You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yao L, Hatami M, Ma W and Skutella T: Vaccine-based immunotherapy and related preclinical models for glioma. Trends Mol Med. 30:965–981. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tariq R, Hussain N, Bajwa MH, Aziz HF, Shamim MS and Enam SA: Multicentric low-grade glioma: A systematic review of a rare neuro-oncological disease. Clin Neurol Neurosurg. 251:1088212025. View Article : Google Scholar : PubMed/NCBI | |
|
Weller M, Wen PY, Chang SM, Dirven L, Lim M, Monje M and Reifenberger G: Glioma. Nat Rev Dis Primers. 10:332024. View Article : Google Scholar : PubMed/NCBI | |
|
Awuah WA, Ben-Jaafar A, Roy S, Nkrumah-Boateng PA, Tan JK, Abdul-Rahman T and Atallah O: Predicting survival in malignant glioma using artificial intelligence. Eur J Med Res. 30:612025. View Article : Google Scholar : PubMed/NCBI | |
|
Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–87. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kampers LFC, Metselaar DS, Vinci M, Scirocchi F, Veldhuijzen van Zanten S, Eyrich M, Biassoni V, Hulleman E, Karremann M, Stucker W and Van Gool SW: The complexity of malignant glioma treatment. Cancers (Basel). 17:8792025. View Article : Google Scholar : PubMed/NCBI | |
|
Poorva P, Mast J, Cao B, Shah MV, Pollok KE and Shen J: Killing the killers: Natural killer cell therapy targeting glioma stem cells in high-grade glioma. Mol Ther. 33:2462–2478. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Sun C, Ding X, Xu J, Zhang Y, Deng T, Wang Y, Yang H, Ding R, Li H, et al: Mechanism analysis and targeted therapy of IDH gene mutation in glioma. Am J Cancer Res. 15:248–270. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Gong G, Jiang L, Zhou J and Su Y: Advancements in targeted and immunotherapy strategies for glioma: Toward precision treatment. Front Immunol. 15:15370132024. View Article : Google Scholar | |
|
Llibre A, Kucuk S, Gope A, Certo M and Mauro C: Lactate: A key regulator of the immune response. Immunity. 58:535–554. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Papaneophytou C: The warburg effect: Is it always an enemy? Front Biosci (Landmark Ed). 29:4022024. View Article : Google Scholar : PubMed/NCBI | |
|
Gong T, Wang QD, Loughran PA, Li YH, Scott MJ, Billiar TR, Liu YT and Fan J: Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: Role for CIRP-ZBP1-PANoptosis pathway. Mil Med Res. 11:712024.PubMed/NCBI | |
|
Iozzo M, Pardella E, Giannoni E and Chiarugi P: The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol Cell. 85:1263–1279. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Lv M, Huang Y, Chen Y and Ding K: Lactylation modification in cancer: Mechanisms, functions, and therapeutic strategies. Exp Hematol Oncol. 14:322025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S and Jia R: Lactate and lactylation in cancer. Signal Transduct Target Ther. 10:382025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Qi H, Lv H, Liu W, Zhang R and Yang A: Lactylation in health and disease: Physiological or pathological? Theranostics. 15:1787–821. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Dong L and Wang K: Current and future perspectives of lysine lactylation in cancer. Trends Cell Biol. 35:190–193. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Zhang N, Ye J, Wang Z, Zhou X, Liu J, Cai J, Li C and Chen L: Unveiling lactylation modification: A new hope for cancer treatment. Biomed Pharmacother. 184:1179342025. View Article : Google Scholar : PubMed/NCBI | |
|
Sui Y, Shen Z, Wang Z, Feng J and Zhou G: Lactylation in cancer: Metabolic mechanism and therapeutic strategies. Cell Death Discov. 11:682025. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Malsi K, Xie S, Cai Y, Mohammed N, Xie K, Lan T and Wu H: The role of lactylation in tumor growth and cancer progression. Front Oncol. 15:15167852025. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu Q, Deng H, Song P, Liu Y and Zhang M: Lactylation in glioblastoma: A novel epigenetic modifier bridging epigenetic plasticity and metabolic reprogramming. Int J Mol Sci. 26:33682025. View Article : Google Scholar : PubMed/NCBI | |
|
Lu X, Zhou Z, Qiu P and Xin T: Integrated single-cell and bulk RNA-sequencing data reveal molecular subtypes based on lactylation-related genes and prognosis and therapeutic response in glioma. Heliyon. 10:e307262024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Z, Wu H, Dai Y, Wang Z, Han H, Shen Y, Zhang R and Wang X: A pan-cancer multi-omics analysis of lactylation genes associated with tumor microenvironment and cancer development. Heliyon. 10:e274652024. View Article : Google Scholar : PubMed/NCBI | |
