Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2025 Volume 67 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 67 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review)

  • Authors:
    • Yongqiang Yang
    • Zi Wang
    • Lian Weng
    • Jun Fei
    • Zhong Li
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Orthopaedics, Longmatan District People's Hospital, Luzhou, Sichuan 646600, P.R. China, Emergency Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 93
    |
    Published online on: September 9, 2025
       https://doi.org/10.3892/ijo.2025.5799
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancers are not merely composed of tumor cells; rather, they constitute a complex tumor microenvironment (TME) comprising diverse cell types and noncellular factors. Extracellular matrix (ECM) represents a critical component of the TME. Fibulin2 participates in ECM formation in various tumors, and its altered expression in multiple malignancies can affect tumor cell proliferation and invasiveness. Additionally, Fibulin2 has emerged as a potential biomarker in various cancer types and serves a pivotal role in tumor progression. Consequently, therapeutic strategies targeting Fibulin2 hold considerable promise. However, the research and development of Fibulin2‑targeted therapeutics has progressed at a relatively slow pace. Therefore, the roles and mechanisms of Fibulin2 in various malignancies, along with investigations into its utility as a biomarker, are comprehensively discussed in the present review. This may provide valuable guidance for the clinical translation and application of Fibulin2‑targeted therapies, and the utilization of Fibulin2 as a predictive biomarker.
View Figures

Figure 1

Distribution of Fbln2 mRNA in
(A) human and (B) mouse tissues. RNA-sequencing data from the
National Center for Biotechnology Information were employed for the
generation of these figures. Data sources for human and mouse:
https://www.ncbi.nlm.nih.gov/gene/2199 and https://www.ncbi.nlm.nih.gov/gene/14115. E, embryo;
CNS, central nervous system; RPKM, reads per kilobase per million
mapped reads.

Figure 2

Protein structure of human Fibulin2
and mouse Fibulin2. (A) Diagram of the protein domains of human
Fibulin2 starting with the S, Na and Nb subdomains, followed by
domain I, II and III. Diamonds indicate anaphylatoxin-like motifs
in domain Ⅰ. Solid circles represent EGF-like repeats, while those
depicted as hollow rounds contain the consensus sequence for
calcium binding. (B) Diagram of the protein domains of mouse
Fibulin2 showing that the Fibulin2 protein comprises S, Na, Nb, I,
II and III domains. At the N-terminus are domains Na and Nb, which
span 408 amino acids, and include the 'Na' subdomain containing 22
cysteines and the 'Nb' subdomain devoid of cysteine. Domain I
consists of three anaphylatoxin-like motifs. Domain II encompasses
11 EGF-like repeats, all of which except IIa possess a consensus
sequence for calcium binding. Domain I is connected via a
50-amino-acid linker segment to the first EGF module (IIx) of
domain II, which is followed by another 34-amino-acid linker
segment and then 10 EGF modules. Domain III is depicted as a light
green box. Na, N-terminal cysteine-rich; Nb, N-terminal
cysteine-free; S, signal peptide.

Figure 3

Structure of human Fbln2
transcripts. The figure shows the CDS, 18 exons, the positions of
poly(A) signals and sites, and distinct domains. CDS, coding
sequence; sig, signal peptide. The diagram was generated by the
software UGENE 36.0 (http://ugene.net/ugene/).

Figure 4

Mechanistic roles of Fibulin2 in
various tumors. The yellow circle denotes the phospholipid bilayer,
and the small blue circle inside represents the nucleus. Solid
lines indicate an interaction or co-action relationship between
molecules. Arrow-headed lines represent a positive promoting
relationship between molecules, and red lines denote an inhibitory
relationship between molecules. Overexpression of Fbln2 in
gastric cancer cells results in diminished expression of β-catenin,
phosphorylated-Smad2 and TGIF2 in the TGF-β/Smad2/TGIF2 pathway. In
liver cancer cells, overexpression of Fbln2 activates the
Ras-MEK-ERK1/2 pathway. In nasopharyngeal carcinoma cells,
overexpression of Fbln2 leads to decreased expression of
VEGF-165, VEGF-189 and MMP-2. Overexpression
of ADAMTS-12 and Fibulin2 in breast cancer cells can inhibit tumor
development. Fibulin2 and Integrin β1 exhibit partial
colocalization near the cell membrane in non-small cell lung cancer
tissue sections. As secreted proteins, Fibulin2 and Nidogen1
collectively promote the development of CRC. The interaction
between MUC4 and Fibulin2 promotes the development of pancreatic
cancer. ADAMTS-5, ADAMTS-12 and Fibulin2 are secreted proteins. In
breast cancer, ADAMTS-5 cleaves Fibulin2, and this role can be
inhibited by ADAMTS-12. BioGDP.com was
used to generate figures (https://biogdp.com/?tg=CFXL). ADAMTS, a disintegrin
and metalloproteinase with thrombospondin motifs; MUC4, mucin 4;
TGIF2, TGFB induced factor homeobox 2.

