|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
2
|
Li M, He H, Zhao X, Guan M, Khattab N,
Elshishiney G, You H and Hu Y: Trends in burden of liver cancer and
underlying etiologies in China, 1990-2021. Lancet Regional
Health-Western Pacific. 55:1013852025. View Article : Google Scholar
|
|
3
|
Rumgay H, Arnold M, Ferlay J, Lesi O,
Cabasag CJ, Vignat J, Laversanne M, McGlynn KA and Soerjomataram I:
Global burden of primary liver cancer in 2020 and predictions to
2040. J Hepatol. 77:1598–1606. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Villanueva A: Hepatocellular carcinoma. N
Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Singal AG, Kanwal F and Llovet JM: Global
trends in hepatocellular carcinoma epidemiology: Implications for
screening, prevention and therapy. Nat Rev Clin Oncol. 20:864–884.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang H, Zhang W, Jiang L and Chen Y:
Recent advances in systemic therapy for hepatocellular carcinoma.
Biomark Res. 10:32022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Llovet JM, Ricci S, Mazzaferro V, Hilgard
P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A,
et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J
Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Guo L, Hu C, Yao M and Han G: Mechanism of
sorafenib resistance associated with ferroptosis in HCC. Front
Pharmacol. 14:12074962023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Dixon SJ, Patel DN, Welsch M, Skouta R,
Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS,
et al: Pharmacological inhibition of cystine-glutamate exchange
induces endoplasmic reticulum stress and ferroptosis. eLife.
3:e025232014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jurisic V, Bumbasirevic V, Konjevic G,
Djuricic B and Spuzic I: TNF-alpha induces changes in LDH isotype
profile following triggering of apoptosis in PBL of non-Hodgkin's
lymphomas. Ann Hematol. 83:84–91. 2004. View Article : Google Scholar
|
|
11
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Stockwell BR, Friedmann Angeli JP, Bayir
H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK,
Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking
metabolism, redox biology, and disease. Cell. 171:273–285. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y,
Sun Y, Zeng F, Chen X and Deng G: Ferroptosis in cancer: From
molecular mechanisms to therapeutic strategies. Signal Transduct
Target Ther. 9:552024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fulda S, Galluzzi L and Kroemer G:
Targeting mitochondria for cancer therapy. Nat Rev Drug Discov.
9:447–464. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wallace DC: Mitochondria and cancer. Nat
Rev Cancer. 12:685–698. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Eckl EM, Ziegemann O, Krumwiede L, Fessler
E and Jae LT: Sensing, signaling and surviving mitochondrial
stress. Cell Mol Life Sci. 78:5925–5951. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kasahara A and Scorrano L: Mitochondria:
From cell death executioners to regulators of cell differentiation.
Trends Cell Biol. 24:761–770. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Senft D and Ronai ZA: Regulators of
mitochondrial dynamics in cancer. Curr Opin Cell Biol. 39:43–52.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kashatus JA, Nascimento A, Myers LJ, Sher
A, Byrne FL, Hoehn KL, Counter CM and Kashatus DF: Erk2
phosphorylation of Drp1 promotes mitochondrial fission and
MAPK-driven tumor growth. Mol Cell. 57:537–551. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bianchi NO, Bianchi MS and Richard SM:
Mitochondrial genome instability in human cancers. Mutat Res.
488:9–23. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang Y, Karakhanova S, Hartwig W, D'Haese
JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and
mitochondrial ROS in cancer: Novel targets for anticancer therapy.
J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Leao Barros MB, Pinheiro DDR and Borges
BDN: Mitochondrial DNA Alterations in Glioblastoma (GBM). Int J Mol
Sci. 22:58552021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Arakaki N, Nishihama T, Kohda A, Owaki H,
Kuramoto Y, Abe R, Kita T, Suenaga M, Himeda T, Kuwajima M, et al:
Regulation of mitochondrial morphology and cell survival by
Mitogenin I and mitochondrial single-stranded DNA binding protein.