|
Khan T, Nagarajan M, Kang I, Wu C and Wangpaichitr M: Targeting metabolic vulnerabilities to combat drug resistance in cancer therapy. J Pers Med. 15:502025. View Article : Google Scholar : PubMed/NCBI | |
|
Clay R, Li K and Jin L: Metabolic signaling in the tumor microenvironment. Cancers (Basel). 17:1552025. View Article : Google Scholar : PubMed/NCBI | |
|
Barba I, Carrillo-Bosch L and Seoane J: Targeting the warburg effect in cancer: Where do we stand? Int J Mol Sci. 25:31422024. View Article : Google Scholar : PubMed/NCBI | |
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J and Liu B: Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B. 14:953–1008. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Xia M, Li J, Liu G, Sun Y, Chen X and Zhong J: Warburg effect and lactylation in cancer: Mechanisms for chemoresistance. Mol Med. 31:1462025. View Article : Google Scholar : PubMed/NCBI | |
|
Upadhyay S, Khan S and Hassan MI: Exploring the diverse role of pyruvate kinase M2 in cancer: Navigating beyond glycolysis and the Warburg effect. Biochim Biophys Acta Rev Cancer. 1879:1890892024. View Article : Google Scholar : PubMed/NCBI | |
|
Basheeruddin M and Qausain S: Hypoxia-Inducible Factor 1-Alpha (HIF-1alpha): An essential regulator in cellular metabolic control. Cureus. 16:e638522024. | |
|
Sharma D, Singh M and Rani R: Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol. 87:184–95. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Han S, Yao Y and Zhang G: Role of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) in tumor cells and the tumor microenvironment. Cancer Manag Res. 15:957–975. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Singh M, Afonso J, Sharma D, Gupta R and Kumar V, Rani R, Baltazar F and Kumar V: Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol. 90:1–14. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Li S, Yu L, Leng J and Li N: Targeting glycolysis: Exploring a new frontier in glioblastoma therapy. Front Immunol. 15:15223922025. View Article : Google Scholar : PubMed/NCBI | |
|
Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun F, Li W, Du R, Liu M, Cheng Y, Ma J and Yan S: Impact of glycolysis enzymes and metabolites in regulating DNA damage repair in tumorigenesis and therapy. Cell Commun Signal. 23:442025. View Article : Google Scholar : PubMed/NCBI | |
|
Kooshan Z, Cardenas-Piedra L, Clements J and Batra J: Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett. 600:2171562024. View Article : Google Scholar : PubMed/NCBI | |
|
Wan L, Zhang H, Liu J, He Q, Zhao J, Pan C, Zheng K and Tang Y: Lactylation and human disease. Expert Rev Mol Med. 27:e102025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Luo N, Gong Z, Zhou W, Ku Y and Chen Y: Lactate and lysine lactylation of histone regulate transcription in cancer. Heliyon. 10:e384262024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Liu W, Luo Z, Xiao F and Sun B: New insights into the roles of lactylation in cancer. Front Pharmacol. 15:14126722024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Shan G, Bi G, Hu Z, Yi Y, Zeng D, Lin Z and Zhan C: Lactylation and regulated cell death. Biochim Biophys Acta Mol Cell Res. 1872:1199272025. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Liu C, Li R, Zhou L, Ran Y, Yang Q, Huang H, Lu H, Song H, Yang B, et al: AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases. Nature. 634:1229–1237. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H, Guo D, Meng Y, Han H, Luo S, et al: ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. Cell Metab. 37:361–376 e7. 2025. View Article : Google Scholar | |
|
Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z, Geng D, Yue J, Tang Y, Tian L, et al: The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Invest. 134:e1745872024. View Article : Google Scholar : PubMed/NCBI | |
|
Tsusaka T, Najar MA, Sharma I, Marcinkiewicz MM, Crispim CVDS, Snyder NW, Burslem GM and Goldberg EL: Class I histone deacetylases catalyze lysine lactylation. bioRxiv [Preprint] 2025.02.25.640220. 2025. | |
|
Urbanska K and Orzechowski A: Unappreciated Role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci. 20:20852019. View Article : Google Scholar : PubMed/NCBI | |
|
Tsukihara S, Akiyama Y, Shimada S, Hatano M, Igarashi Y, Taniai T, Tanji Y, Kodera K, Yasukawa K, Umeura K, et al: Delactylase effects of SIRT1 on a positive feedback loop involving the H19-glycolysis-histone lactylation in gastric cancer. Oncogene. 44:724–738. 2025. View Article : Google Scholar | |
|
