
Decoding the role of cancer stem cells in digestive tract tumors: Mechanisms and therapeutic implications (Review)
- Authors:
- Xiansheng Cao
- Xuejing Geng
- Chunlei Zhang
- Lei Li
-
Affiliations: Department of Gastrointestinal Surgery, Hernia and Abdominal Wall Surgery Ⅰ, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China, Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China, Department of Colorectal and Anus Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China - Published online on: June 25, 2025 https://doi.org/10.3892/ijo.2025.5767
- Article Number: 61
-
Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Haddadin L and Sun X: Stem cells in cancer: From mechanisms to therapeutic strategies. Cells. 14:5382025. View Article : Google Scholar : PubMed/NCBI | |
El-Tanani M, Rabbani SA, Satyam SM, Rangraze IR, Wali AF, El-Tanani Y and Aljabali AAA: Deciphering the role of cancer stem cells: Drivers of tumor evolution, therapeutic resistance, and precision medicine strategies. Cancers (Basel). 17:3822025. View Article : Google Scholar : PubMed/NCBI | |
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez RS, Raza A, Propst R, Adeyi O, Bateman J, Sopha SC, Shaw J and Auerbach A: Recent advances in digestive tract tumors: Updates from the 5th edition of the world health organization 'blue book'. Arch Pathol Lab Med. 145:607–626. 2021. View Article : Google Scholar | |
Li K, Dan Z and Nie YQ: Gastric cancer stem cells in gastric carcinogenesis, progression, prevention and treatment. World J Gastroenterol. 20:5420–5426. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ayob AZ and Ramasamy TS: Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 25:202018. View Article : Google Scholar : PubMed/NCBI | |
Jahangiri L: Cancer stem cell markers and properties across gastrointestinal cancers. Curr. Tissue Microenviron. Rep. 4:77–89. 2023. View Article : Google Scholar | |
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E and Alvarado-Ortiz E: Cancer stem cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci. 355:1230152024. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, He S, Wang Z, Xi H, Lu W and Lin X: Predictive and clinicopathological importance of HMGB2 in various carcinomas: A meta and bioinformatic approach. Sci Rep. 15:110032025. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Meng WJ and Wang ZQ: Cancer stem cells and the tumor microenvironment in gastric cancer. Front Oncol. 11:8039742022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Steed A, Co M and Chen X: Cancer stem cells, epithelial-mesenchymal transition, ATP and their roles in drug resistance in cancer. Cancer Drug Resist. 4:684–709. 2021.PubMed/NCBI | |
Sinha S, Hembram KC and Chatterjee S: Targeting signaling pathways in cancer stem cells: A potential approach for developing novel anti-cancer therapeutics. Int Rev Cell Mol Biol. 385:157–209. 2024. View Article : Google Scholar : PubMed/NCBI | |
Becerril-Rico J, Alvarado-Ortiz E, Toledo-Guzmán ME, Pelayo R and Ortiz-Sánchez E: The cross talk between gastric cancer stem cells and the immune microenvironment: a tumor-promoting factor. Stem Cell Res Ther. 12:4982021. View Article : Google Scholar : PubMed/NCBI | |
Kapoor-Narula U and Lenka N: Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine. 157:1559682022. View Article : Google Scholar : PubMed/NCBI | |
Otaegi-Ugartemendia M, Matheu A and Carrasco-Garcia E: Impact of cancer stem cells on therapy resistance in gastric cancer. Cancers (Basel). 14:14572022. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Xie J, Guo J, Manning HC, Gore JC and Guo N: Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol Rep. 28:1301–1308. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dhumal SN, Choudhari SK, Patankar S, Ghule SS, Jadhav YB and Masne S: Cancer stem cell markers, CD44 and ALDH1, for assessment of cancer risk in OPMDs and lymph node metastasis in oral squamous cell carcinoma. Head Neck Pathol. 16:453–465. 2022. View Article : Google Scholar : | |
Hassn Mesrati M, Syafruddin SE, Mohtar MA and Syahir A: CD44: A multifunctional mediator of cancer progression. Biomolecules. 11:18502021. View Article : Google Scholar : PubMed/NCBI | |
Gopalan V Islam F and Lam AK: Surface markers for the identification of cancer stem cells. Methods Mol Biol. 1692:17–29. 2018. View Article : Google Scholar | |