Biochim Biophys Acta. 1760:1364–1372. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Oliveira MT and Kaguni LS: Functional
roles of the N- and C-terminal regions of the human mitochondrial
single-stranded DNA-binding protein. PLoS One. 5:e153792010.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li Y, Bolderson E, Kumar R, Muniandy PA,
Xue Y, Richard DJ, Seidman M, Pandita TK, Khanna KK and Wang W:
HSSB1 and hSSB2 form similar multiprotein complexes that
participate in DNA damage response. J Biol Chem. 284:23525–23531.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zelinger L and Swaroop A: SSBP1 faux pas
in mitonuclear tango causes optic neuropathy. J Clin Invest.
130:62–64. 2020. View Article : Google Scholar :
|
|
27
|
Wang Y, Hu L, Zhang X, Zhao H, Xu H, Wei
Y, Jiang H, Xie C, Zhou Y and Zhou F: Downregulation of
mitochondrial single stranded DNA binding protein (SSBP1) induces
mitochondrial dysfunction and increases the radiosensitivity in
Non-small cell lung cancer cells. J Cancer. 8:1400–1409. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Su J and Li Y, Liu Q, Peng G, Qin C and Li
Y: Identification of SSBP1 as a ferroptosis-related biomarker of
glioblastoma based on a novel mitochondria-related gene risk model
and in vitro experiments. J Transl Med. 20:4402022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang T, Cui Y, Wu Y, Meng J, Han L, Zhang
J, Zhang C, Yang C, Chen L, Bai X, et al: Mitochondrial GCN5L1
regulates glutaminase acetylation and hepatocellular carcinoma.
Clin Transl Med. 12:e8522022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cancer Genome Atlas Research Network:
Electronic address: wheeler@bcm.edu; Cancer Genome Atlas Research
Network: Comprehensive and integrative genomic characterization of
hepatocellular carcinoma. Cell. 169:1327–1341.23. 2017. View Article : Google Scholar
|
|
31
|
Rath S, Sharma R, Gupta R, Ast T, Chan C,
Durham TJ, Goodman RP, Grabarek Z, Haas ME, Hung WHW, et al:
MitoCarta3.0: An updated mitochondrial proteome now with
sub-organelle localization and pathway annotations. Nucleic Acids
Res. 49:D1541–D1547. 2021. View Article : Google Scholar :
|
|
32
|
Zhou X, Liu C, Zeng H, Wu D and Liu L:
Identification of a thirteen-gene signature predicting overall
survival for hepatocellular carcinoma. Biosci Rep.
41:BSR202028702021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhou Y, Zhou B, Pache L, Chang M,
Khodabakhshi AH, Tanaseichuk O, Benner C and Chanda SK: Metascape
provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat Commun. 10:15232019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Roessler S, Jia HL, Budhu A, Forgues M, Ye
QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, et al: A
unique metastasis gene signature enables prediction of tumor
relapse in early-stage hepatocellular carcinoma patients. Cancer
Res. 70:10202–10212. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sun Q, Liu P, Long B, Zhu Y and Liu T:
Screening of significant biomarkers with poor prognosis in
hepatocellular carcinoma via bioinformatics analysis. Medicine
(Baltimore). 99:e217022020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Vazquez Salgado AM, Preziosi ME, Yin D,
Holczbauer A, Zahm AM, Erez N, Kieckhaefer J, Ackerman D, Gade TP,
Kaestner KH, et al: In vivo screen identifies liver X receptor
alpha agonism potentiates sorafenib killing of hepatocellular
carcinoma. Gastro Hep Adv. 1:905–908. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
van Malenstein H, Dekervel J, Verslype C,
Van Cutsem E, Windmolders P, Nevens F and van Pelt J: Long-term
exposure to sorafenib of liver cancer cells induces resistance with
epithelial-to-mesenchymal transition, increased invasion and risk
of rebound growth. Cancer Lett. 329:74–83. 2013. View Article : Google Scholar
|
|
38
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013.
View Article : Google Scholar
|
|
39
|
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q,
Li B and Liu XS: TIMER2.0 for analysis of tumor-infiltrating immune
cells. Nucleic Acids Res. 48:W509–W514. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B and Varambally
S: UALCAN: A portal for facilitating tumor subgroup gene expression
and survival analyses. Neoplasia. 19:649–658. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gyorffy B: Integrated analysis of public
datasets for the discovery and validation of survival-associated
genes in solid tumors. Innovation (Camb). 5:1006252024.PubMed/NCBI
|
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
43
|
Radenkovic S, Konjevic G, Gavrilovic D,
Stojanovic-Rundic S, Plesinac-Karapandzic V, Stevanovic P and
Jurisic V: pSTAT3 expression associated with survival and
mammographic density of breast cancer patients. Pathol Res Pract.
