|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI
|
|
2
|
Siegel DA, O'Neil ME, Richards TB, Dowling
NF and Weir HK: Prostate cancer incidence and survival, by stage
and race/ethnicity - United States, 2001-2017. MMWR Morb Mortal
Wkly Rep. 69:1473–1480. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhang Z, Garzotto M, Davis EW II, Mori M,
Stoller WA, Farris PE, Wong CP, Beaver LM, Thomas GV, Williams DE,
et al: Sulforaphane bioavailability and chemopreventive activity in
men presenting for biopsy of the prostate gland: A Randomized
controlled trial. Nutr Cancer. 72:74–87. 2020. View Article : Google Scholar
|
|
4
|
Tilki D, van den Bergh RCN, Briers E, Van
den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer G,
De Santis M, Farolfi A, et al: EAU-EANM-ESTRO-ESUR-ISUP-SIOG
guidelines on prostate cancer. Part II-2024 update: Treatment of
relapsing and metastatic prostate cancer. Eur Urol. 86:164–182.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cornford P, van den Bergh RCN, Briers E,
Van den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer
G, De Santis M, Farolfi A, et al: EAU-EANM-ESTRO-ESUR-ISUP-SIOG
guidelines on prostate cancer-2024 update. Part I: Screening,
diagnosis, and local treatment with curative intent. Eur Urol.
86:148–163. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gillessen S, Bossi A, Davis ID, de Bono J,
Fizazi K, James ND, Mottet N, Shore N, Small E, Smith M, et al:
Management of patients with advanced prostate cancer. Part I:
Intermediate-/high-risk and locally advanced disease, biochemical
relapse, and side effects of hormonal treatment: Report of the
advanced prostate cancer consensus conference 2022. Eur Urol.
83:267–293. 2023. View Article : Google Scholar :
|
|
7
|
Sandhu S, Moore CM, Chiong E, Beltran H,
Bristow RG and Williams SG: Prostate cancer. Lancet. 398:1075–1090.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Halliwell B and Gutteridge JM: Oxygen
toxicity, oxygen radicals, transition metals and disease. Biochem
J. 219:1–14. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon
M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R,
Spangler RD, et al: Copper induces cell death by targeting
lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Francque SM, Marchesini G, Kautz A,
Walmsley M, Dorner R, Lazarus JV, Zelber-Sagi S, Hallsworth K,
Busetto L, Frühbeck G, et al: Non-alcoholic fatty liver disease: A
patient guideline. JHEP Rep. 3:1003222021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mason KE: A conspectus of research on
copper metabolism and requirements of man. J Nutr. 109:1979–2066.
1979. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dancis A, Roman DG, Anderson GJ,
Hinnebusch AG and Klausner RD: Ferric reductase of Saccharomyces
cerevisiae: molecular characterization, role in iron uptake, and
transcriptional control by iron. Proc Natl Acad Sci USA.
89:3869–3873. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Georgatsou E, Mavrogiannis LA, Fragiadakis
GS and Alexandraki D: The yeast Fre1p/Fre2p cupric reductases
facilitate copper uptake and are regulated by the copper-modulated
Mac1p activator. J Biol Chem. 272:13786–13792. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Guan D, Zhao L, Shi X, Ma X and Chen Z:
Copper in cancer: From pathogenesis to therapy. Biomed
Pharmacother. 163:1147912023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Boyd SD, Ullrich MS, Skopp A and Winkler
DD: Copper sources for Sod1 activation. Antioxidants (Basel).
9:5002020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Luza SC and Speisky HC: Liver copper
storage and transport during development: Implications for
cytotoxicity. Am J Clin Nutr. 63:812S–820S. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pufahl RA, Singer CP, Peariso KL, Lin SJ,
Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE and O'Halloran
TV: Metal ion chaperone function of the soluble Cu(I) receptor
Atx1. Science. 278:853–856. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Heaton DN, George GN, Garrison G and Winge
DR: The mitochondrial copper metallochaperone Cox17 exists as an
oligomeric, polycopper complex. Biochemistry. 40:743–751. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gromadzka G, Tarnacka B, Flaga A and
Adamczyk A: Copper dyshomeostasis in neurodegenerative
diseases-therapeutic implications. Int J Mol Sci. 21:92592020.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
La Fontaine S and Mercer JFB: Trafficking
of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis.