Zou Y, Cao M, Tai M, Zhou H, Tao L, Wu S, Yang K, Zhang Y, Ge Y, Wang H, et al: A feedback loop driven by H4K12 lactylation and HDAC3 in macrophages regulates lactate-induced collagen synthesis in fibroblasts via the TGF-beta signaling. Adv Sci (Weinh). 12:e24114082025. View Article : Google Scholar | |
|
He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie Z, Du J, Chen G, Song J and Mei Q: HDAC2-Mediated METTL3 delactylation promotes DNA damage repair and chemotherapy resistance in triple-negative breast cancer. Adv Sci (Weinh). 12:e24131212025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Meng W, Dai Y, Xu L, Ding N, Zhang J and Zhuang X: Anaerobic metabolism promotes breast cancer survival via Histone-3 Lysine-18 lactylation mediating PPARD axis. Cell Death Discov. 11:542025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Huang T, Wu Q, Yuan H, Wu X, Yuan F, Duan T, Taori S, Zhao Y, Snyder NW, et al: Lactate reprograms glioblastoma immunity through CBX3-regulated histone lactylation. J Clin Invest. 134:e1768512024. View Article : Google Scholar : PubMed/NCBI | |
|
Fan M, Yang K, Wang X, Chen L, Gill PS, Ha T, Liu L, Lewis NH, Williams DL and Li C: Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 9:eadc94652023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M and Yang K: Lactate's impact on immune cells in sepsis: Unraveling the complex interplay. Front Immunol. 15:14834002024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Liang C, Wu C, Wan S and Xu L, Wang S, Wang J, Huang X and Xu L: A rising star involved in tumour immunity: Lactylation. J Cell Mol Med. 28:e701462024. View Article : Google Scholar : PubMed/NCBI | |
|
Shi P, Ma Y and Zhang S: Non-histone lactylation: Unveiling its functional significance. Front Cell Dev Biol. 13:15356112025. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130. 2024. View Article : Google Scholar : | |
|
Li F, Zhang H, Huang Y, Li D, Zheng Z, Xie K, Cao C, Wang Q, Zhao X, Huang Z, et al: Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat. 73:1010592024. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Huang X, Liang C and Zhang P: Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol. 957:1760072023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Xu W, Wu Y, Wang M, Zhang N, Wang L, Feng Y, Zhang T, Wang L and Mao A: GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway. Oncogene. 42:3319–30. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B, Deng Y, Hong Y, Fan L, Zhai X, Hu H, Yin S, Chen Q, Xie X, Ren X, et al: Metabolic recoding of NSUN2-mediated m(5)C modification promotes the progression of colorectal cancer via the NSUN2/YBX1/m(5)C-ENO1 positive feedback loop. Adv Sci (Weinh). 11:e23098402024. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Guo M, Li Y and Liao Y: Lactylated histone H3K18 as a potential biomarker for the diagnosis and prediction of the severity of pancreatic cancer. Clinics (Sao Paulo). 80:1005442024. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T and Wei R: Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer. 23:902024. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Li Y, Zhou L, Cheng X and Gong Z: Hepatic stellate cells promote hepatocellular carcinoma development by regulating histone lactylation: Novel insights from single-cell RNA sequencing and spatial transcriptomics analyses. Cancer Lett. 604:2172432024. View Article : Google Scholar : PubMed/NCBI | |
|
Ding CH, Yan FZ, Xu BN, Qian H, Hong XL, Liu SQ, Luo YY, Wu SH, Cai LY, Zhang X, et al: PRMT3 drives PD-L1-mediated immune escape through activating PDHK1-regulated glycolysis in hepatocellular carcinoma. Cell Death Dis. 16:1582025. View Article : Google Scholar : PubMed/NCBI | |
|
Chao J, Chen GD, Huang ST, Gu H, Liu YY, Luo Y, Lin Z, Chen ZZ, Li X, Zhang B, et al: High histone H3K18 lactylation level is correlated with poor prognosis in epithelial ovarian cancer. Neoplasma. 71:319–332. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Che X, Wang PW and Qu X: p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol. 101:44–57. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B and Zhou F: Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 187:2375–2392 e33. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao R, Yi Y, Liu H, Xu J, Chen S, Wu D, Wang L and Li F: RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition. Cancer Metab. 12:322024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun K, Zhang X, Shi J, Huang J, Wang S, Li X, Lin H, Zhao D, Ye M, Zhang S, et al: Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma. J Clin Invest. 135:e1870242025. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Q, Sun H, Zhang Y, Yang X, Hao S, Liu B, Zhou H, Xu ZX and Wang Y: Lactylation stabilizes DCBLD1 activating the pentose phosphate pathway to promote cervical cancer progression. J Exp Clin Cancer Res. 43:362024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Z, Huang H, Li M and Chen Y: Proteomic analysis identifies PFKP lactylation in SW480 colon cancer cells. iScience. 27:1086452023. View Article : Google Scholar : PubMed/NCBI | |
