardella E, Giannoni E and Chiarugi P: The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol Cell. 85:1263–1279. 2025. View Article : Google Scholar : PubMed/NCBI | |
Lv M, Huang Y, Chen Y and Ding K: Lactylation modification in cancer: Mechanisms, functions, and therapeutic strategies. Exp Hematol Oncol. 14:322025. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S and Jia R: Lactate and lactylation in cancer. Signal Transduct Target Ther. 10:382025. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Qi H, Lv H, Liu W, Zhang R and Yang A: Lactylation in health and disease: Physiological or pathological? Theranostics. 15:1787–821. 2025. View Article : Google Scholar : PubMed/NCBI | |
Li S, Dong L and Wang K: Current and future perspectives of lysine lactylation in cancer. Trends Cell Biol. 35:190–193. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Zhang N, Ye J, Wang Z, Zhou X, Liu J, Cai J, Li C and Chen L: Unveiling lactylation modification: A new hope for cancer treatment. Biomed Pharmacother. 184:1179342025. View Article : Google Scholar : PubMed/NCBI | |
Sui Y, Shen Z, Wang Z, Feng J and Zhou G: Lactylation in cancer: Metabolic mechanism and therapeutic strategies. Cell Death Discov. 11:682025. View Article : Google Scholar : PubMed/NCBI | |
Al-Malsi K, Xie S, Cai Y, Mohammed N, Xie K, Lan T and Wu H: The role of lactylation in tumor growth and cancer progression. Front Oncol. 15:15167852025. View Article : Google Scholar : PubMed/NCBI | |
Qiu Q, Deng H, Song P, Liu Y and Zhang M: Lactylation in glioblastoma: A novel epigenetic modifier bridging epigenetic plasticity and metabolic reprogramming. Int J Mol Sci. 26:33682025. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Zhou Z, Qiu P and Xin T: Integrated single-cell and bulk RNA-sequencing data reveal molecular subtypes based on lactylation-related genes and prognosis and therapeutic response in glioma. Heliyon. 10:e307262024. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Wu H, Dai Y, Wang Z, Han H, Shen Y, Zhang R and Wang X: A pan-cancer multi-omics analysis of lactylation genes associated with tumor microenvironment and cancer development. Heliyon. 10:e274652024. View Article : Google Scholar : PubMed/NCBI | |
Khan T, Nagarajan M, Kang I, Wu C and Wangpaichitr M: Targeting metabolic vulnerabilities to combat drug resistance in cancer therapy. J Pers Med. 15:502025. View Article : Google Scholar : PubMed/NCBI | |
Clay R, Li K and Jin L: Metabolic signaling in the tumor microenvironment. Cancers (Basel). 17:1552025. View Article : Google Scholar : PubMed/NCBI | |
Barba I, Carrillo-Bosch L and Seoane J: Targeting the warburg effect in cancer: Where do we stand? Int J Mol Sci. 25:31422024. View Article : Google Scholar : PubMed/NCBI | |
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J and Liu B: Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B. 14:953–1008. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Xia M, Li J, Liu G, Sun Y, Chen X and Zhong J: Warburg effect and lactylation in cancer: Mechanisms for chemoresistance. Mol Med. 31:1462025. View Article : Google Scholar : PubMed/NCBI | |
Upadhyay S, Khan S and Hassan MI: Exploring the diverse role of pyruvate kinase M2 in cancer: Navigating beyond glycolysis and the Warburg effect. Biochim Biophys Acta Rev Cancer. 1879:1890892024. View Article : Google Scholar : PubMed/NCBI | |
Basheeruddin M and Qausain S: Hypoxia-Inducible Factor 1-Alpha (HIF-1alpha): An essential regulator in cellular metabolic control. Cureus. 16:e638522024. | |
Sharma D, Singh M and Rani R: Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol. 87:184–95. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Han S, Yao Y and Zhang G: Role of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) in tumor cells and the tumor microenvironment. Cancer Manag Res. 15:957–975. 2023. View Article : Google Scholar : PubMed/NCBI | |
Singh M, Afonso J, Sharma D, Gupta R and Kumar V, Rani R, Baltazar F and Kumar V: Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol. 90:1–14. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li S, Yu L, Leng J and Li N: Targeting glycolysis: Exploring a new frontier in glioblastoma therapy. Front Immunol. 15:15223922025. View Article : Google Scholar : PubMed/NCBI | |
Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun F, Li W, Du R, Liu M, Cheng Y, Ma J and Yan S: Impact of glycolysis enzymes and metabolites in regulating DNA damage repair in tumorigenesis and therapy. Cell Commun Signal. 23:442025. View Article : Google Scholar : PubMed/NCBI | |
Kooshan Z, Cardenas-Piedra L, Clements J and Batra J: Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett. 600:2171562024. View Article : Google Scholar : PubMed/NCBI | |
Wan L, Zhang H, Liu J, He Q, Zhao J, Pan C, Zheng K and Tang Y: Lactylation and human disease. Expert Rev Mol Med. 27:e102025. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Luo N, Gong Z, Zhou W, Ku Y and Chen Y: Lactate and lysine lactylation of histone regulate transcription in cancer. Heliyon. 10:e384262024. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Liu W, Luo Z, Xiao F and Sun B: New insights into the roles of lactylation in cancer. Front Pharmacol. 15:14126722024. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Shan G, Bi G, Hu Z, Yi Y, Zeng D, Lin Z and Zhan C: Lactylation and regulated cell death. Biochim Biophys Acta Mol Cell Res. 1872:1199272025. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu C, Li R, Zhou L, Ran Y, Yang Q, Huang H, Lu H, Song H, Yang B, et al: AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases. Nature. 634:1229–1237. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H, Guo D, Meng Y, Han H, Luo S, et al: ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. Cell Metab. 37:361–376 e7. 2025. View Article : Google Scholar | |
Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z, Geng D, Yue J, Tang Y, Tian L, et al: The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Invest. 134:e1745872024. View Article : Google Scholar : PubMed/NCBI | |
Tsusaka T, Najar MA, Sharma I, Marcinkiewicz MM, Crispim CVDS, Snyder NW, Burslem GM and Goldberg EL: Class I histone deacetylases catalyze lysine lactylation. bioRxiv [Preprint] 2025.02.25.640220. 2025. | |
Urbanska K and Orzechowski A: Unappreciated Role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci. 20:20852019. View Article : Google Scholar : PubMed/NCBI | |
Tsukihara S, Akiyama Y, Shimada S, Hatano M, Igarashi Y, Taniai T, Tanji Y, Kodera K, Yasukawa K, Umeura K, et al: Delactylase effects of SIRT1 on a positive feedback loop involving the H19-glycolysis-histone lactylation in gastric cancer. Oncogene. 44:724–738. 2025. View Article : Google Scholar | |
Zou Y, Cao M, Tai M, Zhou H, Tao L, Wu S, Yang K, Zhang Y, Ge Y, Wang H, et al: A feedback loop driven by H4K12 lactylation and HDAC3 in macrophages regulates lactate-induced collagen synthesis in fibroblasts via the TGF-beta signaling. Adv Sci (Weinh). 12:e24114082025. View Article : Google Scholar | |
He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie Z, Du J, Chen G, Song J and Mei Q: HDAC2-Mediated METTL3 delactylation promotes DNA damage repair and chemotherapy resistance in triple-negative breast cancer. Adv Sci (Weinh). 12:e24131212025. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Meng W, Dai Y, Xu L, Ding N, Zhang J and Zhuang X: Anaerobic metabolism promotes breast cancer survival via Histone-3 Lysine-18 lactylation mediating PPARD axis. Cell Death Discov. 11:542025. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Huang T, Wu Q, Yuan H, Wu X, Yuan F, Duan T, Taori S, Zhao Y, Snyder NW, et al: Lactate reprograms glioblastoma immunity through CBX3-regulated histone lactylation. J Clin Invest. 134:e1768512024. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Yang K, Wang X, Chen L, Gill PS, Ha T, Liu L, Lewis NH, Williams DL and Li C: Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 9:eadc94652023. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M and Yang K: Lactate's impact on immune cells in sepsis: Unraveling the complex interplay. Front Immunol. 15:14834002024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Liang C, Wu C, Wan S and Xu L, Wang S, Wang J, Huang X and Xu L: A rising star involved in tumour immunity: Lactylation. J Cell Mol Med. 28:e701462024. View Article : Google Scholar : PubMed/NCBI | |
Shi P, Ma Y and Zhang S: Non-histone lactylation: Unveiling its functional significance. Front Cell Dev Biol. 13:15356112025. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130. 2024. View Article : Google Scholar : | |