Makohon-Moore A and Iacobuzio-Donahue CA: Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer. 16:553–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tian S, Ma R, Liu Y, Chen F, Huang X, Yang Q, Nian W and Fan Z: Clinicopathological significance of cancer stem cell marker CD44/SOX2 in esophageal squamous cell carcinoma (ESCC) patients and construction of a nomogram to predict overall survival. Transl Cancer Res. 13:2971–2984. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Yuan C, Zhang C, Yang F, Tan Y, Chen D, Li H and Qian K: Single-cell sequencing reveals the immune microenvironment associated with gastric cancer. Genes Dis. 12:1012182025. View Article : Google Scholar | |
Xue C, Chu Q, Shi Q, Zeng Y, Lu J and Li L: Wnt signaling pathways in biology and disease: Mechanisms and therapeutic advances. Signal Transduct Target Ther. 10:1062025. View Article : Google Scholar : PubMed/NCBI | |
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X and Liu J: Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol. 18:322025. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang Y, Xun X, Zhang C, Xiang X, Cheng Q, Hu S, Li Z and Zhu J: Hedgehog signaling promotes sorafenib resistance in hepatocellular carcinoma patient-derived organoids. J Exp Clin Cancer Res. 39:222020. View Article : Google Scholar : PubMed/NCBI | |
Tufail M, Jiang CH and Li N: Wnt signaling in cancer: From biomarkers to targeted therapies and clinical translation. Mol Cancer. 24:1072025. View Article : Google Scholar : PubMed/NCBI | |
Lanauze CB, Sehgal P, Hayer K, Torres-Diz M, Pippin JA, Grant SFA and Thomas-Tikhonenko A: Colorectal Cancer-Associated Smad4 R361 Hotspot Mutations Boost Wnt/β-Catenin Signaling through Enhanced Smad4-LEF1 Binding. Mol Cancer Res. 19:823–833. 2021. View Article : Google Scholar : PubMed/NCBI | |
López-Knowles E, Zardawi SJ, McNeil CM, Millar EK, Crea P, Musgrove EA, Sutherland RL and O'Toole SA: Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol Biomarkers Prev. 19:301–309. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aine M, Nacer DF, Arbajian E, Veerla S, Karlsson A, Häkkinen J, Johansson HJ, Rosengren F, Vallon-Christersson J, Borg A and Staaf J: The DNA methylation landscape of primary triple-negative breast cancer. Nat Commun. 16:30412025. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z and Zhang Y: Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res. 43:992024. View Article : Google Scholar : PubMed/NCBI | |
Darwiche N: Epigenetic mechanisms and the hallmarks of cancer: An intimate affair. Am J Cancer Res. 10:1954–1978. 2020.PubMed/NCBI | |
Liu B, Peng Z, Zhang H, Zhang N, Liu Z, Xia Z, Huang S, Luo P and Cheng Q: Regulation of cellular senescence in tumor progression and therapeutic targeting: mechanisms and pathways. Mol Cancer. 24:1062025. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jia H, Chen X, Zhang L and Chen M: Cancer associated fibroblasts in cancer development and therapy. J Hematol Oncol. 18:362025. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Hu C, Li Q and Sun C: Cancer-associated fibroblasts as the 'Architect' of the lung cancer immune microenvironment: Multidimensional roles and synergistic regulation with radiotherapy. Int J Mol Sci. 26:32342025. View Article : Google Scholar | |
Yu S, Wang S, Wang X and Xu X: The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int. 24:3352024. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Lang X and Li X: The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol. 12:10231772022. View Article : Google Scholar : | |
Li YR, Fang Y, Lyu Z, Zhu Y and Yang L: Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: Implications for novel therapeutic strategies. J Transl Med. 21:6862023. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich I, Sebastião APM, Lima RS, Urban CA, Junior ES, Anselmi KF, Elifio-Esposito S, De Noronha L and Moreno-Amaral AN: Cancer stem cell markers ALDH1 and CD44+/CD24− phenotype and their prognosis impact in invasive ductal carcinoma. Eur J Histochem. 62:29432018. | |
Wang D, Li Y, Ge H, Ghadban T, Reeh M and Güngör C: The extracellular matrix: A key accomplice of cancer stem cell migration, metastasis formation, and drug resistance in PDAC. Cancers (Basel). 14:39982022. View Article : Google Scholar : PubMed/NCBI | |
Tie Y, Tang F, Wei YQ and Wei XW: Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J Hematol Oncol. 15:612022. View Article : Google Scholar : PubMed/NCBI | |
Yin B, Cai Y, Chen L, Li Z and Li X: Immunosuppressive MDSC and Treg signatures predict prognosis and therapeutic response in glioma. Int Immunopharmacol. 141:1129222024. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Song Y, Zhang Y, Li X, Kan L and Han S: New insights on anti-tumor immunity of CD8+ T cells: Cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med. 23:3412025. View Article : Google Scholar : | |