Arch Biochem Biophys. 463:149–167. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lutsenko S, LeShane ES and Shinde U:
Biochemical basis of regulation of human copper-transporting
ATPases. Arch Biochem Biophys. 463:134–148. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lutsenko S, Bhattacharjee A and Hubbard
AL: Copper handling machinery of the brain. Metallomics. 2:596–608.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lutsenko S: Copper trafficking to the
secretory pathway. Metallomics. 8:84–852. 2016. View Article : Google Scholar
|
|
24
|
Csiszar K: Lysyl oxidases: A novel
multifunctional amine oxidase family. Prog Nucleic Acid Res Mol
Biol. 70:1–32. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pierson H, Yang H and Lutsenko S: Copper
transport and disease: What can we learn from organoids? Annu Rev
Nutr. 39:75–94. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen L, Min J and Wang F: Copper
homeostasis and cuproptosis in health and disease. Signal Transduct
Tar. 7:3782022. View Article : Google Scholar
|
|
27
|
Gaetke LM and Chow CK: Copper toxicity,
oxidative stress, and antioxidant nutrients. Toxicology.
189:147–163. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang Z, Jin D, Zhou S, Dong N, Ji Y, An P,
Wang J, Luo Y and Luo J: Regulatory roles of copper metabolism and
cuproptosis in human cancers. Front Oncol. 13:11234202023.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tang D, Chen X and Kroemer G: Cuproptosis:
A copper-triggered modality of mitochondrial cell death. Cell Res.
32:417–418. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sun L, Zhang Y, Yang B, Sun S, Zhang P,
Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16
promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric
cancer. Nat Commun. 14:65232023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xie J, Yang Y, Gao Y and He J:
Cuproptosis: Mechanisms and links with cancers. Mol Cancer.
22:462023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Feng Q, Huo C, Wang M, Huang H, Zheng X
and Xie M: Research progress on cuproptosis in cancer. Front
Pharmacol. 15:12905922024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu WQ, Lin WR, Yan L, Xu WH and Yang J:
Copper homeostasis and cuproptosis in cancer immunity and therapy.
Immunol Rev. 321:211–227. 2024. View Article : Google Scholar
|
|
34
|
Nowell CS and Radtke F: Notch as a tumour
suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xie F and Peng F: Reduction in copper
uptake and inhibition of prostate cancer cell proliferation by
novel steroid-based compounds. Anticancer Res. 41:5953–5958. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Si M and Lang J: The roles of
metallothioneins in carcinogenesis. J Hematol Oncol. 11:1072018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Baldari S, Di Rocco G and Toietta G:
Current biomedical use of copper chelation therapy. Int J Mol Sci.
21:10692020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ilyechova EY, Bonaldi E, Orlov IA,
Skomorokhova EA, Puchkova LV and Broggini M: CRISP-R/Cas9 mediated
deletion of copper transport genes CTR1 and DMT1 in NSCLC cell line
H1299. Biological and pharmacological consequences. Cells.
8:3222019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shao S, Si J and Shen Y: Copper as the
target for anticancer nanomedicine. Adv Ther. 2:2019, https://doi.org/10.1002/adtp.201800147.
|
|
40
|
Li Y: Copper homeostasis: Emerging target
for cancer treatment. IUBMB Life. 72:1900–1908. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lelièvre P, Sancey L, Coll JL, Deniaud A
and Busser B: The multifaceted roles of copper in cancer: A trace
metal element with dysregulated metabolism, but also a target or a
bullet for therapy. Cancers (Basel). 12:35942020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li S, Zhang J, Yang H, Wu C, Dang X and
Liu Y: Copper depletion inhibits CoCl2-induced aggressive phenotype
of MCF-7 cells via downregulation of HIF-1 and inhibition of
Snail/Twist-mediated epithelial-mesenchymal transition. Sci Rep.