Figure 5

Changes in the ECM activate
Integrin-mediated downstream signaling pathways. Integrin is a
membrane protein comprising α and β subunits. Extracellularly,
Integrin is influenced by the expression of ECM proteins.
Alterations in the expression of ECM proteins such as Fibulin2 may
activate Integrin-mediated downstream signaling pathways, such as
the Ras-MEK-ERK1/2 signaling pathway, thus affecting tumor cell
proliferation. ECM, extracellular matrix; FAK, focal adhesion
kinase; SFK, src family kinases.

Figure 6

Interaction between MUC4 and Fibulin2
prevents Fibulin2 from binding to NIDO, thereby disrupting the
integrity of the pancreatic tissue BM. In normal pancreatic
tissues, Fibulin2 and NIDO constitute integral components of the
BM, maintaining its integrity. Following malignant transformation
of pancreatic epithelial cells, MUC4 expression is markedly
upregulated. The MUC4 hinders the interaction between Fibulin2 and
NIDO by interacting with Fibulin2. This disrupts the integrity of
the BM and facilitates the invasion and extravasation of pancreatic
cancer cells. BioGDP.com was used to generate
figures (https://biogdp.com/?tg=CFXL). BM,
basement membrane; ECM, extracellular matrix; MUC4, mucin 4; NIDO,
G1 domain of Nidogen.

Figure 7

ADAMTS-12 blocks digestion of
Fibulin2 by ADAMTS-5. Tumor cells secrete ADAMTS-4 and ADAMTS-5,
which possess the capacity to cleave Fibulin2, especially ADAMTS-5,
facilitating cancer cell dissemination. ADAMTS-12 can interact with
Fibulin2 in breast cancer cells. This interaction impedes the
cleavage of Fibulin2 by ADAMTS-5, consequently inhibiting tumor
cell progression. BioGDP.com was used to generate
figures (https://biogdp.com/?tg=CFXL).
ADAMTS, a disintegrin and metalloproteinase with thrombospondin
motifs.
View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI

2 

Bray F, Laversanne M, Weiderpass E and Soerjomataram I: The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 127:3029–3030. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025.PubMed/NCBI

4 

Takakura D, Ohashi S, Kobayashi N, Tokuhisa M, Ichikawa Y and Kawasaki N: Targeted O-glycoproteomics for the development of diagnostic markers for advanced colorectal cancer. Front Oncol. 13:11049362023. View Article : Google Scholar : PubMed/NCBI

5 

Sofela AA, Hilton DA, Ammoun S, Baiz D, Adams CL, Ercolano E, Jenkinson MD, Kurian KM, Teo M, Whitfield PC, et al: Fibulin-2: A novel biomarker for differentiating grade II from grade I meningiomas. Int J Mol Sci. 22:5602021. View Article : Google Scholar : PubMed/NCBI

6 

Sofela AA, McGavin L, Whitfield PC and Hanemann CO: Biomarkers for differentiating grade II meningiomas from grade I: A systematic review. Br J Neurosurg. 35:696–702. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Ren T, Lin S, Wang Z and Shang A: Differential proteomics analysis of low- and high-grade of astrocytoma using iTRAQ quantification. Onco Targets Ther. 9:5883–5895. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Pan TC, Sasaki T, Zhang RZ, Fässler R, Timpl R and Chu ML: Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding. J Cell Biol. 123:1269–1277. 1993. View Article : Google Scholar : PubMed/NCBI

9 

Zhang H, Hui D and Fu X: Roles of Fibulin-2 in carcinogenesis. Med Sci Monit. 26:e9180992020.PubMed/NCBI

10 

Baird BN, Schliekelman MJ, Ahn YH, Chen Y, Roybal JD, Gill BJ, Mishra DK, Erez B, O'Reilly M, Yang Y, et al: Fibulin-2 is a driver of malignant progression in lung adenocarcinoma. PLoS One. 8:e670542013. View Article : Google Scholar : PubMed/NCBI

11 

Zhang RZ, Pan TC, Zhang ZY, Mattei MG, Timpl R and Chu ML: Fibulin-2 (FBLN2): Human cDNA sequence, mRNA expression, and mapping of the gene on human and mouse chromosomes. Genomics. 22:425–430. 1994. View Article : Google Scholar : PubMed/NCBI

12 

Brown JC, Sasaki T, Göhring W, Yamada Y and Timpl R: The C-terminal domain V of perlecan promotes beta1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur J Biochem. 250:39–46. 1997. View Article : Google Scholar