Galassi C, Musella M, Manduca N, Maccafeo E and Sistigu A: The immune privilege of cancer stem cells: A key to understanding tumor immune escape and therapy failure. Cells. 10:23612021. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Hu B, Gu XR, Chen J, Fan XQ, Zhang W, Wang RT, He XD, Guo W, Dai N, et al: The miR-23a/27a/24 − 2 cluster drives immune evasion and resistance to PD-1/PD-L1 blockade in non-small cell lung cancer. Mol Cancer. 23:2852024. View Article : Google Scholar | |
Geng S, Zhu L, Wang Y, Liu Q, Yu C, Shi S and Yu S: Co-Colorectal cancer stem cells employ the FADS1/DDA axis to evade NK cell-mediated immunosuppression after co-cultured with NK cells under hypoxia. Int Immunopharmacol. 143(Pt 3): 1135352024. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zhao H, Hu Y, Yan C, Mi Y, Li X, Tao D and Qin J: Lactate promotes metastasis of normoxic colorectal cancer stem cells through PGC-1α-mediated oxidative phosphorylation. Cell Death Dis. 13:6512022. View Article : Google Scholar | |
Guo S, Zhao W, Zhang W, Li S, Teng G and Liu L: Vitamin D promotes ferroptosis in colorectal cancer stem cells via SLC7A11 downregulation. Oxid Med Cell Longev. 2023:47721342023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Tian H, Ge K and Wang F, Gao P, Chen A, Wang L, Zhao Y, Lian C and Wang F: PGD2/PTGDR2 signaling pathway affects the self-renewal capacity of gastric cancer stem cells by regulating ATG4B ubiquitination. Front Oncol. 14:14960502024. View Article : Google Scholar | |
Chen Y, Li D, Wang D, Liu X, Yin N, Song Y, Lu SH, Ju Z and Zhan Q: Quiescence and attenuated DNA damage response promote survival of esophageal cancer stem cells. J Cell Biochem. 113:3643–3652. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Bao Q, Schwarz B, Zhao L, Mysliwietz J, Ellwart J, Renner A, Hirner H, Niess H, Camaj P, et al: Stem cell-like side populations in esophageal cancer: A source of chemotherapy resistance and metastases. Stem Cells Dev. 23:180–192. 2014. View Article : Google Scholar | |
Song S, Ajani JA, Honjo S, Maru DM, Chen Q, Scott AW, Heallen TR, Xiao L, Hofstetter WL, Weston B, et al: Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 74:4170–4182. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu DD, Zhou PJ, Wang Y, Zhang L, Fu WY, Ruan BB, Xu HP, Hu CZ, Tian L, Qin JH, et al: Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway. Mol Cancer. 15:402016. View Article : Google Scholar : PubMed/NCBI | |
Liu CC, Chou KT, Hsu JW, Lin JH, Hsu TW, Yen DH, Hung SC and Hsu HS: High metabolic rate and stem cell characteristics of esophageal cancer stem-like cells depend on the Hsp27-AKT-HK2 pathway. Int J Cancer. 145:2144–2156. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kai JD, Cheng LH, Li BF, Kang K, Xiong F, Fu JC and Wang S: MYH9 is a novel cancer stem cell marker and prognostic indicator in esophageal cancer that promotes oncogenesis through the PI3K/AKT/mTOR axis. Cell Biol Int. 46:2085–2094. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Cao Y, Zhang S, Chen Z, Fan L, Shen X, Zhou S and Chen D: Stem cell autocrine CXCL12/CXCR4 stimulates invasion and metastasis of esophageal cancer. Oncotarget. 8:36149–36160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yue D, Zhang Z, Li J, Chen X, Ping Y, Liu S, Shi X, Li L, Wang L, Huang L, et al: Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer. Exp Cell Res. 336:141–149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei JR, Zhang B, Zhang Y, Chen WM, Zhang XP, Zeng TT, Li Y, Zhu YH, Guan XY and Li L: QSOX1 facilitates dormant esophageal cancer stem cells to evade immune elimination via PD-L1 upregulation and CD8 T cell exclusion. Proc Natl Acad Sci USA. 121:e24075061212024. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Lian J, Liu Y, Dong B, He Q, Zhao Q, Zhang H, Qi Y, Zhang Y and Huang L: Loss of miR-637 promotes cancer cell stemness via WASH/IL-8 pathway and serves as a novel prognostic marker in esophageal squamous cell carcinoma. Biomark Res. 10:772022. View Article : Google Scholar : PubMed/NCBI | |
Xun J, Ma Y, Wang B, Jiang X, Liu B, Gao R, Zhai Q, Cheng R, Wu X, Wu Y and Zhang Q: RGS1 targeted by miR-191-3p inhibited the stemness properties of esophageal cancer cells by suppressing CXCR4/PI3K/AKT signaling. Acta Histochem. 126:1521902024. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Teng Y, Jiang X, Yuan H and Jiang W: Genome-Wide DNA methylation pattern of cancer stem cells in esophageal cancer. Technol Cancer Res Treat. 19:15330338209837932020. View Article : Google Scholar : PubMed/NCBI | |
Gupta P, Rizvi SZ, Lal N, Gupta V, Srivastav AN and Musa O: Expression of CD44 and CD133 stem cell markers in squamous cell carcinoma of esophagus. Indian J Pathol Microbiol. 64:472–478. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu DD, Chen SH, Zhou PJ, Wang Y, Zhao ZD, Wang X, Huang HQ, Xue X, Liu QY, Wang YF and Zhang R: Suppression of Esophageal Cancer Stem-like Cells by SNX-2112 Is Enhanced by STAT3 Silencing. Front Pharmacol. 11:5323952020. View Article : Google Scholar : | |