5:124102015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gao X, Zhao H, Liu J, Wang M, Dai Z, Hao
W, Wang Y, Wang X, Zhang M, Liu P, et al: Enzalutamide sensitizes
castration-resistant prostate cancer to copper-mediated cell death.
Adv Sci (Weinh). 11:e24013962024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman
JS, Wang Y, Wang J, Chen J, Li Y and Wang H: Cuproptosis: A novel
therapeutic target for overcoming cancer drug resistance. Drug
Resist Update. 72:1010182024. View Article : Google Scholar
|
|
45
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross
JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, et al:
Connecting copper and cancer: From transition metal signalling to
metalloplasia. Nat Rev Cancer. 22:102–113. 2022. View Article : Google Scholar :
|
|
46
|
Stanislawska IJ, Figat R, Kiss AK and
Bobrowska-Korczak B: Essential elements and isoflavonoids in the
prevention of prostate cancer. Nutrients. 14:12252022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cater MA and Haupt Y: Clioquinol induces
cytoplasmic clearance of the X-linked inhibitor of apoptosis
protein (XIAP): Therapeutic indication for prostate cancer. Biochem
J. 436:481–491. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen D, Cui QC, Yang H, Barrea RA, Sarkar
FH, Sheng S, Yan B, Reddy GP and Dou QP: Clioquinol, a therapeutic
agent for Alzheimer's disease, has proteasome-inhibitory, androgen
receptor-suppressing, apoptosis-inducing, and antitumor activities
in human prostate cancer cells and xenografts. Cancer Res.
67:1636–1644. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Safi R, Nelson ER, Chitneni SK, Franz KJ,
George DJ, Zalutsky MR and McDonnell DP: Copper signaling axis as a
target for prostate cancer therapeutics. Cancer Res. 74:5819–5831.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cai H, Wu JS, Muzik O, Hsieh JT, Lee RJ
and Peng F: Reduced 64Cu uptake and tumor growth inhibition by
knockdown of human copper transporter 1 in xenograft mouse model of
prostate cancer. J Nucl Med. 55:622–628. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Saleh SAK, Adly HM, Abdelkhaliq AA and
Nassir AM: Serum levels of selenium, zinc, copper, manganese, and
iron in prostate cancer patients. Curr Urol. 14:44–49. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kaba M, Pirincci N, Yuksel MB, Gecit I,
Gunes M, Ozveren H, Eren H and Demir H: Serum levels of trace
elements in patients with prostate cancer. Asian Pac J Cancer Prev.
15:2625–2629. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ozmen H, Erulas FA, Karatas F, Cukurovali
A and Yalcin O: Comparison of the concentration of trace metals
(Ni, Zn, Co, Cu and Se), Fe, vitamins A, C and E, and lipid
peroxidation in patients with prostate cancer. Clin Chem Lab Med.
44:175–179. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wu J, He J, Liu Z, Zhu X, Li Z, Chen A and
Lu J: Cuproptosis: Mechanism, role, and advances in urological
malignancies. Med Res Rev. 44:1662–1682. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Baszuk P, Marciniak W, Derkacz R,
Jakubowska A, Cybulski C, Gronwald J, Dębniak T, Huzarski T,
Białkowska K, Pietrzak S, et al: Blood copper levels and the
occurrence of colorectal cancer in Poland. Biomedicines.
9:16282021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Baltaci AK, Dundar TK, Aksoy F and
Mogulkoc R: Changes in the serum levels of trace elements before
and after the operation in thyroid cancer patients. Biol Trace Elem
Res. 175:57–64. 2017. View Article : Google Scholar
|
|
57
|
Jin Y, Zhang C, Xu H, Xue S, Wang Y, Hou
Y, Kong Y and Xu Y: Combined effects of serum trace metals and
polymorphisms of CYP1A1 or GSTM1 on non-small cell lung cancer: A
hospital based case-control study in China. Cancer Epidemiol.