Li F, Zhang H, Huang Y, Li D, Zheng Z, Xie K, Cao C, Wang Q, Zhao X, Huang Z, et al: Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat. 73:1010592024. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Huang X, Liang C and Zhang P: Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol. 957:1760072023. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Xu W, Wu Y, Wang M, Zhang N, Wang L, Feng Y, Zhang T, Wang L and Mao A: GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway. Oncogene. 42:3319–30. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Deng Y, Hong Y, Fan L, Zhai X, Hu H, Yin S, Chen Q, Xie X, Ren X, et al: Metabolic recoding of NSUN2-mediated m(5)C modification promotes the progression of colorectal cancer via the NSUN2/YBX1/m(5)C-ENO1 positive feedback loop. Adv Sci (Weinh). 11:e23098402024. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Guo M, Li Y and Liao Y: Lactylated histone H3K18 as a potential biomarker for the diagnosis and prediction of the severity of pancreatic cancer. Clinics (Sao Paulo). 80:1005442024. View Article : Google Scholar : PubMed/NCBI | |
Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T and Wei R: Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer. 23:902024. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Li Y, Zhou L, Cheng X and Gong Z: Hepatic stellate cells promote hepatocellular carcinoma development by regulating histone lactylation: Novel insights from single-cell RNA sequencing and spatial transcriptomics analyses. Cancer Lett. 604:2172432024. View Article : Google Scholar : PubMed/NCBI | |
Ding CH, Yan FZ, Xu BN, Qian H, Hong XL, Liu SQ, Luo YY, Wu SH, Cai LY, Zhang X, et al: PRMT3 drives PD-L1-mediated immune escape through activating PDHK1-regulated glycolysis in hepatocellular carcinoma. Cell Death Dis. 16:1582025. View Article : Google Scholar : PubMed/NCBI | |
Chao J, Chen GD, Huang ST, Gu H, Liu YY, Luo Y, Lin Z, Chen ZZ, Li X, Zhang B, et al: High histone H3K18 lactylation level is correlated with poor prognosis in epithelial ovarian cancer. Neoplasma. 71:319–332. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Che X, Wang PW and Qu X: p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol. 101:44–57. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B and Zhou F: Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 187:2375–2392 e33. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Yi Y, Liu H, Xu J, Chen S, Wu D, Wang L and Li F: RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition. Cancer Metab. 12:322024. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Zhang X, Shi J, Huang J, Wang S, Li X, Lin H, Zhao D, Ye M, Zhang S, et al: Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma. J Clin Invest. 135:e1870242025. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Sun H, Zhang Y, Yang X, Hao S, Liu B, Zhou H, Xu ZX and Wang Y: Lactylation stabilizes DCBLD1 activating the pentose phosphate pathway to promote cervical cancer progression. J Exp Clin Cancer Res. 43:362024. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cheng Z, Huang H, Li M and Chen Y: Proteomic analysis identifies PFKP lactylation in SW480 colon cancer cells. iScience. 27:1086452023. View Article : Google Scholar : PubMed/NCBI | |
Batsios G, Taglang C, Udutha S, Gillespie AM, Robinson SP, Phoenix T, Mueller S, Venneti S, Koschmann C and Viswanath P: Lactylation fuels nucleotide biosynthesis and facilitates deuterium metabolic imaging of tumor proliferation in H3K27M-mutant gliomas. bioRxiv. Jan 3–2025.Epub ahead of print. | |
Dong F, Yin H and Zheng Z: Hypoxia-inducible factor-1alpha regulates BNIP3-dependent mitophagy and mediates metabolic reprogramming through histone lysine lactylation modification to affect glioma proliferation and invasion. J Biochem Mol Toxicol. 39:e700692025. View Article : Google Scholar | |
Zhu J and Zhang Y: Dexmedetomidine inhibits the migration, invasion, and glycolysis of glioblastoma cells by lactylation of c-myc. Neurol Res. 46:1105–1112. 2024. View Article : Google Scholar : PubMed/NCBI | |
Trejo-Solis C, Castillo-Rodriguez RA, Serrano-Garcia N, Silva-Adaya D, Vargas-Cruz S, Chavez-Cortez EG, Gallardo-Perez JC, Zavala-Vega S, Cruz-Salgado A and Magana-Maldonado R: Metabolic roles of HIF1, c-Myc, and p53 in glioma cells. Metabolites. 14:2492024. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhao Y, Liu X, Ruan X, Wang P, Liu L, Wang D, Dong W, Yang C and Xue Y: Pseudogene MAPK6P4-encoded functional peptide promotes glioblastoma vasculogenic mimicry development. Commun Biol. 6:10592023. View Article : Google Scholar : PubMed/NCBI | |