Liu CC, Li HH, Lin JH, Chiang MC, Hsu TW, Li AF, Yen DH, Hsu HS and Hung SC: Esophageal Cancer Stem-like Cells Resist Ferroptosis-Induced Cell Death by Active Hsp27-GPX4 Pathway. Biomolecules. 12:482021. View Article : Google Scholar | |
Mao J, Fan S, Ma W, Fan P, Wang B, Zhang J, Wang H, Tang B, Zhang Q, Yu X, et al: Roles of Wnt/β-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis. 5:e10392014. View Article : Google Scholar | |
Xu XF, Gao F, Wang JJ, Long C, Chen X, Tao L, Yang L, Ding L and Ji Y: BMX-ARHGAP fusion protein maintains the tumorigenicity of gastric cancer stem cells by activating the JAK/STAT3 signaling pathway. Cancer Cell Int. 19:1332019. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Yang Z, Wang F, Hu S, Yang L, Shi Y and Fan D: MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. J Cell Sci. 126(Pt 18): 4220–4229. 2013.PubMed/NCBI | |
Han ME, Baek SJ, Kim SY, Kang CD and Oh SO: ATOH1 can regulate the tumorigenicity of gastric cancer cells by inducing the differentiation of cancer stem cells. PLoS One. 10:e01260852015. View Article : Google Scholar : PubMed/NCBI | |
Shen C, Wang J, Xu Z, Zhang L, Gu W and Zhou X: ONECUT2 which is targeted by hsa-miR-15a-5p enhances stemness maintenance of gastric cancer stem cells. Exp Biol Med (Maywood). 246:2645–2659. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li LQ, Pan D, Zhang SWY, Xie D, Zheng XL and Chen H: Autophagy regulates chemoresistance of gastric cancer stem cells via the Notch signaling pathway. Eur Rev Med Pharmacol Sci. 22:3402–3407. 2018.PubMed/NCBI | |
Xin L, Li SH, Liu C, Zeng F, Cao JQ, Zhou LQ, Zhou Q and Yuan YW: Methionine represses the autophagy of gastric cancer stem cells via promoting the methylation and phosphorylation of RAB37. Cell Cycle. 19:2644–2652. 2020. View Article : Google Scholar : PubMed/NCBI | |
Togano S, Yashiro M, Masuda G, Sugimoto A, Miki Y, Yamamoto Y, Sera T, Kushiyama S, Nishimura S, Kuroda K, et al: Gastric cancer stem cells survive in stress environments via their autophagy system. Sci Rep. 11:206642021. View Article : Google Scholar : PubMed/NCBI | |
Yang SW, Zhang ZG, Hao YX, Zhao YL, Qian F, Shi Y, Li PA, Liu CY and Yu PW: HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway. Oncotarget. 8:9535–9545. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun LF, Yang K, Wang YG, Liu YX, Hou PX, Lu ZH, Chen XL, Zhang WH, Zhou ZG, Mo XM and Hu JK: The Role of HER2 in self-renewal, invasion, and tumorigenicity of gastric cancer stem cells. Front Oncol. 10:16082020. View Article : Google Scholar : PubMed/NCBI | |
Seeneevassen L, Giraud J, Molina-Castro S, Sifré E, Tiffon C, Beauvoit C, Staedel C, Mégraud F, Lehours P, Martin OCB, et al: Leukaemia inhibitory factor (LIF) inhibits cancer stem cells tumorigenic properties through hippo kinases activation in gastric cancer. Cancers (Basel). 12:20112020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q and Wang F, Huang Y, Gao P, Wang N, Tian H, Chen A, Li Y and Wang F: PGD2/PTGDR2 signal affects the viability, invasion, apoptosis, and stemness of gastric cancer stem cells and prevents the progression of gastric cancer. Comb Chem High Throughput Screen. 27:933–946. 2024. View Article : Google Scholar | |
Wang X, Zhang F, Yang J, Huang X, Chao X, Ayidu A and Abudureyimu A: The chemotherapeutic effect of docetaxel, cisplatin and fluorouracil regimen on gastric cancer stem cells. J Nanosci Nanotechnol. 17:983–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wang M, He Y, Deng T, Liu R, Wang W, Zhu K, Bai M, Ning T, Yang H, et al: Chemotoxicity-induced exosomal lncFERO regulates ferroptosis and stemness in gastric cancer stem cells. Cell Death Dis. 12:11162021. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Wang L, Chen Z, Huang H, Chen J, Su J, Li Z, Shen G, Ren Y, Li Z, et al: SCD1 promotes the stemness of gastric cancer stem cells by inhibiting ferroptosis through the SQLE/cholesterol/mTOR signalling pathway. Int J Biol Macromol. 275(Pt 2): 1336982024. View Article : Google Scholar : PubMed/NCBI | |
Ni T, Chu Z, Tao L, Zhao Y, Lv M, Zhu M, Luo Y, Sunagawa M, Wang H and Liu Y: Celastrus orbiculatus extract suppresses gastric cancer stem cells through the TGF-β/Smad signaling pathway. J Nat Med. 78:100–113. 2024. View Article : Google Scholar | |
Chen B, Zhang D, Kuai J, Cheng M, Fang X and Li G: Upregulation of miR-199a/b contributes to cisplatin resistance via Wnt/β-catenin-ABCG2 signaling pathway in ALDHA1(+) colorectal cancer stem cells. Tumour Biol. 39:10104283177151552017. View Article : Google Scholar | |