35:182–187. 2011. View Article : Google Scholar
|
|
58
|
Aubert L, Nandagopal N, Steinhart Z,
Lavoie G, Nourreddine S, Berman J, Saba-El-Leil MK, Papadopoli D,
Lin S, Hart T, et al: Copper bioavailability is a KRAS-specific
vulnerability in colorectal cancer. Nat Commun. 11:37012020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lener MR, Scott RJ, Wiechowska-Kozlowska
A, Serrano-Fernández P, Baszuk P, Jaworska-Bieniek K, Sukiennicki
G, Marciniak W, Muszyńska M, Kładny J, et al: Serum concentrations
of selenium and copper in patients diagnosed with pancreatic
cancer. Cancer Res Treat. 48:1056–1064. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pavithra V, Sathisha TG, Kasturi K,
Mallika DS, Amos SJ and Ragunatha S: Serum levels of metal ions in
female patients with breast cancer. J Clin Diagn Res. 9:BC25–BC27.
2015.PubMed/NCBI
|
|
61
|
Yang L, Zhang Y, Wang Y, Jiang P, Liu F
and Feng N: Ferredoxin 1 is a cuproptosis-key gene responsible for
tumor immunity and drug sensitivity: A pan-cancer analysis. Front
Pharmacol. 13:9381342022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yang L, Tang Y, Zhang Y, Wang Y, Jiang P,
Liu F and Feng N: Comprehensiveness cuproptosis related genes study
for prognosis and medication sensitiveness across cancers, and
validation in prostate cancer. Sci Rep. 14:95702024. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang Q, Zeng S and Liu W: Roles of
cuproptosis-related gene DLAT in various cancers: A bioinformatic
analysis and preliminary verification on pro-survival autophagy.
PeerJ. 11:e150192023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li C, Xiao Y, Cao H, Chen Y, Li S and Yin
F: Cuproptosis regulates microenvironment and affects prognosis in
prostate cancer. BIOL Trace Elem Res. 202:99–110. 2024. View Article : Google Scholar
|
|
65
|
Xiao S and Lou W: Integrated analysis
reveals a potential cuproptosis-related ceRNA axis
SNHG17/miR-29a-3p/GCSH in prostate adenocarcinoma. Heliyon.
9:e215062023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang D, Wang T, Zhou Y and Zhang X:
Comprehensive analyses of cuproptosis-related gene CDKN2A on
prognosis and immunologic therapy in human tumors. Medicine
(Baltimore). 102:e334682023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lin SC, Tsai YC, Chen YL, Lin HK, Huang
YC, Lin YS, Cheng YS, Chen HY, Li CJ, Lin TY and Lin SC:
Un-methylation of NUDT21 represses docosahexaenoic acid
biosynthesis contributing to enzalutamide resistance in prostate
cancer. Drug Resist Update. 77:1011442024. View Article : Google Scholar
|
|
68
|
Tang D, Kroemer G and Kang R: Targeting
cuproplasia and cuproptosis in cancer. Nat Rev Clin Oncol.
21:370–388. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Di Meo S, Reed TT, Venditti P and Victor
VM: Role of ROS and RNS sources in physiological and pathological
conditions. Oxid Med Cell Longev. 2016:12450492016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Han C, Wang Z, Xu Y, Chen S, Han Y, Li L,
Wang M and Jin X: Roles of reactive oxygen species in biological
behaviors of prostate cancer. Biomed Res Int. 2020:12696242020.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu Y, Chen A, Wu Y, Ni J, Wang R, Mao Y,
Sun N and Mi Y: Identification of mitochondrial carrier homolog 2
as an important therapeutic target of castration-resistant prostate
cancer. Cell Death Dis. 16:702025. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Khandrika L, Kumar B, Koul S, Maroni P and
Koul HK: Oxidative stress in prostate cancer. Cancer Lett.
282:125–136. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Baohai X, Shi F and Yongqi F: Inhibition
of ubiquitin specific protease 17 restrains prostate cancer
proliferation by regulation of epithelial-to-mesenchymal transition
(EMT) via ROS production. Biomed Pharmacother. 118:1089462019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lee W, Kim KY, Yu SN, Kim SH, Chun SS, Ji
JH, Yu HS and Ahn SC: Pipernonaline from Piper longum Linn. induces
ROS-mediated apoptosis in human prostate cancer PC-3 cells. Biochem
Biophys Res Commun. 430:406–412. 2013. View Article : Google Scholar
|
|
75
|
Kim SH, Kim KY, Yu SN, Park SG, Yu HS, Seo
YK and Ahn SC: Monensin induces PC-3 prostate cancer cell apoptosis
via ROS production and Ca2+ homeostasis disruption. Anticancer Res.