Uba AI: Computer-aided design of VEGFR-2 inhibitors as anticancer agents: A review. J Mol Recognit. 38:e31042025. View Article : Google Scholar | |
Mehta K, Hegde M, Girisa S, Vishwa R, Alqahtani MS, Abbas M, Shakibaei M, Sethi G and Kunnumakkara AB: Targeting RTKs/nRTKs as promising therapeutic strategies for the treatment of triple-negative breast cancer: Evidence from clinical trials. Mil Med Res. 11:762024.PubMed/NCBI | |
Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Agosti E, Zeppieri M, Ghidoni M, Ius T, Tel A, Fontanella MM and Panciani PP: Role of glioma stem cells in promoting tumor chemo- and radioresistance: A systematic review of potential targeted treatments. World J Stem Cells. 16:604–614. 2024. View Article : Google Scholar : PubMed/NCBI | |
Friess D, Brauer S, Poysti A, Choudhury C and Harris L: Tools to study neural and glioma stem cell quiescence. Trends Neurosci. 47:736–748. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ramar V, Guo S, Hudson B and Liu M: Progress in glioma stem cell research. Cancers (Basel). 16:1022023. View Article : Google Scholar | |
Agosti E, Antonietti S, Ius T, Fontanella MM, Zeppieri M and Panciani PP: Glioma stem cells as promoter of glioma progression: A systematic review of molecular pathways and targeted therapies. Int J Mol Sci. 25:79792024. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Amin MA and Campian JL: Glioblastoma stem cells at the nexus of tumor heterogeneity, immune evasion, and therapeutic resistance. Cells. 14:5622025. View Article : Google Scholar : PubMed/NCBI | |
Li G, Wang D, Zhai Y, Pan C, Zhang J, Wang C, Huang R, Yu M, Li Y, Liu X, et al: Glycometabolic reprogramming-induced XRCC1 lactylation confers therapeutic resistance in ALDH1A3-overexpressing glioblastoma. Cell Metab. 36:1696–1710 e10. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Yin X, Sun H, Lu J, Li Y, Fan Y, Lv P, Han M, Wu J, Li S, et al: PTBP1 lactylation promotes glioma stem cell maintenance through PFKFB4-Driven glycolysis. Cancer Res. 85:739–757. 2025. View Article : Google Scholar | |
Li L, Li Z, Meng X, Wang X, Song D, Liu Y, Xu T, Qin J, Sun N, Tian K, et al: Histone lactylation-derived LINC01127 promotes the self-renewal of glioblastoma stem cells via the cis-regulating the MAP4K4 to activate JNK pathway. Cancer Lett. 579:2164672023. View Article : Google Scholar : PubMed/NCBI | |
Holohan C, Van Schaeybroeck S, Longley DB and Johnston PG: Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 13:714–726. 2013. View Article : Google Scholar : PubMed/NCBI | |
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, et al: Cancer drug-tolerant persister cells: From biological questions to clinical opportunities. Nat Rev Cancer. 24:694–717. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kuczynski EA, Sargent DJ, Grothey A and Kerbel RS: Drug rechallenge and treatment beyond progression-implications for drug resistance. Nat Rev Clin Oncol. 10:571–587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yang F, Hu J and Zhang X: Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther. 30:e147152024. View Article : Google Scholar : PubMed/NCBI | |
Huo X, Li H, Xing Y, Liu W, Chen P, Du F, Song L, Yu Z, Cao X and Tian J: Two decades of progress in glioma methylation research: The rise of temozolomide resistance and immunotherapy insights. Front Neurosci. 18:14407562024. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y and Cai J: Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res. 72:527–554. 2025. View Article : Google Scholar : | |
Davidson CL, Vengoji R, Jain M, Batra SK and Shonka N: Biological, diagnostic and therapeutic implications of exosomes in glioma. Cancer Lett. 582:2165922024. View Article : Google Scholar : | |
Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS and Borley J: Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer. 14:747–753. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munoz JL, Walker ND, Scotto KW and Rameshwar P: Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett. 367:69–75. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Tan Y, Li T, Tan D, Fu B, Yang M, Chen Y, Cao M, Xuan C, Du Q, et al: Intercellular adhesion molecule-1 suppresses TMZ chemosensitivity in acquired TMZ-resistant gliomas by increasing assembly of ABCB1 on the membrane. Drug Resist Updat. 76:1011122024. View Article : Google Scholar : PubMed/NCBI | |