215:366–372. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hu X, Zhang P, Li S, Zhang J, Wang D, Wang
Z, Zhu L and Wang L: Mitochondrial GCN5L1 acts as a novel regulator
for iron homeostasis to promote sorafenib sensitivity in
hepatocellular carcinoma. J Transl Med. 22:5932024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Scherbakov AM, Vorontsova SK, Khamidullina
AI, Mrdjanovic J, Andreeva OE, Bogdanov FB, Salnikova DI, Jurisic
V, Zavarzin IV and Shirinian VZ: Novel pentacyclic derivatives and
benzylidenes of the progesterone series cause anti-estrogenic and
antiproliferative effects and induce apoptosis in breast cancer
cells. Invest New Drugs. 41:142–152. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Radenkovic N, Milutinovic M, Nikodijevic
D, Jovankic J and Jurisic V: Sample preparation of adherent cell
lines for flow cytometry: Protocol optimization-our experience with
SW-480 colorectal cancer cell line. Indian J Clin Biochem.
40:74–79. 2025. View Article : Google Scholar
|
|
47
|
Hernansanz-Agustin P and Enriquez JA:
Generation of reactive oxygen species by mitochondria. Antioxidants
(Basel). 10:4152021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sun K, Zhi Y, Ren W, Li S, Zhou X, Gao L
and Zhi K: The mitochondrial regulation in ferroptosis signaling
pathway and its potential strategies for cancer. Biomed
Pharmacother. 169:1158922023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Huang J and Xie ZF: Identification of
SSBP1 as a prognostic marker in human lung adenocarcinoma using
bioinformatics approaches. Math Biosci Eng. 19:3022–3035. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li Q, Qu F, Li R, He X, Zhai Y, Chen W and
Zheng Y: A functional polymorphism of SSBP1 gene predicts prognosis
and response to chemotherapy in resected gastric cancer patients.
Oncotarget. 8:110861–110876. 2017. View Article : Google Scholar
|
|
52
|
Xu S, Feng Z, Zhang M, Wu Y, Sang Y, Xu H,
Lv X, Hu K, Cao J, Zhang R, et al: hSSB1 binds and protects p21
from ubiquitin-mediated degradation and positively correlates with
p21 in human hepatocellular carcinomas. Oncogene. 30:2219–2229.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ohmori M, Ohta M, Shimura H, Shimurat Y,
Suzuki K and Kohn LD: Cloning of the single strand DNA-binding
protein important for maximal expression and thyrotropin
(TSH)-induced negative regulation of the TSH receptor. Mol
Endocrinol. 10:1407–1424. 1996.PubMed/NCBI
|
|
54
|
Yang X, Ma B, Liu Y, Zhou J, Guo J, Peng
Y, Bai Y, Wu J and Hu D: SSBP1 positively regulates RRM2, affecting
epithelial mesenchymal transition and cell cycle arrest in human
lung adenocarcinoma cells. Cell Signal. 127:1115522025. View Article : Google Scholar
|
|
55
|
Morin JA, Cerron F, Jarillo J,
Beltran-Heredia E, Ciesielski GL, Arias-Gonzalez JR, Kaguni LS, Cao
FJ and Ibarra B: DNA synthesis determines the binding mode of the
human mitochondrial single-stranded DNA-binding protein. Nucleic
Acids Res. 45:7237–7248. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Richard DJ, Bolderson E, Cubeddu L,
Wadsworth RI, Savage K, Sharma GG, Nicolette ML, Tsvetanov S,
McIlwraith MJ, Pandita RK, et al: Single-stranded DNA-binding
protein hSSB1 is critical for genomic stability. Nature.
453:677–681. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sykora P, Kanno S, Akbari M, Kulikowicz T,
Baptiste BA, Leandro GS, Lu H, Tian J, May A, Becker KA, et al: DNA
Polymerase beta participates in mitochondrial DNA repair. Mol Cell
Biol. 37:e00237–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang S, Guo H, Wang H, Liu X, Wang M, Liu
X, Fan Y and Tan K: A novel mitochondrial unfolded protein
response-related risk signature to predict prognosis, immunotherapy
and sorafenib sensitivity in hepatocellular carcinoma. Apoptosis.