36:5835–5843. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Farhan M, El Oirdi M, Aatif M, Nahvi I,
Muteeb G and Alam MW: Soy isoflavones induce cell death by
copper-mediated mechanism: Understanding its anticancer properties.
Molecules. 28:29252023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Alhasawi M, Aatif M, Muteeb G, Alam MW,
Oirdi ME and Farhan M: Curcumin and its derivatives induce
apoptosis in human cancer cells by mobilizing and redox cycling
genomic copper ions. Molecules. 27:74102022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Farhan M, Rizvi A, Ali F, Ahmad A, Aatif
M, Malik A, Alam MW, Muteeb G, Ahmad S, Noor A and Siddiqui FA:
Pomegranate juice anthocyanidins induce cell death in human cancer
cells by mobilizing intracellular copper ions and producing
reactive oxygen species. Front Oncol. 12:9983462022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Denoyer D, Pearson HB, Clatworthy SA,
Smith ZM, Francis PS, Llanos RM, Volitakis I, Phillips WA, Meggyesy
PM, Masaldan S and Cater MA: Copper as a target for prostate cancer
therapeutics: copper-ionophore pharmacology and altering systemic
copper distribution. Oncotarget. 7:37064–37080. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Song L, Nguyen V, Xie J, Jia S, Chang CJ,
Uchio E and Zi X: ATPase copper transporting beta (ATP7B) is a
novel target for improving the therapeutic efficacy of docetaxel by
disulfiram/copper in human prostate cancer. Mol Cancer Ther.
23:854–863. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Vo T, Peng TY, Nguyen TH, Bui TNH, Wang
CS, Lee WJ, Chen YL, Wu YC and Lee IT: The crosstalk between
copper-induced oxidative stress and cuproptosis: A novel potential
anticancer paradigm. Cell Commun Signal. 22:3532024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Onuma T, Mizutani T, Fujita Y, Yamada S
and Yoshida Y: Copper content in ascitic fluid is associated with
angiogenesis and progression in ovarian cancer. J Trace Elem Med
Biol. 68:1268652021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Oliveri V: Selective targeting of cancer
cells by copper ionophores: An overview. Front Mol Biosci.
9:8418142022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Melegh Z and Oltean S: Targeting
angiogenesis in prostate cancer. Int J Mol Sci. 20:26762019.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ioannidou E, Moschetta M, Shah S, Parker
JS, Ozturk MA, Pappas-Gogos G, Sheriff M, Rassy E and Boussios S:
Angiogenesis and anti-angiogenic treatment in prostate cancer:
mechanisms of action and molecular targets. Int J Mol Sci.
22:99262021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fang J, Ding M, Yang L, Liu LZ and Jiang
BH: PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis.
Cell Signal. 19:2487–2497. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Marin-Aguilera M, Pereira MV, Jimenez N,
Reig Ò, Cuartero A, Victoria I, Aversa C, Ferrer-Mileo L, Prat A
and Mellado B: Glutamine and cholesterol plasma levels and clinical
outcomes of patients with metastatic castration-resistant prostate
cancer treated with taxanes. Cancers (Basel). 13:49602021.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song
B, Cheng L, Masterson TA, Liu X, Ratliff TL and Cheng JX:
Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT
activation underlies human prostate cancer aggressiveness. Cell
Metab. 19:393–406. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lee HJ, Li J, Vickman RE, Li J, Liu R,
Durkes AC, Elzey BD, Yue S, Liu X, Ratliff TL and Cheng JX:
Cholesterol esterification inhibition suppresses prostate cancer
metastasis by impairing the wnt/β-catenin pathway. Mol Cancer Res.