|
Batsios G, Taglang C, Udutha S, Gillespie AM, Robinson SP, Phoenix T, Mueller S, Venneti S, Koschmann C and Viswanath P: Lactylation fuels nucleotide biosynthesis and facilitates deuterium metabolic imaging of tumor proliferation in H3K27M-mutant gliomas. bioRxiv. Jan 3–2025.Epub ahead of print. | |
|
Dong F, Yin H and Zheng Z: Hypoxia-inducible factor-1alpha regulates BNIP3-dependent mitophagy and mediates metabolic reprogramming through histone lysine lactylation modification to affect glioma proliferation and invasion. J Biochem Mol Toxicol. 39:e700692025. View Article : Google Scholar | |
|
Zhu J and Zhang Y: Dexmedetomidine inhibits the migration, invasion, and glycolysis of glioblastoma cells by lactylation of c-myc. Neurol Res. 46:1105–1112. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Trejo-Solis C, Castillo-Rodriguez RA, Serrano-Garcia N, Silva-Adaya D, Vargas-Cruz S, Chavez-Cortez EG, Gallardo-Perez JC, Zavala-Vega S, Cruz-Salgado A and Magana-Maldonado R: Metabolic roles of HIF1, c-Myc, and p53 in glioma cells. Metabolites. 14:2492024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Zhao Y, Liu X, Ruan X, Wang P, Liu L, Wang D, Dong W, Yang C and Xue Y: Pseudogene MAPK6P4-encoded functional peptide promotes glioblastoma vasculogenic mimicry development. Commun Biol. 6:10592023. View Article : Google Scholar : PubMed/NCBI | |
|
Uba AI: Computer-aided design of VEGFR-2 inhibitors as anticancer agents: A review. J Mol Recognit. 38:e31042025. View Article : Google Scholar | |
|
Mehta K, Hegde M, Girisa S, Vishwa R, Alqahtani MS, Abbas M, Shakibaei M, Sethi G and Kunnumakkara AB: Targeting RTKs/nRTKs as promising therapeutic strategies for the treatment of triple-negative breast cancer: Evidence from clinical trials. Mil Med Res. 11:762024.PubMed/NCBI | |
|
Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Agosti E, Zeppieri M, Ghidoni M, Ius T, Tel A, Fontanella MM and Panciani PP: Role of glioma stem cells in promoting tumor chemo- and radioresistance: A systematic review of potential targeted treatments. World J Stem Cells. 16:604–614. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Friess D, Brauer S, Poysti A, Choudhury C and Harris L: Tools to study neural and glioma stem cell quiescence. Trends Neurosci. 47:736–748. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ramar V, Guo S, Hudson B and Liu M: Progress in glioma stem cell research. Cancers (Basel). 16:1022023. View Article : Google Scholar | |
|
Agosti E, Antonietti S, Ius T, Fontanella MM, Zeppieri M and Panciani PP: Glioma stem cells as promoter of glioma progression: A systematic review of molecular pathways and targeted therapies. Int J Mol Sci. 25:79792024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang J, Amin MA and Campian JL: Glioblastoma stem cells at the nexus of tumor heterogeneity, immune evasion, and therapeutic resistance. Cells. 14:5622025. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Wang D, Zhai Y, Pan C, Zhang J, Wang C, Huang R, Yu M, Li Y, Liu X, et al: Glycometabolic reprogramming-induced XRCC1 lactylation confers therapeutic resistance in ALDH1A3-overexpressing glioblastoma. Cell Metab. 36:1696–1710 e10. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Yin X, Sun H, Lu J, Li Y, Fan Y, Lv P, Han M, Wu J, Li S, et al: PTBP1 lactylation promotes glioma stem cell maintenance through PFKFB4-Driven glycolysis. Cancer Res. 85:739–757. 2025. View Article : Google Scholar | |
|
Li L, Li Z, Meng X, Wang X, Song D, Liu Y, Xu T, Qin J, Sun N, Tian K, et al: Histone lactylation-derived LINC01127 promotes the self-renewal of glioblastoma stem cells via the cis-regulating the MAP4K4 to activate JNK pathway. Cancer Lett. 579:2164672023. View Article : Google Scholar : PubMed/NCBI | |
|
Holohan C, Van Schaeybroeck S, Longley DB and Johnston PG: Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 13:714–726. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, et al: Cancer drug-tolerant persister cells: From biological questions to clinical opportunities. Nat Rev Cancer. 24:694–717. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kuczynski EA, Sargent DJ, Grothey A and Kerbel RS: Drug rechallenge and treatment beyond progression-implications for drug resistance. Nat Rev Clin Oncol. 10:571–587. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Yang F, Hu J and Zhang X: Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther. 30:e147152024. View Article : Google Scholar : PubMed/NCBI | |