13 

Hopf M, Göhring W, Kohfeldt E, Yamada Y and Timpl R: Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. Eur J Biochem. 259:917–925. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Sasaki T, Göhring W, Mann K, Brakebusch C, Yamada Y, Fässler R and Timpl R: Short arm region of laminin-5 gamma2 chain: Structure, mechanism of processing and binding to heparin and proteins. J Mol Biol. 314:751–763. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Talts JF, Andac Z, Göhring W, Brancaccio A and Timpl R: Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. EMBO J. 18:863–870. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Sasaki T, Wiedemann H, Matzner M, Chu ML and Timpl R: Expression of fibulin-2 by fibroblasts and deposition with Fibronectin into a fibrillar matrix. J Cell Sci. 109(Pt 12): 2895–2904. 1996. View Article : Google Scholar : PubMed/NCBI

17 

Sasaki T, Fukai N, Mann K, Göhring W, Olsen BR and Timpl R: Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J. 17:4249–4256. 1998. View Article : Google Scholar : PubMed/NCBI

18 

Olin AI, Mörgelin M, Sasaki T, Timpl R, Heinegård D and Aspberg A: The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem. 276:1253–1261. 2001. View Article : Google Scholar

19 

Friedrich MV, Göhring W, Mörgelin M, Brancaccio A, David G and Timpl R: Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J Mol Biol. 294:259–270. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Utani A, Nomizu M and Yamada Y: Fibulin-2 binds to the short arms of laminin-5 and laminin-1 via conserved amino acid sequences. J Biol Chem. 272:2814–2820. 1997. View Article : Google Scholar : PubMed/NCBI

21 

de Vega S, Iwamoto T and Yamada Y: Fibulins: Multiple roles in matrix structures and tissue functions. Cell Mol Life Sci. 66:1890–1902. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Law EW, Cheung AK, Kashuba VI, Pavlova TV, Zabarovsky ER, Lung HL, Cheng Y, Chua D, Kwong DLK, Tsao SW, et al: Anti-angiogenic and tumor-suppressive roles of candidate tumor-suppressor gene, Fibulin-2, in nasopharyngeal carcinoma. Oncogene. 31:728–738. 2012. View Article : Google Scholar

23 

Alcendor DJ, Knobel S, Desai P, Zhu WQ and Hayward GS: KSHV regulation of fibulin-2 in Kaposi's sarcoma: Implications for tumorigenesis. Am J Pathol. 179:1443–1454. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Zhang X, Duan L, Zhang Y, Zhao H, Yang X and Zhang C: Correlation of Fibulin-2 expression with proliferation, migration and invasion of breast cancer cells. Oncol Lett. 20:1945–1951. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Hu X, Liu T, Li L, Gan H, Wang T, Pang P and Mao J: Fibulin-2 facilitates malignant progression of hepatocellular carcinoma. Turk J Gastroenterol. 34:635–644. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Ma H, Lian C and Song Y: Fibulin-2 inhibits development of gastric cancer by downregulating β-catenin. Oncol Lett. 18:2799–2804. 2019.PubMed/NCBI

27 

Zhou M, Mao X, Shen K, Zhan Q, Ni H, Liu C, Huang Z and Li R: FBLN2 inhibits gastric cancer proliferation and metastasis via the TGFβ/TGIF2 pathway. Pathol Res Pract. 269:1558992025. View Article : Google Scholar

28 

Missan DS, Chittur SV and DiPersio CM: Regulation of fibulin-2 gene expression by integrin α3β1 contributes to the invasive phenotype of transformed keratinocytes. J Invest Dermatol. 134:2418–2427. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Wang MR, Chen RJ, Zhao F, Zhang HH, Bi QY, Zhang YN, Zhang YQ, Wu ZC and Ji XM: Effect of Wenxia Changfu formula combined with cisplatin reversing non-small cell lung cancer cell adhesion-mediated drug resistance. Front Pharmacol. 11:5001372020. View Article : Google Scholar : PubMed/NCBI

30 

Fontanil T, Álvarez-Teijeiro S, Villaronga MÁ, Mohamedi Y, Solares L, Moncada-Pazos A, Vega JA, García-Suárez O, Pérez-Basterrechea M, García-Pedrero JM, et al: Cleavage of Fibulin-2 by the aggrecanases ADAMTS-4 and ADAMTS-5 contributes to the tumorigenic potential of breast cancer cells. Oncotarget. 8:13716–13729. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Vaes N, Schonkeren SL, Rademakers G, Holland AM, Koch A, Gijbels MJ, Keulers TG, de Wit M, Moonen L, Van der Meer JRM, et al: Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep. 22:e519132021. View Article : Google Scholar : PubMed/NCBI

32 

Senapati S, Gnanapragassam VS, Moniaux N, Momi N and Batra SK: Role of MUC4-NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells. Oncogene. 31:3346–3356. 2012. View Article : Google Scholar :

33 

Melotte V, Lentjes MH, van den Bosch SM, Hellebrekers DM, de Hoon JP, Wouters KA, Daenen KL, Partouns-Hendriks IE, Stessels F, Louwagie J, et al: N-Myc downstream-regulated gene 4 (NDRG4): A candidate tumor suppressor gene and potential biomarker for colorectal cancer. J Natl Cancer Inst. 101:916–927. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Barczyk M, Carracedo S and Gullberg D: Integrins. Cell Tissue Res. 339:269–280. 2010. View Article : Google Scholar