16:974–985. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu YT, Chen L, Li SJ, Wang WY, Wang YY,
Yang QC, Song A, Zhang MJ, Mo WT, Li H, et al: Dysregulated
Wnt/β-catenin signaling confers resistance to cuproptosis in cancer
cells. Cell Death Differ. 31:1452–1466. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Song X, Wang W, Li Z and Zhang D:
Association between serum copper and serum lipids in adults. Ann
Nutr Metab. 73:282–289. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pan YX, Zhuo MQ, Li DD, Xu YH, Wu K and
Luo Z: SREBP-1 and LXRα pathways mediated Cu-induced hepatic lipid
metabolism in zebrafish Danio rerio. Chemosphere. 215:370–379.
2019. View Article : Google Scholar
|
|
93
|
Xu YC, Xu YH, Zhao T, Wu LX, Yang SB and
Luo Z: Waterborne Cu exposure increased lipid deposition and
lipogenesis by affecting Wnt/β-catenin pathway and the beta-catenin
acetylation levels of grass carp Ctenopharyngodon idella. Environ
Pollut. 263(Pt B): 1144202020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yang L, Yang P, Lip GYH and Ren J: Copper
homeostasis and cuproptosis in cardiovascular disease therapeutics.
Trends Pharmacol Sci. 44:573–585. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wen H, Qu C, Wang Z, Gao H, Liu W, Wang H,
Sun H, Gu J, Yang Z and Wang X: Cuproptosis enhances docetaxel
chemosensitivity by inhibiting autophagy via the DLAT/mTOR pathway
in prostate cancer. FASEB J. 37:e231452023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang H, Chen D, Ringler J, Chen W, Cui
QC, Ethier SP, Dou QP and Wu G: Disulfiram treatment facilitates
phosphoinositide 3-kinase inhibition in human breast cancer cells
in vitro and in vivo. Cancer Res. 70:3996–4004. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bergez-Hernandez F, Irigoyen-Arredondo M
and Martinez-Camberos A: A systematic review of mechanisms of PTEN
gene down-regulation mediated by miRNA in prostate cancer. Heliyon.
10:e349502024. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Marques RB, Aghai A, de Ridder CMA,
Stuurman D, Hoeben S, Boer A, Ellston RP, Barry ST, Davies BR,
Trapman J and van Weerden WM: High efficacy of combination therapy
using PI3K/AKT inhibitors with androgen deprivation in prostate
cancer preclinical models. Eur Urol. 67:1177–1185. 2015. View Article : Google Scholar
|
|
99
|
Lin J, Haffner MC, Zhang Y, Lee BH,
Brennen WN, Britton J, Kachhap SK, Shim JS, Liu JO, Nelson WG, et
al: Disulfiram is a DNA demethylating agent and inhibits prostate
cancer cell growth. Prostate. 71:333–343. 2011. View Article : Google Scholar :
|
|
100
|
Iljin K, Ketola K, Vainio P, Halonen P,
Kohonen P, Fey V, Grafström RC, Perälä M and Kallioniemi O:
High-throughput cell-based screening of 4910 known drugs and
drug-like small molecules identifies disulfiram as an inhibitor of
prostate cancer cell growth. Clin Cancer Res. 15:6070–6078. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tesson M, Rae C, Nixon C, Babich JW and
Mairs RJ: Preliminary evaluation of prostate-targeted radiotherapy
using 131I-MIP-1095 in combination with radiosensitising
chemotherapeutic drugs. J Pharm Pharmacol. 68:912–921. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Castoldi F, Hyvonen MT, Durand S,
Aprahamian F, Sauvat A, Malik SA, Baracco EE, Vacchelli E, Opolon
P, Signolle N, et al: Chemical activation of SAT1 corrects
diet-induced metabolic syndrome. Cell Death Differ. 27:2904–2920.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Vetrik M, Mattova J, Mackova H, Kucka J,
Pouckova P, Kukackova O, Brus J, Eigner-Henke S, Sedlacek O, Sefc
L, et al: Biopolymer strategy for the treatment of Wilson's
disease. J Control Release. 273:131–138. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mao L, Huang CH, Shao J, Qin L, Xu D, Shao
B and Zhu BZ: An unexpected antioxidant and redox activity for the
classic copper-chelating drug penicillamine. Free Radic Biol Med.