Li J, Yu B, Deng P, Cheng Y, Yu Y, Kevork K, Ramadoss S, Ding X, Li X and Wang CY: KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling. Nat Commun. 8:151462017. View Article : Google Scholar | |
Hua F, Shang S, Yang YM, Zhang HZ, Xu TL, Yu JJ, Zhou DD, Cui B, Li K, Lv XX, et al: TRIB3 interacts With β-Catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis. Gastroenterology. 156:708–721.e15. 2019. View Article : Google Scholar | |
Yu W, Ma Y, Shankar S and Srivastava RK: SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Sci Rep. 7:109392017. View Article : Google Scholar | |
Zhu Y, Huang S, Chen S, Chen J, Wang Z, Wang Y and Zheng H: SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis. 12:4492021. View Article : Google Scholar | |
Izumi D, Ishimoto T, Miyake K, Eto T, Arima K, Kiyozumi Y, Uchihara T, Kurashige J, Iwatsuki M, Baba Y, et al: Colorectal cancer stem cells acquire chemoresistance through the upregulation of F-Box/WD repeat-containing protein 7 and the consequent degradation of c-Myc. Stem Cells. 35:2027–2036. 2017. View Article : Google Scholar : PubMed/NCBI | |
Honma S, Hisamori S, Nishiuchi A, Itatani Y, Obama K, Shimono Y and Sakai Y: F-Box/WD repeat domain-containing 7 induces chemotherapy resistance in colorectal cancer stem cells. Cancers (Basel). 11:6352019. View Article : Google Scholar : PubMed/NCBI | |
Mukohyama J, Isobe T, Hu Q, Hayashi T, Watanabe T, Maeda M, Yanagi H, Qian X, Yamashita K, Minami H, et al: miR-221 Targets QKI to Enhance the tumorigenic capacity of human colorectal cancer stem cells. Cancer Res. 79:5151–5158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhang Z, Zhou L, Hu L, Yin C, Qing D, Huang S, Cai X and Chen Y: Cancer associated fibroblasts-derived exosomes contribute to radioresistance through promoting colorectal cancer stem cells phenotype. Exp Cell Res. 391:1119562020. View Article : Google Scholar : PubMed/NCBI | |
Montalbán-Hernández K, Cantero-Cid R, Casalvilla-Dueñas JC, Avendaño-Ortiz J, Marín E, Lozano-Rodríguez R, Ter rón-A rcos V, Vica r io-Bravo M, Ma rcano C, Saavedra-Ambrosy J, et al: Colorectal cancer stem cells fuse with monocytes to form tumour hybrid cells with the ability to migrate and evade the immune system. Cancers (Basel). 14:34452022. View Article : Google Scholar : PubMed/NCBI | |
Cavallucci V, Palucci I, Fidaleo M, Mercuri A, Masi L, Emoli V, Bianchetti G, Fiori ME, Bachrach G, Scaldaferri F, et al: Proinflammatory and cancer-promoting pathobiont fusobacterium nucleatum directly targets colorectal cancer stem cells. Biomolecules. 12:12562022. View Article : Google Scholar : PubMed/NCBI | |
Tamura S, Isobe T, Ariyama H, Nakano M, Kikushige Y, Takaishi S, Kusaba H, Takenaka K, Ueki T, Nakamura M, et al: E-cadherin regulates proliferation of colorectal cancer stem cells through NANOG. Oncol Rep. 40:693–703. 2018.PubMed/NCBI | |
Zou W, Zhang Y, Bai G, Zhuang J, Wei L, Wang Z, Sun M and Wang J: siRNA-induced CD44 knockdown suppresses the proliferation and invasion of colorectal cancer stem cells through inhibiting epithelial-mesenchymal transition. J Cell Mol Med. 26:1969–1978. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vishnubalaji R, Manikandan M, Fahad M, Hamam R, Alfayez M, Kassem M, Aldahmash A and Alajez NM: Molecular profiling of ALDH1(+) colorectal cancer stem cells reveals preferential activation of MAPK, FAK, and oxidative stress pro-survival signalling pathways. Oncotarget. 9:13551–13564. 2018. View Article : Google Scholar : PubMed/NCBI | |
Agawa K, Yamashita K, Nakagawa A, Yamada K, Watanabe A, Mukohyama J, Saito M, Fujita M, Takiguchi G, Urakawa N, et al: Simple cancer stem cell markers predict neoadjuvant chemotherapy resistance of esophageal squamous cell carcinoma. Anticancer Res. 41:4117–4126. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin CH, Li HY, Liu YP, Kuo PF, Wang WC, Lin FC, Chang WL, Sheu BS, Wang YC, Hung WC, et al: High-CLDN4 ESCC cells harbor stem-like properties and indicate for poor concurrent chemoradiation therapy response in esophageal squamous cell carcinoma. Ther Adv Med Oncol. 11:17588359198753242019. View Article : Google Scholar : PubMed/NCBI | |
Trevellin E, Pirozzolo G, Fassan M and Vettor R: Prognostic value of stem cell markers in esophageal and esophagogastric junction cancer: A meta-analysis. J Cancer. 11:4240–4249. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nishikawa S, Konno M, Hamabe A, Hasegawa S, Kano Y, Ohta K, Fukusumi T, Sakai D, Kudo T, Haraguchi N, et al: Aldehyde dehydrogenase high gastric cancer stem cells are resistant to chemotherapy. Int J Oncol. 42:1437–1442. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gong DY, Chen X, Yang TL, Wang Y, Guo Y, Zeng JH and Chen SZ: Upregulation of ECT2 is associated with transcriptional program of cancer stem cells and predicts poor clinical outcome in gastric cancer. Oncol Lett. 20:542020.PubMed/NCBI | |