29:768–784. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ye Y, Huang A, Huang C, Liu J, Wang B, Lin
K, Chen Q, Zeng Y, Chen H, Tao X, et al: Comparative mitochondrial
proteomic analysis of hepatocellular carcinoma from patients.
Proteomics Clin Appl. 7:403–415. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wu WY, Wang ZX, Li TS, Ding XQ, Liu ZH,
Yang J, Fang L and Kong LD: SSBP1 drives high fructose-induced
glomerular podocyte ferroptosis via activating DNA-PK/p53 pathway.
Redox Biol. 52:1023032022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jurisic V, Bogdanovic G, Srdic T, Jakimov
D, Mrdjanovic J, Baltic M and Baltic VV: Modulation of TNF-alpha
activity in tumor PC cells using anti-CD45 and anti-CD95 monoclonal
antibodies. Cancer Lett. 214:55–61. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tang D, Kang R, Berghe TV, Vandenabeele P
and Kroemer G: The molecular machinery of regulated cell death.
Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li D, Wang Y, Dong C, Chen T, Dong A, Ren
J, Li W, Shu G, Yang J, Shen W, et al: CST1 inhibits ferroptosis
and promotes gastric cancer metastasis by regulating GPX4 protein
stability via OTUB1. Oncogene. 42:83–98. 2023. View Article : Google Scholar :
|
|
64
|
Li H, Yu K, Hu H, Zhang X, Zeng S, Li J,
Dong X, Deng X, Zhang J and Zhang Y: METTL17 coordinates
ferroptosis and tumorigenesis by regulating mitochondrial
translation in colorectal cancer. Redox Biol. 71:1030872024.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yuan S, Xi S, Weng H, Guo MM, Zhang JH, Yu
ZP, Zhang H, Yu Z, Xing Z, Liu MY, et al: YTHDC1 as a tumor
progression suppressor through modulating FSP1-dependent
ferroptosis suppression in lung cancer. Cell Death Differ.
30:2477–2490. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lachaier E, Louandre C, Godin C, Saidak Z,
Baert M, Diouf M, Chauffert B and Galmiche A: Sorafenib induces
ferroptosis in human cancer cell lines originating from different
solid tumors. Anticancer Res. 34:6417–6422. 2014.PubMed/NCBI
|
|
67
|
Li Y, Xia J, Shao F, Zhou Y, Yu J, Wu H,
Du J and Ren X: Sorafenib induces mitochondrial dysfunction and
exhibits synergistic effect with cysteine depletion by promoting
HCC cells ferroptosis. Biochem Biophys Res Commun. 534:877–884.
2021. View Article : Google Scholar
|
|
68
|
Louandre C, Marcq I, Bouhlal H, Lachaier
E, Godin C, Saidak Z, Francois C, Chatelain D, Debuysscher V,
Barbare JC, et al: The retinoblastoma (Rb) protein regulates
ferroptosis induced by sorafenib in human hepatocellular carcinoma
cells. Cancer Lett. 356:971–977. 2015. View Article : Google Scholar
|
|
69
|
Guo M, Chen S, Sun J, Xu R, Qi Z, Li J,
Zhou L, Fang Y, Liu T and Xia J: PIP5K1A suppresses ferroptosis and
induces sorafenib resistance by stabilizing NRF2 in hepatocellular
carcinoma. Adv Sci (Weinh). e043722025. View Article : Google Scholar : Epub ahead of
print. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhao X, Yu M, Zhao Y, Zheng Y, Meng L, Du
K, Xie Z, Lv H, Zhang W, Liu J, et al: Circulating cell-free mtDNA
release is associated with the activation of cGAS-STING pathway and
inflammation in mitochondrial diseases. J Neurol. 269:4985–4996.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tan K, Fujimoto M, Takii R, Takaki E,
Hayashida N and Nakai A: Mitochondrial SSBP1 protects cells from
proteotoxic stresses by potentiating stress-induced HSF1
transcriptional activity. Nat Commun. 6:65802015. View Article : Google Scholar : PubMed/NCBI
|