147:150–158. 2020. View Article : Google Scholar
|
|
105
|
Kenney GE and Rosenzweig AC: Chemistry and
biology of the copper chelator methanobactin. ACS Chem Biol.
7:260–268. 2012. View Article : Google Scholar :
|
|
106
|
Lenartowicz M, Moos T, Ogorek M, Jensen TG
and Moller LB: Metal-dependent regulation of ATP7A and ATP7B in
fibroblast cultures. Front Mol Neurosci. 9:682016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lee K, Briehl MM, Mazar AP,
Batinic-Haberle I, Reboucas JS, Glinsmann-Gibson B, Rimsza LM and
Tome ME: The copper chelator ATN-224 induces
peroxynitrite-dependent cell death in hematological malignancies.
Free Radic Biol Med. 60:157–167. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bakthavatsalam S, Sleeper ML, Dharani A,
George DJ, Zhang T and Franz KJ: Leveraging γ-Glutamyl transferase
to direct cytotoxicity of copper dithiocarbamates against prostate
cancer cells. Angew Chem Int Ed Engl. 57:12780–12784. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wei C and Fu Q: Cell death mediated by
nanotechnology via the cuproptosis pathway: A novel horizon for
cancer therapy. VIEW-CHINA. 4:202300012023. View Article : Google Scholar
|
|
110
|
Xie W, Zhang Y, Xu Q, Zhong G, Lin J, He
H, Du Q, Tan H, Chen M, Wu Z, et al: A Unique approach: biomimetic
graphdiyne-based nanoplatform to treat prostate cancer by combining
cuproptosis and enhanced chemodynamic therapy. Int J Nanomedicine.
19:3957–3972. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wang Y, Yang QW, Yang Q, Zhou T, Shi MF,
Sun CX, Gao XX, Cheng YQ, Cui XG and Sun YH: Cuprous oxide
nanoparticles inhibit prostate cancer by attenuating the stemness
of cancer cells via inhibition of the Wnt signaling pathway. Int J
Nanomedicine. 12:2569–2579. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chen W, Yang W, Chen P, Huang Y and Li F:
Disulfiram copper nanoparticles prepared with a stabilized metal
ion ligand complex method for treating drug-resistant prostate
cancers. ACS Appl Mater Interfaces. 10:41118–41128. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wang Y, Zeng S, Lin TM, Krugner-Higby L,
Lyman D, Steffen D and Xiong MP: Evaluating the anticancer
properties of liposomal copper in a nude xenograft mouse model of
human prostate cancer: Formulation, in vitro, in vivo, histology
and tissue distribution studies. Pharm Res. 31:3106–3119. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhao Y, Wang R, Hu C, Wang Y, Li Z, Yin D
and Tan S: Complanatoside A disrupts copper homeostasis and induces
cuproptosis via directly targeting ATOX1 in prostate cancer.
Toxicol Appl Pharmacol. 496:1172572025. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhou G, Chen C, Wu H, Lin J, Liu H, Tao Y
and Huang B: LncRNA AP000842.3 triggers the malignant progression
of prostate cancer by regulating cuproptosis related gene NFAT5.
Technol Cancer Res Treat. 23:153303382412555852024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Farhan M: Cytotoxic activity of the red
grape polyphenol resveratrol against human prostate cancer cells: A
molecular mechanism mediated by mobilization of nuclear copper and
generation of reactive oxygen species. Life (Basel).