|
Huo X, Li H, Xing Y, Liu W, Chen P, Du F, Song L, Yu Z, Cao X and Tian J: Two decades of progress in glioma methylation research: The rise of temozolomide resistance and immunotherapy insights. Front Neurosci. 18:14407562024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y and Cai J: Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res. 72:527–554. 2025. View Article : Google Scholar : | |
|
Davidson CL, Vengoji R, Jain M, Batra SK and Shonka N: Biological, diagnostic and therapeutic implications of exosomes in glioma. Cancer Lett. 582:2165922024. View Article : Google Scholar : | |
|
Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS and Borley J: Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer. 14:747–753. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Munoz JL, Walker ND, Scotto KW and Rameshwar P: Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett. 367:69–75. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Tan Y, Li T, Tan D, Fu B, Yang M, Chen Y, Cao M, Xuan C, Du Q, et al: Intercellular adhesion molecule-1 suppresses TMZ chemosensitivity in acquired TMZ-resistant gliomas by increasing assembly of ABCB1 on the membrane. Drug Resist Updat. 76:1011122024. View Article : Google Scholar : PubMed/NCBI | |
|
Oldrini B, Vaquero-Siguero N, Mu Q, Kroon P, Zhang Y, Galan-Ganga M, Bao Z, Wang Z, Liu H, Sa JK, et al: MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat Commun. 11:38832020. View Article : Google Scholar : PubMed/NCBI | |
|
Agarwal S, Al-Keilani MS, Alqudah MA, Sibenaller ZA, Ryken TC and Assem M: Tumor derived mutations of protein tyrosine phosphatase receptor type K affect its function and alter sensitivity to chemotherapeutics in glioma. PLoS One. 8:e628522013. View Article : Google Scholar : PubMed/NCBI | |
|
Su IC, Su YK, Chuang HY, Yadav VK, Setiawan SA, Fong IH, Yeh CT, Huang HC and Lin CM: Ubiquitin-specific protease 6 n-terminal-like protein (USP6NL) and the epidermal growth factor receptor (EGFR) signaling axis regulates ubiquitin-mediated DNA repair and temozolomide-resistance in glioblastoma. Biomedicines. 10:15312022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Wang T, Wan Q, Wang Q, Chen Z, Gao Y, Ye Y, Lin J, Zhao B, Wang H, et al: TRAF4 maintains deubiquitination of caveolin-1 to drive glioblastoma stemness and temozolomide resistance. Cancer Res. 82:3573–3587. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao XY, Zang J, Zheng MH, Zhang YF, Yue KY, Cao XL, Cao Y, Li XX, Han H, Jiang XF and Liang L: Temozolomide treatment induces HMGB1 to promote the formation of glioma stem cells via the TLR2/NEAT1/Wnt pathway in glioblastoma. Front Cell Dev Biol. 9:6208832021. View Article : Google Scholar : PubMed/NCBI | |
|
Pu J, Yuan K, Tao J, Qin Y, Li Y, Fu J, Li Z, Zhou H, Tang Z, Li L, et al: Glioblastoma multiforme: An updated overview of temozolomide resistance mechanisms and strategies to overcome resistance. Discov Oncol. 16:7312025. View Article : Google Scholar : PubMed/NCBI | |
|
Yu D, Zhong Q, Wang Y, Yin C, Bai M, Zhu J, Chen J, Li H and Hong W: Lactylation: The metabolic accomplice shaping cancer's response to radiotherapy and immunotherapy. Ageing Res Rev. 104:1026702025. View Article : Google Scholar : PubMed/NCBI | |
|
Fan M, Liu JS, Wei XL, Nie Y and Liu HL: Histone lactylation-driven ubiquitin-specific protease 34 promotes cisplatin resistance in hepatocellular carcinoma. Gastroenterology Res. 18:23–30. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang K, Guo L, Li X, Hu Y and Luo N: Cancer-associated fibroblasts promote doxorubicin resistance in triple-negative breast cancer through enhancing ZFP64 histone lactylation to regulate ferroptosis. J Transl Med. 23:2472025. View Article : Google Scholar : PubMed/NCBI | |
|
Yue Q, Wang Z, Shen Y, Lan Y, Zhong X, Luo X, Yang T, Zhang M, Zuo B, Zeng T, et al: Histone H3K9 lactylation confers temozolomide resistance in glioblastoma via LUC7L2-Mediated MLH1 intron retention. Adv Sci (Weinh). 11:e23092902024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Ren X, Park YE, Feng H, Sheng X, Song X, AminiTabrizi R, Shah H, Li L, Zhang Y, et al: Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. Cell Metab. 37:377–394 e9. 2025. View Article : Google Scholar | |
|
Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, et al: Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun (Lond). 44:1231–1260. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Huang Z and Li L: LDHB mediates histone lactylation to activate PD-L1 and promote ovarian cancer immune escape. Cancer Invest. 43:70–79. 2025. View Article : Google Scholar | |