35 

Cooper J and Giancotti FG: Integrin signaling in cancer: Mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 35:347–367. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Nobre LT, Vidal AA, Almeida-Lima J, Oliveira RM, Paredes-Gamero EJ, Medeiros VP, Trindade ES, Franco CR, Nader HB and Rocha HA: Fucan effect on CHO cell proliferation and migration. Carbohydr Polym. 98:224–232. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Fischer C, Sanchez-Ruderisch H, Welzel M, Wiedenmann B, Sakai T, André S, Gabius HJ, Khachigian L, Detjen KM and Rosewicz S: Galectin-1 interacts with the {alpha}5{beta}1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J Biol Chem. 280:37266–37277. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Hynes RO: Integrins: Bidirectional, allosteric signaling machines. Cell. 110:673–687. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Hamidi H and Ivaska J: Every step of the way: Integrins in cancer progression and metastasis. Nat Rev Cancer. 18:533–548. 2019. View Article : Google Scholar :

40 

Humphries JD, Byron A and Humphries MJ: Integrin ligands at a glance. J Cell Sci. 119:3901–3903. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Springer TA and Wang JH: The three-dimensional structure of integrins and their ligands, and sconformational regulation of cell adhesion. Adv Protein Chem. 68:29–63. 2004. View Article : Google Scholar

42 

Arnaout MA, Mahalingam B and Xiong JP: Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 21:381–410. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS and Giaccia AJ: Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 440:1222–1226. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139:891–906. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Couillard J, Demers M, Lavoie G and St-Pierre Y: The role of DNA hypomethylation in the control of stromelysin gene expression. Biochem Biophys Res Commun. 342:1233–1239. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Hanson JA, Gillespie JW, Grover A, Tangrea MA, Chuaqui RF, Emmert-Buck MR, Tangrea JA, Libutti SK, Linehan WM and Woodson KG: Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst. 98:255–261. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Lin HJ, Zuo T, Lin CH, Kuo CT, Liyanarachchi S, Sun S, Shen R, Deatherage DE, Potter D, Asamoto L, et al: Breast cancer-associated fibroblasts confer AKT1-mediated epigenetic silencing of Cystatin M in epithelial cells. Cancer Res. 68:10257–10266. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Ostman A and Augsten M: Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr Opin Genet Dev. 19:67–73. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA and Desmoulière A: The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair. 5(Suppl 1): S52012. View Article : Google Scholar : PubMed/NCBI

51 

Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Neuzillet C, Tijeras-Raballand A, Cros J, Faivre S, Hammel P and Raymond E: Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev. 32:585–602. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Rønnov-Jessen L, Petersen OW and Bissell MJ: Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol Rev. 76:69–125. 1996. View Article : Google Scholar : PubMed/NCBI

54 

Chiquet-Ehrismann R, Mackie EJ, Pearson CA and Sakakura T: Tenascin: An extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 47:131–139. 1986. View Article : Google Scholar : PubMed/NCBI

55 

Kyutoku M, Taniyama Y, Katsuragi N, Shimizu H, Kunugiza Y, Iekushi K, Koibuchi N, Sanada F, Oshita Y and Morishita R: Role of periostin in cancer progression and metastasis: Inhibition of breast cancer progression and metastasis by anti-periostin antibody in a murine model. Int J Mol Med. 28:181–186. 2011.PubMed/NCBI

56 

Mackie EJ, Chiquet-Ehrismann R, Pearson CA, Inaguma Y, Taya K, Kawarada Y and Sakakura T: Tenascin is a stromal marker for epithelial malignancy in the mammary gland. Proc Natl Acad Sci USA. 84:4621–4625. 1987. View Article : Google Scholar : PubMed/NCBI

57 

Ouyang G, Liu M, Ruan K, Song G, Mao Y and Bao S: Upregulated expression of periostin by hypoxia in non-small-cell lung cancer cells promotes cell survival via the Akt/PKB pathway. Cancer Lett. 281:213–219. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Ruan K, Bao S and Ouyang G: The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci. 66:2219–2230. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Boire A, Covic L, Agarwal A, Jacques S, Sherifi S and Kuliopulos A: PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 120:303–313. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ and Werb Z: The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 98:137–146. 1999. View Article : Google Scholar : PubMed/NCBI

61 

Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW and Weiss SJ: Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell. 114:33–45. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Valkenburg KC, de Groot AE and Pienta KJ: Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 15:366–381. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Nusse R and Clevers H: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Melnik S, Dvornikov D, Müller-Decker K, Depner S, Stannek P, Meister M, Warth A, Thomas M, Muley T, Risch A, et al: Cancer cell specific inhibition of Wnt/β-catenin signaling by forced intracellular acidification. Cell Discov. 4:372018. View Article : Google Scholar