Becerril-Rico J, Grandvallet-Contreras J, Ruíz-León MP, Dorantes-Cano S, Ramírez-Vidal L, Tinajero-Rodríguez JM and Ortiz-Sánchez E: Circulating gastric cancer stem cells as blood screening and prognosis factor in gastric cancer. Stem Cells Int. 2024:99991552024. View Article : Google Scholar : PubMed/NCBI | |
Catalano V, Dentice M, Ambrosio R, Luongo C, Carollo R, Benfante A, Todaro M, Stassi G and Salvatore D: Activated thyroid hormone promotes differentiation and chemotherapeutic sensitization of colorectal cancer stem cells by regulating Wnt and BMP4 signaling. Cancer Res. 76:1237–1244. 2016. View Article : Google Scholar | |
Prieur A, Cappellini M, Habif G, Lefranc MP, Mazard T, Morency E, Pascussi JM, Flacelière M, Cahuzac N, Vire B, et al: Targeting the Wnt pathway and cancer stem cells with anti-progastrin humanized antibodies as a potential treatment for K-RAS-mutated colorectal cancer. Clin Cancer Res. 23:5267–5280. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Song S, Wei S, Liu B, Honjo S, Scott A, Jin J, Ma L, Zhu H, Skinner HD, et al: ABT-263 induces apoptosis and synergizes with chemotherapy by targeting stemness pathways in esophageal cancer. Oncotarget. 6:25883–25896. 2015. View Article : Google Scholar : PubMed/NCBI | |
Narusaka T, Ohara T, Noma K, Nishiwaki N, Katsura Y, Kato T, Sato H, Tomono Y, Kikuchi S, Tazawa H, et al: Nanog is a promising chemoresistant stemness marker and therapeutic target by iron chelators for esophageal cancer. Int J Cancer. 149:347–357. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu ZY, Tang JN, Xie HX, Du YA, Huang L, Yu PF and Cheng XD: 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int J Biol Sci. 11:284–294. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wang JL, Wu DZ, Yuan YW and Xin L: Methionine restriction enhances the chemotherapeutic sensitivity of colorectal cancer stem cells by miR-320d/c-Myc axis. Mol Cell Biochem. 477:2001–2013. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Fei B and Chu S: Targeting HNRNPA2B1 to overcome chemotherapy resistance in gastric cancer stem cells: Mechanisms and therapeutic potential. J Biol Chem. 301:1082342025. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Koo JE, Han GY, Kim B, Lee YS, Ahn C and Kim CW: Dual-Blocking of PI3K and mTOR improves chemotherapeutic effects on SW620 human colorectal cancer stem cells by inducing differentiation. J Korean Med Sci. 31:360–370. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tsunekuni K, Konno M, Haraguchi N, Koseki J, Asai A, Matsuoka K, Kobunai T, Takechi T, Doki Y, Mori M and Ishii H: CD44/CD133-positive colorectal cancer stem cells are sensitive to trifluridine exposure. Sci Rep. 9:148612019. View Article : Google Scholar : PubMed/NCBI | |
Khoei SG, Sadeghi H and Dermani FK: Targeting the SPHK1/HIF1 PATHWAY TO INHIBIT colorectal cancer stem cells niche. J Gastrointest Cancer. 51:716–717. 2020. View Article : Google Scholar | |
Rio-Vilariño A, Cenigaonandia-Campillo A, García-Bautista A, Mateos-Gómez PA, Schlaepfer MI, Del Puerto-Nevado L, Aguilera O, García-García L, Galeano C, de Miguel I, et al: Inhibition of the AURKA/YAP1 axis is a promising therapeutic option for overcoming cetuximab resistance in colorectal cancer stem cells. Br J Cancer. 130:1402–1413. 2024. View Article : Google Scholar : PubMed/NCBI | |
Akrami H, Moradi B, Borzabadi Farahani D and Mehdizadeh K: Ibuprofen reduces cell proliferation through inhibiting Wnt/β catenin signaling pathway in gastric cancer stem cells. Cell Biol Int. 42:949–958. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li Y, Wang XQ, Meng Y, Zhang Q, Zhu JY, Chen JQ, Cao WS, Wang XQ, Xie CF, et al: Phenethyl isothiocyanate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Phytother Res. 32:2447–2455. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wang XQ, Zhang Q, Zhu JY, Li Y, Xie CF, Li XT, Wu JS, Geng SS, Zhong CY and Han HY: (-)-epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Nutrients. 9:5722017. View Article : Google Scholar | |
Qi J, Cui D, Wu QN, Zhao Q, Chen ZH, Li L, Birchmeier W, Yu Y and Tao R: Targeting Wnt/β-catenin signaling by TET1/FOXO4 inhibits metastatic spreading and self-renewal of cancer stem cells in gastric cancer. Cancers (Basel). 14:32322022. View Article : Google Scholar | |