|
Huang C, Xue L, Lin X, Shen Y and Wang X: Histone lactylation-driven GPD2 mediates M2 macrophage polarization to promote malignant transformation of cervical cancer progression. DNA Cell Biol. 43:605–618. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Z, Yang J, Jia W, Li L, Li Y, Hu J, Luo W, Li R, Ye D and Lan P: Histone lactylation-driven B7-H3 expression promotes tumor immune evasion. Theranostics. 15:2338–2359. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Deng X, Huang Y, Zhang J, Chen Y, Jiang F, Zhang Z, Li T, Hou L, Tan W and Li F: Histone lactylation regulates PRKN-Mediated mitophagy to promote M2 macrophage polarization in bladder cancer. Int Immunopharmacol. 148:1141192025. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Liang P, Chen Z, Chen Z, Jin T, He F, Chen X and Yang K: CAF-secreted LOX promotes PD-L1 expression via histone lactylation and regulates tumor EMT through TGFβ/IGF1 signaling in gastric cancer. Cell Signal. 124:1114622024. View Article : Google Scholar | |
|
Wang W, Wang H, Wang Q, Yu X and Ouyang L: Lactate-induced protein lactylation in cancer: Functions, biomarkers and immunotherapy strategies. Front Immunol. 15:15130472025. View Article : Google Scholar : PubMed/NCBI | |
|
Hao ZN, Tan XP, Zhang Q, Li J, Xia R and Ma Z: Lactate and lactylation: Dual regulators of T-cell-mediated tumor immunity and immunotherapy. Biomolecules. 14:16462024. View Article : Google Scholar : | |
|
Raychaudhuri D, Singh P, Chakraborty B, Hennessey M, Tannir AJ, Byregowda S, Natarajan SM, Trujillo-Ocampo A, Im JS and Goswami S: Histone lactylation drives CD8(+) T cell metabolism and function. Nat Immunol. 25:2140–2151. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Zhou L, Zhang M, Du Y, Li C, Ren H and Zheng L: H3K18 lactylation potentiates immune escape of non-small cell lung cancer. Cancer Res. 84:3589–3601. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
De Leo A, Ugolini A, Yu X, Scirocchi F, Scocozza D, Peixoto B, Pace A, D'Angelo L, Liu JKC, Etame AB, et al: Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity. 57:1105–1123 e8. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Sun P, Tu B, Deng G, Li D and He W: Hypoxia conduces the glioma progression by inducing M2 macrophage polarization via elevating TNFSF9 level in a histone-lactylation-dependent manner. Am J Physiol Cell Physiol. 327:C487–C504. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mulvey A, Trueb L, Coukos G and Arber C: Novel strategies to manage CAR-T cell toxicity. Nat Rev Drug Discov. 24:379–397. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Diorio C, Teachey DT and Grupp SA: Allogeneic chimeric antigen receptor cell therapies for cancer: Progress made and remaining roadblocks. Nat Rev Clin Oncol. 22:10–27. 2025. View Article : Google Scholar | |
|
Tang L, Huang ZP, Mei H and Hu Y: Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Mil Med Res. 10:522023.PubMed/NCBI | |
|
Uslu U and June CH: Beyond the blood: Expanding CAR T cell therapy to solid tumors. Nat Biotechnol. 43:506–515. 2025. View Article : Google Scholar | |
|
Sun T, Liu B, Li Y, Wu J, Cao Y, Yang S, Tan H, Cai L, Zhang S, Qi X, et al: Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J Exp Clin Cancer Res. 42:2532023. View Article : Google Scholar : PubMed/NCBI | |
|
Silva A, Antunes B, Batista A, Pinto-Ribeiro F, Baltazar F and Afonso J: In vivo anticancer activity of AZD3965: A systematic review. Molecules. 27:1812021. View Article : Google Scholar | |
|
Xian ZY, Liu JM, Chen QK, Chen HZ, Ye CJ, Xue J, Yang HQ, Li JL, Liu XF and Kuang SJ: Inhibition of LDHA suppresses tumor progression in prostate cancer. Tumour Biol. 36:8093–8100. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 107:2037–2042. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, Kamphorst JJ, Rabinowitz JD, Jain SK, Hidalgo M, et al: Therapeutic targeting of the warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res. 75:3355–3364. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammad GH, Vassileva V, Acedo P, Olde Damink SWM, Malago M, Dhar DK and Pereira SP: Targeting pyruvate kinase M2 and lactate dehydrogenase a is an effective combination strategy for the treatment of pancreatic cancer. Cancers (Basel). 11:13722019. View Article : Google Scholar : PubMed/NCBI | |
|