65 

Deng YZ, Yao F, Li JJ, Mao ZF, Hu PT, Long LY, Li G, Ji XD, Shi S, Guan DX, et al: RACK1 suppresses gastric tumorigenesis by stabilizing the β-catenin destruction complex. Gastroenterology. 142:812–823.e15. 2012. View Article : Google Scholar

66 

Austinat M, Dunsch R, Wittekind C, Tannapfel A, Gebhardt R and Gaunitz F: Correlation between beta-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Mol Cancer. 7:212008. View Article : Google Scholar : PubMed/NCBI

67 

Brenner KA, Corbett SA and Schwarzbauer JE: Regulation of fibronectin matrix assembly by activated Ras in transformed cells. Oncogene. 19:3156–3163. 2000. View Article : Google Scholar : PubMed/NCBI

68 

Werbajh SE, Urtreger AJ, Puricelli LI, de Lustig ES, de Kier Joffé E and Kornblihtt AR: Downregulation of fibronectin transcription in highly metastatic adenocarcinoma cells. FEBS Lett. 440:277–281. 1998. View Article : Google Scholar

69 

Seo JY, Lee SH, Youn CS, Choi HR, Rhie GE, Cho KH, Kim KH, Park KC, Eun HC and Chung JH: Ultraviolet radiation increases Tropoelastin mRNA expression in the epidermis of human skin in vivo. J Invest Dermatol. 116:915–919. 2001. View Article : Google Scholar : PubMed/NCBI

70 

Taddese S, Weiss AS, Jahreis G, Neubert RH and Schmelzer CE: In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. Matrix Biol. 28:84–91. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Yan L, Wang Y, Feng J, Ni Y, Zhang T, Cao Y, Zhou M and Zhao C: Mechanism and application of fibrous proteins in diabetic wound healing: A literature review. Front Endocrinol (Lausanne). 15:14305432024. View Article : Google Scholar : PubMed/NCBI

72 

Giaquinto AN, Sung H, Newman LA, Freedman RA, Smith RA, Star J, Jemal A and Siegel RL: Breast cancer statistics 2024. CA Cancer J Clin. 74:477–495. 2024.PubMed/NCBI

73 

Yi CH, Smith DJ, West WW and Hollingsworth MA: Loss of fibulin-2 expression is associated with breast cancer progression. Am J Pathol. 170:1535–1545. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Ibrahim AM, Sabet S, El-Ghor AA, Kamel N, Anis SE, Morris JS and Stein T: Fibulin-2 is required for basement membrane integrity of mammary epithelium. Sci Rep. 8:141392018. View Article : Google Scholar : PubMed/NCBI

75 

Longmate WM, Monichan R, Chu ML, Tsuda T, Mahoney MG and DiPersio CM: Reduced fibulin-2 contributes to loss of basement membrane integrity and skin blistering in mice lacking Integrin α3β1 in the epidermis. J Invest Dermatol. 134:1609–1617. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Klingen TA, Chen Y, Aas H, Wik E and Akslen LA: Fibulin-2 expression associates with vascular invasion and patient survival in breast cancer. PLoS One. 16:e02497672021. View Article : Google Scholar : PubMed/NCBI

77 

Cal S and López-Otín C: ADAMTS proteases and cancer. Matrix Biol. 44-46:77–85. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Noël A, Gutiérrez-Fernández A, Sounni NE, Behrendt N, Maquoi E, Lund IK, Cal S, Hoyer-Hansen G and López-Otín C: New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front Pharmacol. 3:1402012. View Article : Google Scholar : PubMed/NCBI

79 

Luan Y, Kong L, Howell DR, Ilalov K, Fajardo M, Bai XH, Di Cesare PE, Goldring MB, Abramson SB and Liu CJ: Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin. Osteoarthritis Cartilage. 16:1413–1420. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Fontanil T, Rúa S, Llamazares M, Moncada-Pazos A, Quirós PM, García-Suárez O, Vega JA, Sasaki T, Mohamedi Y, Esteban MM, et al: Interaction between the ADAMTS-12 metalloprotease and fibulin-2 induces tumor-suppressive effects in breast cancer cells. Oncotarget. 5:1253–1264. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Kelwick R, Desanlis I, Wheeler GN and Edwards DR: The ADAMTS (A DisIntegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 16:1132015. View Article : Google Scholar : PubMed/NCBI

82 

Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ and Feng YM: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signaling. Br J Cancer. 110:724–732. 2014. View Article : Google Scholar

83 

Cuffaro D, Ciccone L, Rossello A, Nuti E and Santamaria S: Targeting Aggrecanases for osteoarthritis therapy: From zinc chelation to exosite inhibition. J Med Chem. 65:13505–13532. 2022. View Article : Google Scholar : PubMed/NCBI

84 

Niland S, Riscanevo AX and Eble JA: Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int J Mol Sci. 23:1462021. View Article : Google Scholar