Oldrini B, Vaquero-Siguero N, Mu Q, Kroon P, Zhang Y, Galan-Ganga M, Bao Z, Wang Z, Liu H, Sa JK, et al: MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat Commun. 11:38832020. View Article : Google Scholar : PubMed/NCBI | |
Agarwal S, Al-Keilani MS, Alqudah MA, Sibenaller ZA, Ryken TC and Assem M: Tumor derived mutations of protein tyrosine phosphatase receptor type K affect its function and alter sensitivity to chemotherapeutics in glioma. PLoS One. 8:e628522013. View Article : Google Scholar : PubMed/NCBI | |
Su IC, Su YK, Chuang HY, Yadav VK, Setiawan SA, Fong IH, Yeh CT, Huang HC and Lin CM: Ubiquitin-specific protease 6 n-terminal-like protein (USP6NL) and the epidermal growth factor receptor (EGFR) signaling axis regulates ubiquitin-mediated DNA repair and temozolomide-resistance in glioblastoma. Biomedicines. 10:15312022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang T, Wan Q, Wang Q, Chen Z, Gao Y, Ye Y, Lin J, Zhao B, Wang H, et al: TRAF4 maintains deubiquitination of caveolin-1 to drive glioblastoma stemness and temozolomide resistance. Cancer Res. 82:3573–3587. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao XY, Zang J, Zheng MH, Zhang YF, Yue KY, Cao XL, Cao Y, Li XX, Han H, Jiang XF and Liang L: Temozolomide treatment induces HMGB1 to promote the formation of glioma stem cells via the TLR2/NEAT1/Wnt pathway in glioblastoma. Front Cell Dev Biol. 9:6208832021. View Article : Google Scholar : PubMed/NCBI | |
Pu J, Yuan K, Tao J, Qin Y, Li Y, Fu J, Li Z, Zhou H, Tang Z, Li L, et al: Glioblastoma multiforme: An updated overview of temozolomide resistance mechanisms and strategies to overcome resistance. Discov Oncol. 16:7312025. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Zhong Q, Wang Y, Yin C, Bai M, Zhu J, Chen J, Li H and Hong W: Lactylation: The metabolic accomplice shaping cancer's response to radiotherapy and immunotherapy. Ageing Res Rev. 104:1026702025. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Liu JS, Wei XL, Nie Y and Liu HL: Histone lactylation-driven ubiquitin-specific protease 34 promotes cisplatin resistance in hepatocellular carcinoma. Gastroenterology Res. 18:23–30. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Guo L, Li X, Hu Y and Luo N: Cancer-associated fibroblasts promote doxorubicin resistance in triple-negative breast cancer through enhancing ZFP64 histone lactylation to regulate ferroptosis. J Transl Med. 23:2472025. View Article : Google Scholar : PubMed/NCBI | |
Yue Q, Wang Z, Shen Y, Lan Y, Zhong X, Luo X, Yang T, Zhang M, Zuo B, Zeng T, et al: Histone H3K9 lactylation confers temozolomide resistance in glioblastoma via LUC7L2-Mediated MLH1 intron retention. Adv Sci (Weinh). 11:e23092902024. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Ren X, Park YE, Feng H, Sheng X, Song X, AminiTabrizi R, Shah H, Li L, Zhang Y, et al: Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. Cell Metab. 37:377–394 e9. 2025. View Article : Google Scholar | |
Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, et al: Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun (Lond). 44:1231–1260. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Huang Z and Li L: LDHB mediates histone lactylation to activate PD-L1 and promote ovarian cancer immune escape. Cancer Invest. 43:70–79. 2025. View Article : Google Scholar | |
Huang C, Xue L, Lin X, Shen Y and Wang X: Histone lactylation-driven GPD2 mediates M2 macrophage polarization to promote malignant transformation of cervical cancer progression. DNA Cell Biol. 43:605–618. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Yang J, Jia W, Li L, Li Y, Hu J, Luo W, Li R, Ye D and Lan P: Histone lactylation-driven B7-H3 expression promotes tumor immune evasion. Theranostics. 15:2338–2359. 2025. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Huang Y, Zhang J, Chen Y, Jiang F, Zhang Z, Li T, Hou L, Tan W and Li F: Histone lactylation regulates PRKN-Mediated mitophagy to promote M2 macrophage polarization in bladder cancer. Int Immunopharmacol. 148:1141192025. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Liang P, Chen Z, Chen Z, Jin T, He F, Chen X and Yang K: CAF-secreted LOX promotes PD-L1 expression via histone lactylation and regulates tumor EMT through TGFβ/IGF1 signaling in gastric cancer. Cell Signal. 124:1114622024. View Article : Google Scholar | |