Hao J, Graham P, Chang L, Ni J, Wasinger V, Beretov J, Deng J, Duan W, Bucci J, Malouf D, et al: Proteomic identification of the lactate dehydrogenase A in a radioresistant prostate cancer xenograft mouse model for improving radiotherapy. Oncotarget. 7:74269–74285. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gao S, Tu DN, Li H, Jiang JX, Cao X, You JB and Zhou XQ: Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma. Biomed Pharmacother. 81:388–393. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rellinger EJ, Craig BT, Alvarez AL, Dusek HL, Kim KW, Qiao J and Chung DH: FX11 inhibits aerobic glycolysis and growth of neuroblastoma cells. Surgery. 161:747–752. 2017. View Article : Google Scholar | |
|
He Y, Chen X, Yu Y, Li J, Hu Q, Xue C, Chen J, Shen S, Luo Y, Ren F, et al: LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma. Mol Carcinog. 57:772–783. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hou X, Shi X, Zhang W, Li D, Hu L, Yang J, Zhao J, Wei S, Wei X, Ruan X, et al: LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma. Cell Death Dis. 12:3472021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang J, Roman J, Xu HN and Li LZ: An observation on enhanced extracellular acidification and lactate production induced by inhibition of lactate dehydrogenase A. Adv Exp Med Biol. 1269:163–167. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Polanski R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE, et al: Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 20:926–937. 2014. View Article : Google Scholar : | |
|
Bola BM, Chadwick AL, Michopoulos F, Blount KG, Telfer BA, Williams KJ, Smith PD, Critchlow SE and Stratford IJ: Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther. 13:2805–2816. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Huang CY, Hsu LH, Chen CY, Chang GC, Chang HW, Hung YM, Liu KJ and Kao SH: Inhibition of alternative cancer cell metabolism of EGFR mutated non-small cell lung cancer serves as a potential therapeutic strategy. Cancers (Basel). 12:1812020. View Article : Google Scholar : PubMed/NCBI | |
|
Beloueche-Babari M, Wantuch S, Casals Galobart T, Koniordou M, Parkes HG, Arunan V, Chung YL, Eykyn TR, Smith PD and Leach MO: MCT1 INHIBITOR AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Res. 77:5913–5924. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Beloueche-Babari M, Casals Galobart T, Delgado-Goni T, Wantuch S, Parkes HG, Tandy D, Harker JA and Leach MO: Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration. Br J Cancer. 122:895–903. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Benyahia Z, Blackman MCNM, Hamelin L, Zampieri LX, Capeloa T, Bedin ML, Vazeille T, Schakman O and Sonveaux P: In vitro and in vivo characterization of MCT1 inhibitor AZD3965 confirms preclinical safety compatible with breast cancer treatment. Cancers (Basel). 13:5692021. View Article : Google Scholar : PubMed/NCBI | |
|
Silva A, Felix A, Cerqueira M, Goncalves CS, Sampaio-Marques B, Longatto-Filho A, Baltazar F and Afonso J: Effects of lactate transport inhibition by AZD3965 in muscle-invasive urothelial bladder cancer. Pharmaceutics. 15:26882023. View Article : Google Scholar : PubMed/NCBI | |
|
Puri S and Juvale K: Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights. Eur J Med Chem. 199:1123932020. View Article : Google Scholar : PubMed/NCBI | |
|
Kong SC, Nohr-Nielsen A, Zeeberg K, Reshkin SJ, Hoffmann EK, Novak I and Pedersen SF: Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells. Pancreas. 45:1036–1047. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tung WH, Hsieh HL, Lee IT and Yang CM: Enterovirus 71 modulates a COX-2/PGE2/cAMP-dependent viral replication in human neuroblastoma cells: Role of the c-Src/EGFR/p42/p44 MAPK/CREB signaling pathway. J Cell Biochem. 112:559–570. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
He H, Lai Y, Hao Y, Liu Y, Zhang Z, Liu X, Guo C, Zhang M, Zhou H, Wang N, et al: Selective p300 inhibitor C646 inhibited HPV E6-E7 genes, altered glucose metabolism and induced apoptosis in cervical cancer cells. Eur J Pharmacol. 812:206–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ji C, Xu W, Ding H, Chen Z, Shi C, Han J, Yu L, Qiao N, Zhang Y, Cao X, et al: The p300 inhibitor A-485 exerts antitumor activity in growth hormone pituitary adenoma. J Clin Endocrinol Metab. 107:e2291–e2300. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Tang X, Fan S, Liu X, Sun J, Ju C, Liang Y, Liu R, Zhou R, Yu B, et al: Targeting the p300/NONO axis sensitizes melanoma cells to BRAF inhibitors. Oncogene. 40:4137–4150. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao XN, Lin J, Ning QY, Gao L, Yao YS, Zhou JH, Li YH, Wang LL and Yu L: A histone acetyltransferase p300 inhibitor C646 induces cell cycle arrest and apoptosis selectively in AML1-ETO-positive AML cells. PLoS One. 8:e554812013. View Article : Google Scholar : PubMed/NCBI | |