85 

Ghalehbandi S, Yuzugulen J, Pranjol MZI and Pourgholami MH: The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 949:1755862023. View Article : Google Scholar : PubMed/NCBI

86 

Reddy RA, Varshini MS and Kumar RS: Matrix metalloproteinase-2 (MMP-2): As an essential factor in cancer progression. Recent Pat Anticancer Drug Discov. 20:26–44. 2025. View Article : Google Scholar

87 

Hergeth SP, Aicher WK, Essl M, Schreiber TD, Sasaki T and Klein G: Characterization and functional analysis of osteoblast-derived fibulins in the human hematopoietic stem cell niche. Exp Hematol. 36:1022–1034. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Rashid ZA and Bardaweel SK: Novel matrix metalloproteinase-9 (MMP-9) inhibitors in cancer treatment. Int J Mol Sci. 24:121332023. View Article : Google Scholar : PubMed/NCBI

89 

Astudillo P: Extracellular matrix stiffness and Wnt/β-catenin signaling in physiology and disease. Biochem Soc Trans. 48:1187–1198. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Henderson NC, Rieder F and Wynn TA: Fibrosis: From mechanisms to medicines. Nature. 587:555–566. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Caligiuri G and Tuveson DA: Activated fibroblasts in cancer: Perspectives and challenges. Cancer Cell. 41:434–449. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG and Moses HL: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 303:848–851. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Cruz-Munoz W and Khokha R: The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci. 45:291–338. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Bloomston M, Shafii A, Zervos EE and Rosemurgy AS: TIMP-1 overexpression in pancreatic cancer attenuates tumor growth, decreases implantation and metastasis, and inhibits angiogenesis. J Surg Res. 102:39–44. 2002. View Article : Google Scholar : PubMed/NCBI

95 

Chen J and Khalil RA: Matrix metalloproteinases in normal pregnancy and preeclampsia. Prog Mol Biol Transl Sci. 148:87–165. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Murphy G: Tissue inhibitors of metalloproteinases. Genome Biol. 12:2332011. View Article : Google Scholar : PubMed/NCBI

97 

Shimoda M, Jackson HW and Khokha R: Tumor suppression by stromal TIMPs. Mol Cell Oncol. 3:e9750822016. View Article : Google Scholar : PubMed/NCBI

98 

Zhai LL, Cai CY, Wu Y and Tang ZG: Correlation and prognostic significance of MMP-2 and TFPI-2 differential expression in pancreatic carcinoma. Int J Clin Exp Pathol. 8:682–691. 2015.PubMed/NCBI

99 

Song G, Xu S, Zhang H, Wang Y, Xiao C, Jiang T, Wu L, Zhang T, Sun X, Zhong L, et al: TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J Exp Clin Cancer Res. 35:1482016. View Article : Google Scholar : PubMed/NCBI

100 

Shimoda M, Principe S, Jackson HW, Luga V, Fang H, Molyneux SD, Shao YW, Aiken A, Waterhouse PD, Karamboulas C, et al: Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol. 16:889–901. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Tjomsland V, Pomianowska E, Aasrum M, Sandnes D, Verbeke CS and Gladhaug IP: Profile of MMP and TIMP expression in human pancreatic stellate cells: Regulation by IL-1α and TGFβ and implications for migration of pancreatic cancer cells. Neoplasia. 18:447–456. 2016. View Article : Google Scholar : PubMed/NCBI

102 

https://gdt.gradepro.org/app/handbook/handbook.html#h.9rdbelsnu4iy. Accessed 22 Jul 2023

103 

Whiteaker JR, Zhang H, Zhao L, Wang P, Kelly-Spratt KS, Ivey RG, Piening BD, Feng LC, Kasarda E, Gurley KE, et al: Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J Proteome Res. 6:3962–3975. 2007. View Article : Google Scholar : PubMed/NCBI

104 

Avsar M, Tambas M, Yalniz Z, Akdeniz D, Tuncer SB, Kilic S, Erdogan OS, Ciftci R, Dagoglu N, Vatansever S and Yazici H: The expression level of fibulin-2 in the circulating RNA (ctRNA) of epithelial tumor cells of peripheral blood and tumor tissue of patients with metastatic lung cancer. Mol Biol Rep. 46:4001–4008. 2019. View Article : Google Scholar : PubMed/NCBI

105 

WalyEldeen AA, Sabet S, Anis SE, Stein T and Ibrahim AM: FBLN2 is associated with basal cell markers Krt14 and ITGB1 in mouse mammary epithelial cells and has a preferential expression in molecular subtypes of human breast cancer. Breast Cancer Res Treat. 208:6872024. View Article : Google Scholar

106 

Setiawati Y, Alimuddin T, Mulyani H and Kamelia M: The prognostic role of fibulin-2 and Ki-67 index in patients with meningioma: A study among minangkabau ethnicity. Asian Pac J Cancer Prev. 25:2735–2742. 2024. View Article : Google Scholar : PubMed/NCBI