Wen Z, Feng S, Wei L, Wang Z, Hong D and Wang Q: Evodiamine, a novel inhibitor of the Wnt pathway, inhibits the self-renewal of gastric cancer stem cells. Int J Mol Med. 36:1657–1663. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Zhang S and Wang M, Cheng H, Wang Y, He S, Zuo Q, Wang N, Li Q and Wang M: Cinobufacini enhances the therapeutic response of 5-Fluorouracil against gastric cancer by targeting cancer stem cells via AKT/GSK-3β/β-catenin signaling axis. Transl Oncol. 47:1020542024. View Article : Google Scholar | |
Cao W, Li Y, Sun H, Yang C, Zhu J, Xie C, Li X, Wu J, Geng S, Wang L, et al: Apatinib suppresses gastric cancer stem cells properties by inhibiting the sonic hedgehog pathway. Front Cell Dev Biol. 9:6798062021. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Zheng X, Ye K, Sun Y, Lu Y, Fan Q and Ge H: miR-135a inhibits the invasion and migration of esophageal cancer stem cells through the hedgehog signaling pathway by targeting Smo. Mol Ther Nucleic Acids. 19:841–852. 2020. View Article : Google Scholar : PubMed/NCBI | |
Giraud J, Molina-Castro S, Seeneevassen L, Sifré E, Izotte J, Tiffon C, Staedel C, Boeuf H, Fernandez S, Barthelemy P, et al: Verteporfin targeting YAP1/TAZ-TEAD transcriptional activity inhibits the tumorigenic properties of gastric cancer stem cells. Int J Cancer. 146:2255–2267. 2020. View Article : Google Scholar | |
Jang MK, Mashima T and Seimiya H: Tankyrase inhibitors target colorectal cancer stem cells via AXIN-dependent downregulation of c-KIT tyrosine kinase. Mol Cancer Ther. 19:765–776. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu CT, Lin CF, Shih HM, You RI, Wu WS and Chen TC: Blockade of Src signaling prevented stemness gene expression and proliferation of patient-derived gastric cancer stem cells. Tzu Chi Med J. 37:65–71. 2024. View Article : Google Scholar | |
Lamichhane A, Shahi Thakuri P, Singh S, Rafsanjani Nejad P, Heiss J, Luker GD and Tavana H: Therapeutic targeting of cancer stem cells prevents resistance of colorectal cancer cells to MEK inhibition. ACS Pharmacol Transl Sci. 5:724–734. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song S, Chen Q, Li Y, Lei G, Scott A, Huo L, Li CY, Estrella JS, Correa A, Pizzi MP, et al: Targeting cancer stem cells with a pan-BCL-2 inhibitor in preclinical and clinical settings in patients with gastroesophageal carcinoma. Gut. 70:2238–2248. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park SR, Kim SR, Hong IS and Lee HY: A novel therapeutic approach for colorectal cancer stem cells: Blocking the PI3K/Akt signaling axis with caffeic acid. Front Cell Dev Biol. 8:5859872020. View Article : Google Scholar | |
Yao HJ, Zhang YG, Sun L and Liu Y: The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials. 35:9208–9223. 2014. View Article : Google Scholar : PubMed/NCBI | |
Andrade F, Rafael D, Vilar-Hernández M, Montero S, Martínez-Trucharte F, Seras-Franzoso J, Díaz-Riascos ZV, Boullosa A, García-Aranda N, Cámara-Sánchez P, et al: Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. J Control Release. 331:198–212. 2021. View Article : Google Scholar : PubMed/NCBI | |
Quarni W, Dutta R, Green R, Katiri S, Patel B, Mohapatra SS and Mohapatra S: Mithramycin a inhibits colorectal cancer growth by targeting cancer stem cells. Sci Rep. 9:152022019. View Article : Google Scholar : PubMed/NCBI | |
AlShamaileh H, Wang T, Xiang D, Yin W, Tran PH, Barrero RA, Zhang PZ, Li Y, Kong L, Liu K, et al: Aptamer-mediated survivin RNAi enables 5-fluorouracil to eliminate colorectal cancer stem cells. Sci Rep. 7:58982017. View Article : Google Scholar : PubMed/NCBI | |
Zhu L and Wang H: Cholesterol-regulated cellular stiffness may enhance evasion of NK cell-mediated cytotoxicity in gastric cancer stem cells. FEBS Open Bio. 14:855–866. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Dong J, Haiech J, Kilhoffer MC and Zeniou M: Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016:17409362016. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim R, Ji JH, Kim JH, Hong JY, Lim HY, Kang WK, Lee J and Kim ST: Safety and anti-tumor effects of vismodegib in patients with refractory advanced gastric cancer: A single-arm, phase-II trial. J Cancer. 13:1097–1102. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z, Liang Z and Wu X: Targeting gastric cancer stem cells to enhance treatment response. Cells. 11:28282022. View Article : Google Scholar : PubMed/NCBI | |
Zhong B, Cheng B, Huang X, Xiao Q, Niu Z, Chen YF, Yu Q, Wang W and Wu XJ: Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling. Cell Death Dis. 13:162021. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Chen H, Ma F, Xiao C, Sun B, Liu Y, Tang H, Yang Y, Liu W and Luo Z: Vitamin D metabolism pathway polymorphisms are associated with efficacy and safety in patients under anti-PD-1 inhibitor therapy. Front Immunol. 13:9374762022. View Article : Google Scholar : PubMed/NCBI | |