14:6112024.PubMed/NCBI
|
|
117
|
Wang X, Chen X, Xu C, Zhou W and Wu D:
Identification of cuproptosis-related genes for predicting the
development of prostate cancer. Open Med (Wars). 18:202307172023.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Cheng B, Tang C, Xie J, Zhou Q, Luo T,
Wang Q and Huang H: Cuproptosis illustrates tumor micro-environment
features and predicts prostate cancer therapeutic sensitivity and
prognosis. Life Sci. 325:1216592023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Jin L, Mei W, Liu X, Sun X, Xin S, Zhou Z,
Zhang J, Zhang B, Chen P, Cai M and Ye L: Identification of
cuproptosis-related subtypes, the development of a prognosis model,
and characterization of tumor microenvironment infiltration in
prostate cancer. Front Immunol. 13:9740342022. View Article : Google Scholar
|
|
120
|
Wang H, Xie M, Zhao Y and Zhang Y:
Establishment of a prognostic risk model for prostate cancer based
on Gleason grading and cuprotosis related genes. J Cancer Res Clin
Oncol. 150:3762024. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yao K, Zhang R, Li L, Liu M, Feng S, Yan
H, Zhang Z and Xie D: The signature of cuproptosis-related immune
genes predicts the tumor microenvironment and prognosis of prostate
adenocarcinoma. Front Immunol. 14:11813702023. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhang J, Jiang S, Gu D, Zhang W, Shen X,
Qu M, Yang C, Wang Y and Gao X: Identification of novel molecular
subtypes and a signature to predict prognosis and therapeutic
response based on cuproptosis-related genes in prostate cancer.
Front Oncol. 13:11626532023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ma S, Xu M, Zhang J, Li T, Zhou Q, Xi Z,
Wang Z, Wang J and Ge Y: Analysis and functional validations of
multiple cell death patterns for prognosis in prostate cancer. Int
Immunopharmacol. 143(Pt 1): 1132162024. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Cheng X, Zeng Z, Yang H, Chen Y, Liu Y,
Zhou X, Zhang C and Wang G: Novel cuproptosis-related long
non-coding RNA signature to predict prognosis in prostate
carcinoma. BMC Cancer. 23:1052023. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ma Z, Liang H, Cui R, Ji J, Liu H, Liu X,
Shen P, Wang H, Wang X, Song Z and Jiang Y: Construction of a risk
model and prediction of prognosis and immunotherapy based on
cuproptosis-related LncRNAs in the urinary system pan-cancer. Eur J
Med Res. 28:1982023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Jiang S, Li Z, Dou R, Lin Z, Zhang J,
Zhang W, Chen Z, Shen X, Ji J, Qu M, et al: Construction and
validation of a novel cuproptosis-related long noncoding RNA
signature for predicting the outcome of prostate cancer. Front
Genet. 13:9768502022. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhong H, Lai Y, Ouyang W, Yu Y, Wu Y, He
X, Zeng L, Qiu X, Chen P, Li L, et al: Integrative analysis of
cuproptosis-related lncRNAs: Unveiling prognostic significance,
immune microenvironment, and copper-induced mechanisms in prostate
cancer. Cancer Pathog Ther. 3:48–59. 2024. View Article : Google Scholar
|
|
128
|
Ren L, Yang X, Wang W, Lin H, Huang G, Liu
Z, Pan J and Mao X: A cuproptosis-related LncRNA signature:
Integrated analysis associated with biochemical recurrence and
immune landscape in prostate cancer. Front Genet. 14:10967832023.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Yu Z, Deng H, Chao H, Song Z and Zeng T:
Construction of a cuproptosis-related lncRNA signature to predict
biochemical recurrence of prostate cancer. Oncol Lett. 28:5262024.
View Article : Google Scholar
|
|
130
|
Lu Y, Wu J, Li X, Leng Q, Tan J, Huang H,
Zhong R, Chen Z and Zhang Y: Cuproptosis-related lncRNAs emerge as
a novel signature for predicting prognosis in prostate carcinoma
and functional experimental validation. Front Immunol.
15:14711982024. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Nyvltova E, Dietz JV, Seravalli J,
Khalimonchuk O and Barrientos A: Coordination of metal center
biogenesis in human cytochrome c oxidase. Nat Commun. 13:36152022.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J
and Chen X: Copper metabolism in cell death and autophagy.
Autophagy. 19:2175–2195. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Abramson J, Adler J, Dunger J, Evans R,
Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick
J, et al: Accurate structure prediction of biomolecular
interactions with AlphaFold 3. Nature. 630:493–500. 2024.
View Article : Google Scholar : PubMed/NCBI
|