107 

Ibrahim AM, Roshdy M, Elshorbagy S, Hosny M, Halawa S, Yehia D, Elfawy HA, Eldessouki A, Mohamed F, Ellithy A, et al: An investigation of fibulin-2 in hypertrophic cardiomyopathy. Int J Mol Sci. 21:71762020. View Article : Google Scholar : PubMed/NCBI

108 

Li S, Jiang H, Xing W, Wang S, Zhang Y, Li Y, Mao C, Zeng D, Lan P, Tang D, et al: A clinical diagnostic study: Fibulin-2 is a novel promising biomarker for predicting infection. Infect Dis Ther. 11:1057–1073. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Knittel T, Kobold D, Piscaglia F, Saile B, Neubauer K, Mehde M, Timpl R and Ramadori G: Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased rat livers: Distinct roles of (myo-)fibroblast subpopulations in hepatic tissue repair. Histochem Cell Biol. 112:387–401. 1999. View Article : Google Scholar : PubMed/NCBI

110 

Li SD, Xing W, Wang SC, Li YB, Jiang H, Zheng HX, Li XM, Yang J, Guo DB, Xie XY, et al: Fibulin2: A negative regulator of BMSC osteogenic differentiation in infected bone fracture healing. Exp Mol Med. 55:443–456. 2023. View Article : Google Scholar : PubMed/NCBI

111 

Papon MA, Le Feuvre Y, Barreda-Gómez G, Favereaux A, Farrugia F, Bouali-Benazzouz R, Nagy F, Rodríguez-Puertas R and Landry M: Spinal inhibition of GABAB receptors by the extracellular matrix protein fibulin-2 in neuropathic rats. Front Cell Neurosci. 14:2142020. View Article : Google Scholar : PubMed/NCBI

112 

Ghorbani S, Li C, Lozinski BM, Moezzi D, D'Mello C, Dong Y, Visser F, Li H, Silva C, Khakpour M, et al: Fibulin-2 is an extracellular matrix inhibitor of oligodendrocytes relevant to multiple sclerosis. J Clin Invest. 134:e1769102024. View Article : Google Scholar : PubMed/NCBI

113 

Sicot FX, Tsuda T, Markova D, Klement JF, Arita M, Zhang RZ, Pan TC, Mecham RP, Birk DE and Chu ML: Fibulin-2 is dispensable for mouse development and elastic fiber formation. Mol Cell Biol. 28:1061–1067. 2008. View Article : Google Scholar :

114 

Zhang H, Wu J, Dong H, Khan SA, Chu ML and Tsuda T: Fibulin-2 deficiency attenuates angiotensin II-induced cardiac hypertrophy by reducing transforming growth factor-β signaling. Clin Sci (Lond). 126:275–288. 2014. View Article : Google Scholar

115 

Tsuda T, Wu J, Gao E, Joyce J, Markova D, Dong H, Liu Y, Zhang H, Zou Y, Gao F, et al: Loss of fibulin-2 protects against progressive ventricular dysfunction after myocardial infarction. J Mol Cell Cardiol. 52:273–282. 2012. View Article : Google Scholar :

116 

Fässler R, Sasaki T, Timpl R, Chu ML and Werner S: Differential regulation of fibulin, tenascin-C, and nidogen expression during wound healing of normal and glucocorticoid-treated mice. Exp Cell Res. 222:111–116. 1996. View Article : Google Scholar : PubMed/NCBI

117 

Kida Y, Asahina K, Inoue K, Kawada N, Yoshizato K, Wake K and Sato T: Characterization of vitamin A-storing cells in mouse fibrous kidneys using Cygb/STAP as a marker of activated stellate cells. Arch Histol Cytol. 70:95–106. 2007. View Article : Google Scholar : PubMed/NCBI

118 

Piscaglia F, Dudás J, Knittel T, Di Rocco P, Kobold D, Saile B, Zocco MA, Timpl R and Ramadori G: Expression of ECM proteins fibulin-1 and -2 in acute and chronic liver disease and in cultured rat liver cells. Cell Tissue Res. 337:449–462. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Zhang Y, Zhang W, Zhang R and Xia Y: Knockdown of FBLN2 suppresses TGF-β1-induced MRC-5 cell migration and fibrosis by downregulating VTN. Tissue Cell. 81:1020052023. View Article : Google Scholar

120 

Li S, Jiang H, Wang S, Li Y, Guo D, Zhan J, Li Q, Meng H, Chen A, Chen L, et al: Fibulin-2: A potential regulator of immune dysfunction after bone trauma. Immun Inflamm Dis. 11:e8462023. View Article : Google Scholar : PubMed/NCBI

121 

Radice PD, Mathieu P, Leal MC, Farías MI, Ferrari C, Puntel M, Salibe M, Chernomoretz A and Pitossi FJ: Fibulin-2 is a key mediator of the pro-neurogenic effect of TGF-beta1 on adult neural stem cells. Mol Cell Neurosci. 67:75–83. 2015. View Article : Google Scholar : PubMed/NCBI