Krishnamurthy N and Kurzrock R: Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar | |
Mohan A, Raj Rajan R, Mohan G, Kollenchery Puthenveettil P and Maliekal TT: Markers and reporters to reveal the hierarchy in heterogeneous cancer stem cells. Front Cell Dev Biol. 9:6688512021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lu Y, Wu M, Wang H, Gong Y and Gu Y: Neogambogic acid suppresses characteristics and growth of colorectal cancer stem cells by inhibition of DLK1 and Wnt/β-catenin pathway. Eur J Pharmacol. 929:1751122022. View Article : Google Scholar | |
Zaafour A, Seeneevassen L, Nguyen TL, Genevois C, Nicolas N, Sifré E, Giese A, Porcheron C, Descarpentrie J, Dubus P, et al: Inhibition of proprotein convertases activity results in repressed stemness and invasiveness of cancer stem cells in gastric cancer. Gastric Cancer. 27:292–307. 2024. View Article : Google Scholar : PubMed/NCBI | |
Santos LS, Silva VR, de Castro MVL, Dias RB, Valverde LF, Rocha CAG, Soares MBP, Quadros CA, Dos Santos ER, Oliveira RMM, et al: New ruthenium-xanthoxylin complex eliminates colorectal cancer stem cells by targeting the heat shock protein 90 chaperone. Cell Death Dis. 14:8322023. View Article : Google Scholar : PubMed/NCBI | |
Soufizadeh P, Mansouri V and Ahmadbeigi N: A review of animal models utilized in preclinical studies of approved gene therapy products: trends and insights. Lab Anim Res. 40:172024. View Article : Google Scholar : PubMed/NCBI | |
Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M and Sausville EA: Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 84:1424–1431. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ni Z, Nie X, Zhang H, Wang L, Geng Z, Du X, Qian H, Liu W and Liu T: Atranorin driven by nano materials SPION lead to ferroptosis of gastric cancer stem cells by weakening the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis and its expression. Int J Med Sci. 19:1680–1694. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shanavas S, Sen U, Banerjee R, Shenoy PS and Bose B: Effective targeting of colorectal cancer stem cells by inducing differentiation mediated by low-dose vitamin C via β-catenin retention in the cell membrane. J Cell Biochem. 126:e306862025. View Article : Google Scholar | |
Paganelli F, Chiarini F, Palmieri A, Martinelli M, Sena P, Bertacchini J, Roncucci L, Cappellini A, Martelli AM, Bonucci M, et al: The Combination of AHCC and ETAS decreases migration of colorectal cancer cells, and reduces the expression of LGR5 and Notch1 genes in cancer stem cells: A novel potential approach for integrative medicine. Pharmaceuticals (Basel). 14:13252021. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Shangguan D, Huang Q, Xiao L, Cao D, Zhou H and Wang YK: Emerging artificial intelligence-driven precision therapies in tumor drug resistance: Recent advances, opportunities, and challenges. Mol Cancer. 24:1232025. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wang ZX, Chen YX, Wu HX, Yin L, Zhao Q, Luo HY, Zeng ZL, Qiu MZ and Xu RH: Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med. 14:452022. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Zhu C, Zhong F and Liu L: TransCDR: A deep learning model for enhancing the generalizability of drug activity prediction through transfer learning and multimodal data fusion. BMC Biol. 22:2272024. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Singhal A, Park S, Kong J, Bachelder R and Ideker T: Cancer mutations converge on a collection of protein assemblies to predict resistance to replication stress. Cancer Discov. 14:508–523. 2024. View Article : Google Scholar : PubMed/NCBI | |
Varinelli L, Illescas O, Lorenc EJ, Battistessa D, Di Bella M, Zanutto S and Gariboldi M: Organoids technology in cancer research: from basic applications to advanced ex vivo models. Front Cell Dev Biol. 13:15693372025. View Article : Google Scholar : PubMed/NCBI | |
Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, et al: A PDX/Organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 24:4332–4345. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Shen J, Ho PC, Hu Y, Ma Z and Wang L: Transforming cancer treatment: Integrating patient-derived organoids and CRISPR screening for precision medicine. Front Pharmacol. 16:15631982025. View Article : Google Scholar : PubMed/NCBI | |
Li P, Huang M, Li M, Li G, Ma Y, Zhao Y, Wang X, Zhang Y and Shi C: Combining molecular characteristics and therapeutic analysis of PDOs predict clinical responses and guide PDAC personalized treatment. J Exp Clin Cancer Res. 44:722025. View Article : Google Scholar : PubMed/NCBI |