Wang W, Wang H, Wang Q, Yu X and Ouyang L: Lactate-induced protein lactylation in cancer: Functions, biomarkers and immunotherapy strategies. Front Immunol. 15:15130472025. View Article : Google Scholar : PubMed/NCBI | |
Hao ZN, Tan XP, Zhang Q, Li J, Xia R and Ma Z: Lactate and lactylation: Dual regulators of T-cell-mediated tumor immunity and immunotherapy. Biomolecules. 14:16462024. View Article : Google Scholar : | |
Raychaudhuri D, Singh P, Chakraborty B, Hennessey M, Tannir AJ, Byregowda S, Natarajan SM, Trujillo-Ocampo A, Im JS and Goswami S: Histone lactylation drives CD8(+) T cell metabolism and function. Nat Immunol. 25:2140–2151. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou L, Zhang M, Du Y, Li C, Ren H and Zheng L: H3K18 lactylation potentiates immune escape of non-small cell lung cancer. Cancer Res. 84:3589–3601. 2024. View Article : Google Scholar : PubMed/NCBI | |
De Leo A, Ugolini A, Yu X, Scirocchi F, Scocozza D, Peixoto B, Pace A, D'Angelo L, Liu JKC, Etame AB, et al: Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity. 57:1105–1123 e8. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li M, Sun P, Tu B, Deng G, Li D and He W: Hypoxia conduces the glioma progression by inducing M2 macrophage polarization via elevating TNFSF9 level in a histone-lactylation-dependent manner. Am J Physiol Cell Physiol. 327:C487–C504. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mulvey A, Trueb L, Coukos G and Arber C: Novel strategies to manage CAR-T cell toxicity. Nat Rev Drug Discov. 24:379–397. 2025. View Article : Google Scholar : PubMed/NCBI | |
Diorio C, Teachey DT and Grupp SA: Allogeneic chimeric antigen receptor cell therapies for cancer: Progress made and remaining roadblocks. Nat Rev Clin Oncol. 22:10–27. 2025. View Article : Google Scholar | |
Tang L, Huang ZP, Mei H and Hu Y: Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Mil Med Res. 10:522023.PubMed/NCBI | |
Uslu U and June CH: Beyond the blood: Expanding CAR T cell therapy to solid tumors. Nat Biotechnol. 43:506–515. 2025. View Article : Google Scholar | |
Sun T, Liu B, Li Y, Wu J, Cao Y, Yang S, Tan H, Cai L, Zhang S, Qi X, et al: Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J Exp Clin Cancer Res. 42:2532023. View Article : Google Scholar : PubMed/NCBI | |
Silva A, Antunes B, Batista A, Pinto-Ribeiro F, Baltazar F and Afonso J: In vivo anticancer activity of AZD3965: A systematic review. Molecules. 27:1812021. View Article : Google Scholar | |
Xian ZY, Liu JM, Chen QK, Chen HZ, Ye CJ, Xue J, Yang HQ, Li JL, Liu XF and Kuang SJ: Inhibition of LDHA suppresses tumor progression in prostate cancer. Tumour Biol. 36:8093–8100. 2015. View Article : Google Scholar : PubMed/NCBI | |
Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 107:2037–2042. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, Kamphorst JJ, Rabinowitz JD, Jain SK, Hidalgo M, et al: Therapeutic targeting of the warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res. 75:3355–3364. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mohammad GH, Vassileva V, Acedo P, Olde Damink SWM, Malago M, Dhar DK and Pereira SP: Targeting pyruvate kinase M2 and lactate dehydrogenase a is an effective combination strategy for the treatment of pancreatic cancer. Cancers (Basel). 11:13722019. View Article : Google Scholar : PubMed/NCBI | |
Hao J, Graham P, Chang L, Ni J, Wasinger V, Beretov J, Deng J, Duan W, Bucci J, Malouf D, et al: Proteomic identification of the lactate dehydrogenase A in a radioresistant prostate cancer xenograft mouse model for improving radiotherapy. Oncotarget. 7:74269–74285. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Tu DN, Li H, Jiang JX, Cao X, You JB and Zhou XQ: Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma. Biomed Pharmacother. 81:388–393. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rellinger EJ, Craig BT, Alvarez AL, Dusek HL, Kim KW, Qiao J and Chung DH: FX11 inhibits aerobic glycolysis and growth of neuroblastoma cells. Surgery. 161:747–752. 2017. View Article : Google Scholar | |