|
Waddell A, Grbic N, Leibowitz K, Wyant WA, Choudhury S, Park K, Collard M, Cole PA and Alani RM: p300 KAT regulates SOX10 stability and function in human melanoma. Cancer Res Commun. 4:1894–1907. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mladek AC, Yan H, Tian S, Decker PA, Burgenske DM, Bakken K, Hu Z, He L, Connors MA, Carlson BL, et al: RBBP4-p300 axis modulates expression of genes essential for cell survival and is a potential target for therapy in glioblastoma. Neuro Oncol. 24:1261–1272. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, Yun L and Cheng P: Tanshinone I reprograms glycolysis metabolism to regulate histone H3 lysine 18 lactylation (H3K18la) and inhibits cancer cell growth in ovarian cancer. Int J Biol Macromol. 291:1390722025. View Article : Google Scholar | |
|
Zhang C, Zhou W, Xu H, Xu J, Li J, Liu X, Lu X, Dai J, Jiang Y, Wang W, et al: Cancer-associated fibroblasts promote EGFR-TKI resistance via the CTHRC1/glycolysis/H3K18la positive feedback loop. Oncogene. 44:1400–1414. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, He L, Liu H, Thorne RF, Zeng T, Liu L, Zhang B, He M, Huang Y, Li M, et al: The diapause-like colorectal cancer cells induced by SMC4 attenuation are characterized by low proliferation and chemotherapy insensitivity. Cell Metab. 35:1563–1579 e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, Li X, Long M, Xie X and Liu Q: Integrated analysis of histone lysine lactylation (Kla)-specific genes suggests that NR6A1, OSBP2 and UNC119B are novel therapeutic targets for hepatocellular carcinoma. Sci Rep. 13:186422023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang G, Chen S, He J, Li H, Ma Z, Lubamba GP, Wang L, Guo Z and Li C: Histone lysine lactylation (Kla)-induced BCAM promotes OSCC progression and Cis-platinum resistance. Oral Dis. 31:1116–1132. 2025. View Article : Google Scholar | |
|
Zheng C, Tan H, Niu G, Huang X, Lu J, Chen S, Li H, Zhu J, Zhou Z, Xu M, et al: ACAT1-Mediated ME2 acetylation drives chemoresistance in ovarian cancer by linking glutaminolysis to lactate production. Adv Sci (Weinh). 12:e24164672025. View Article : Google Scholar : PubMed/NCBI | |
|
Pienkowski T, Kowalczyk T, Cysewski D, Kretowski A and Ciborowski M: Glioma and post-translational modifications: A complex relationship. Biochim Biophys Acta Rev Cancer. 1878:1890092023. View Article : Google Scholar : PubMed/NCBI | |
|
Han M, He W, Zhu W and Guo L: The role of protein lactylation in brain health and disease: Current advances and future directions. Cell Death Discov. 11:2132025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Zhang X, Tang S and Wang Y: The important role of the histone acetyltransferases p300/CBP in cancer and the promising anticancer effects of p300/CBP inhibitors. Cell Biol Toxicol. 41:322025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Yang B, Liu X, Zhang XD, Zhang L and Liu T: Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 12:4935–4948. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Lin Y, Darwanto A, Song X, Xu G and Zhang K: Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem. 284:32288–32295. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W and Zhao Y: Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics. 6:812–819. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharya A, Chatterjee S, Bhaduri U, Singh AK, Vasudevan M, Sashidhara KV, Guha R, Nazir A, Rath SK, Natesh N and Kundu TK: Butyrylation meets adipogenesis-probed by a p300-catalyzed acylation-specific small molecule inhibitor: Implication in anti-obesity therapy. J Med Chem. 65:12273–12291. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang C, He X, Chen X, Huang J, Liu Y, Zhang J, Chen H, Sui X, Lv X, Zhao X, et al: Lactate accumulation drives hepatocellular carcinoma metastasis through facilitating tumor-derived exosome biogenesis by Rab7A lactylation. Cancer Lett. 627:2176362025. View Article : Google Scholar : PubMed/NCBI | |
|
Deng J, Li Y, Yin L, Liu S, Li Y, Liao W, Mu L, Luo X and Qin J: Histone lactylation enhances GCLC expression and thus promotes chemoresistance of colorectal cancer stem cells through inhibiting ferroptosis. Cell Death Dis. 16:1932025. View Article : Google Scholar : PubMed/NCBI | |
|
Dai J, Lu X, Zhang C, Qu T, Li W, Su J, Guo R, Yin D, Wu P, Han L and Zhang E: NNMT promotes acquired EGFR-TKI resistance by forming EGR1 and lactate-mediated double positive feedback loops in non-small cell lung cancer. Mol Cancer. 24:792025. View Article : Google Scholar : PubMed/NCBI |