He Y, Chen X, Yu Y, Li J, Hu Q, Xue C, Chen J, Shen S, Luo Y, Ren F, et al: LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma. Mol Carcinog. 57:772–783. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hou X, Shi X, Zhang W, Li D, Hu L, Yang J, Zhao J, Wei S, Wei X, Ruan X, et al: LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma. Cell Death Dis. 12:3472021. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Roman J, Xu HN and Li LZ: An observation on enhanced extracellular acidification and lactate production induced by inhibition of lactate dehydrogenase A. Adv Exp Med Biol. 1269:163–167. 2021. View Article : Google Scholar : PubMed/NCBI | |
Polanski R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE, et al: Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 20:926–937. 2014. View Article : Google Scholar : | |
Bola BM, Chadwick AL, Michopoulos F, Blount KG, Telfer BA, Williams KJ, Smith PD, Critchlow SE and Stratford IJ: Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther. 13:2805–2816. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang CY, Hsu LH, Chen CY, Chang GC, Chang HW, Hung YM, Liu KJ and Kao SH: Inhibition of alternative cancer cell metabolism of EGFR mutated non-small cell lung cancer serves as a potential therapeutic strategy. Cancers (Basel). 12:1812020. View Article : Google Scholar : PubMed/NCBI | |
Beloueche-Babari M, Wantuch S, Casals Galobart T, Koniordou M, Parkes HG, Arunan V, Chung YL, Eykyn TR, Smith PD and Leach MO: MCT1 INHIBITOR AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Res. 77:5913–5924. 2017. View Article : Google Scholar : PubMed/NCBI | |
Beloueche-Babari M, Casals Galobart T, Delgado-Goni T, Wantuch S, Parkes HG, Tandy D, Harker JA and Leach MO: Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration. Br J Cancer. 122:895–903. 2020. View Article : Google Scholar : PubMed/NCBI | |
Benyahia Z, Blackman MCNM, Hamelin L, Zampieri LX, Capeloa T, Bedin ML, Vazeille T, Schakman O and Sonveaux P: In vitro and in vivo characterization of MCT1 inhibitor AZD3965 confirms preclinical safety compatible with breast cancer treatment. Cancers (Basel). 13:5692021. View Article : Google Scholar : PubMed/NCBI | |
Silva A, Felix A, Cerqueira M, Goncalves CS, Sampaio-Marques B, Longatto-Filho A, Baltazar F and Afonso J: Effects of lactate transport inhibition by AZD3965 in muscle-invasive urothelial bladder cancer. Pharmaceutics. 15:26882023. View Article : Google Scholar : PubMed/NCBI | |
Puri S and Juvale K: Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights. Eur J Med Chem. 199:1123932020. View Article : Google Scholar : PubMed/NCBI | |
Kong SC, Nohr-Nielsen A, Zeeberg K, Reshkin SJ, Hoffmann EK, Novak I and Pedersen SF: Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells. Pancreas. 45:1036–1047. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tung WH, Hsieh HL, Lee IT and Yang CM: Enterovirus 71 modulates a COX-2/PGE2/cAMP-dependent viral replication in human neuroblastoma cells: Role of the c-Src/EGFR/p42/p44 MAPK/CREB signaling pathway. J Cell Biochem. 112:559–570. 2011. View Article : Google Scholar : PubMed/NCBI | |
He H, Lai Y, Hao Y, Liu Y, Zhang Z, Liu X, Guo C, Zhang M, Zhou H, Wang N, et al: Selective p300 inhibitor C646 inhibited HPV E6-E7 genes, altered glucose metabolism and induced apoptosis in cervical cancer cells. Eur J Pharmacol. 812:206–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ji C, Xu W, Ding H, Chen Z, Shi C, Han J, Yu L, Qiao N, Zhang Y, Cao X, et al: The p300 inhibitor A-485 exerts antitumor activity in growth hormone pituitary adenoma. J Clin Endocrinol Metab. 107:e2291–e2300. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Tang X, Fan S, Liu X, Sun J, Ju C, Liang Y, Liu R, Zhou R, Yu B, et al: Targeting the p300/NONO axis sensitizes melanoma cells to BRAF inhibitors. Oncogene. 40:4137–4150. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao XN, Lin J, Ning QY, Gao L, Yao YS, Zhou JH, Li YH, Wang LL and Yu L: A histone acetyltransferase p300 inhibitor C646 induces cell cycle arrest and apoptosis selectively in AML1-ETO-positive AML cells. PLoS One. 8:e554812013. View Article : Google Scholar : PubMed/NCBI | |
Waddell A, Grbic N, Leibowitz K, Wyant WA, Choudhury S, Park K, Collard M, Cole PA and Alani RM: p300 KAT regulates SOX10 stability and function in human melanoma. Cancer Res Commun. 4:1894–1907. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mladek AC, Yan H, Tian S, Decker PA, Burgenske DM, Bakken K, Hu Z, He L, Connors MA, Carlson BL, et al: RBBP4-p300 axis modulates expression of genes essential for cell survival and is a potential target for therapy in glioblastoma. Neuro Oncol. 24:1261–1272. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Yun L and Cheng P: Tanshinone I reprograms glycolysis metabolism to regulate histone H3 lysine 18 lactylation (H3K18la) and inhibits cancer cell growth in ovarian cancer. Int J Biol Macromol. 291:1390722025. View Article : Google Scholar | |
Zhang C, Zhou W, Xu H, Xu J, Li J, Liu X, Lu X, Dai J, Jiang Y, Wang W, et al: Cancer-associated fibroblasts promote EGFR-TKI resistance via the CTHRC1/glycolysis/H3K18la positive feedback loop. Oncogene. 44:1400–1414. 2025. View Article : Google Scholar : PubMed/NCBI | |
Sun X, He L, Liu H, Thorne RF, Zeng T, Liu L, Zhang B, He M, Huang Y, Li M, et al: The diapause-like colorectal cancer cells induced by SMC4 attenuation are characterized by low proliferation and chemotherapy insensitivity. Cell Metab. 35:1563–1579 e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Li X, Long M, Xie X and Liu Q: Integrated analysis of histone lysine lactylation (Kla)-specific genes suggests that NR6A1, OSBP2 and UNC119B are novel therapeutic targets for hepatocellular carcinoma. Sci Rep. 13:186422023. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Chen S, He J, Li H, Ma Z, Lubamba GP, Wang L, Guo Z and Li C: Histone lysine lactylation (Kla)-induced BCAM promotes OSCC progression and Cis-platinum resistance. Oral Dis. 31:1116–1132. 2025. View Article : Google Scholar | |
Zheng C, Tan H, Niu G, Huang X, Lu J, Chen S, Li H, Zhu J, Zhou Z, Xu M, et al: ACAT1-Mediated ME2 acetylation drives chemoresistance in ovarian cancer by linking glutaminolysis to lactate production. Adv Sci (Weinh). 12:e24164672025. View Article : Google Scholar : PubMed/NCBI | |
Pienkowski T, Kowalczyk T, Cysewski D, Kretowski A and Ciborowski M: Glioma and post-translational modifications: A complex relationship. Biochim Biophys Acta Rev Cancer. 1878:1890092023. View Article : Google Scholar : PubMed/NCBI | |
Han M, He W, Zhu W and Guo L: The role of protein lactylation in brain health and disease: Current advances and future directions. Cell Death Discov. 11:2132025. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Zhang X, Tang S and Wang Y: The important role of the histone acetyltransferases p300/CBP in cancer and the promising anticancer effects of p300/CBP inhibitors. Cell Biol Toxicol. 41:322025. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Yang B, Liu X, Zhang XD, Zhang L and Liu T: Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 12:4935–4948. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Lin Y, Darwanto A, Song X, Xu G and Zhang K: Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem. 284:32288–32295. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W and Zhao Y: Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics. 6:812–819. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya A, Chatterjee S, Bhaduri U, Singh AK, Vasudevan M, Sashidhara KV, Guha R, Nazir A, Rath SK, Natesh N and Kundu TK: Butyrylation meets adipogenesis-probed by a p300-catalyzed acylation-specific small molecule inhibitor: Implication in anti-obesity therapy. J Med Chem. 65:12273–12291. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, He X, Chen X, Huang J, Liu Y, Zhang J, Chen H, Sui X, Lv X, Zhao X, et al: Lactate accumulation drives hepatocellular carcinoma metastasis through facilitating tumor-derived exosome biogenesis by Rab7A lactylation. Cancer Lett. 627:2176362025. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Li Y, Yin L, Liu S, Li Y, Liao W, Mu L, Luo X and Qin J: Histone lactylation enhances GCLC expression and thus promotes chemoresistance of colorectal cancer stem cells through inhibiting ferroptosis. Cell Death Dis. 16:1932025. View Article : Google Scholar : PubMed/NCBI | |
Dai J, Lu X, Zhang C, Qu T, Li W, Su J, Guo R, Yin D, Wu P, Han L and Zhang E: NNMT promotes acquired EGFR-TKI resistance by forming EGR1 and lactate-mediated double positive feedback loops in non-small cell lung cancer. Mol Cancer. 24:792025. View Article : Google Scholar : PubMed/NCBI |