122 

Patel MR and Weaver AM: Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep. 34:1088292021. View Article : Google Scholar

123 

Bois PR and Grosveld GC: FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J. 22:1147–1157. 2003. View Article : Google Scholar : PubMed/NCBI

124 

Lehka L and Rędowicz MJ: Mechanisms regulating myoblast fusion: A multilevel interplay. Semin Cell Dev Biol. 104:81–92. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Chan CY, Masui O, Krakovska O, Belozerov VE, Voisin S, Ghanny S, Chen J, Moyez D, Zhu P, Evans KR, et al: Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics. 10:M110.0048042011. View Article : Google Scholar : PubMed/NCBI

126 

Ström A, Olin AI, Aspberg A and Hultgårdh-Nilsson A: Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration. Cardiovasc Res. 69:755–763. 2006. View Article : Google Scholar : PubMed/NCBI

127 

Ball K, Dovedi SJ, Vajjah P and Phipps A: Strategies for clinical dose optimization of T cell-engaging therapies in oncology. MAbs. 15:21810162023. View Article : Google Scholar : PubMed/NCBI

128 

Gueorguieva I, Cleverly AL, Stauber A, Pillay NS, Rodon JA, Miles CP, Yingling JM and Lahn MM: Defining a therapeutic window for the novel TGF-β inhibitor LY2157299 monohydrate based on a pharmacokinetic/pharmacodynamic model. Br J Clin Pharmacol. 77:796–807. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Ou FS, Michiels S, Shyr Y, Adjei AA and Oberg AL: Biomarker discovery and validation: Statistical considerations. J Thorac Oncol. 16:537–545. 2021. View Article : Google Scholar : PubMed/NCBI

130 

Kraus VB: Biomarkers as drug development tools: Discovery, validation, qualification and use. Nat Rev Rheumatol. 14:354–362. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Zhang Z, Wu H, Chong W, Shang L, Jing C and Li L: Liquid biopsy in gastric cancer: Predictive and prognostic biomarkers. Cell Death Dis. 13:9032022. View Article : Google Scholar : PubMed/NCBI

132 

Galarini R, Diana F, Moretti S, Puppini B, Saluti G and Persic L: Development and validation of a new qualitative ELISA screening for multiresidue detection of sulfonamides in food and feed. Food Control. 35:300–310. 2014. View Article : Google Scholar

133 

Wang S, Xu B, Zhang Y and He JX: Development of enzyme-linked immunosorbent assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney. Meat Sci. 82:53–58. 2009. View Article : Google Scholar

134 

Petz M: Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. Monatshefte für Chemie-Chemical Monthly. 140:953–964. 2009. View Article : Google Scholar

135 

Ahirwar R, Bhattacharya A and Kumar S: Unveiling the underpinnings of various non-conventional ELISA variants: A review article. Expert Rev Mol Diagn. 22:761–774. 2022. View Article : Google Scholar : PubMed/NCBI

136 

Moreno BH and Ribas A: Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. Br J Cancer. 112:1421–1427. 2015. View Article : Google Scholar

137 

Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S, Berdelou A, et al: Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 13:473–486. 2016. View Article : Google Scholar : PubMed/NCBI

138 

Moreno V, Hernandez T, de Miguel M, Doger B and Calvo E: Adoptive cell therapy for solid tumors: Chimeric antigen receptor T cells and beyond. Curr Opin Pharmacol. 59:70–84. 2021. View Article : Google Scholar : PubMed/NCBI

139 

Yang J, Xu J, Wang W, Zhang B, Yu X and Shi S: Epigenetic regulation in the tumor microenvironment: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 8:2102023. View Article : Google Scholar : PubMed/NCBI

140 

Yu H, Han R, Su J, Chen H and Li D: Multi-marker diagnosis method for early hepatocellular carcinoma based on surface plasmon resonance. Clin Chim Acta. 502:9–14. 2020. View Article : Google Scholar

141 

Yuan W, Tang W, Xie Y, Wang S, Chen Y, Qi J, Qiao Y and Ma J: New combined microRNA and protein plasmatic biomarker panel for pancreatic cancer. Oncotarget. 7:80033–80045. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, et al: Liquid biopsy and artificial intelligence as tools to detect signatures of colorectal malignancies: A modern approach in patient's stratification. Front Oncol. 12:8565752022. View Article : Google Scholar : PubMed/NCBI

143 

Weng X, Gaur G and Neethirajan S: Rapid detection of food allergens by microfluidics ELISA-based optical sensor. Biosensors (Basel). 6:242016. View Article : Google Scholar : PubMed/NCBI

144 

Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA and Whitesides GM: Paper-based ELISA. Angew Chem Int Ed Engl. 49:4771–4774. 2010. View Article : Google Scholar : PubMed/NCBI

145 

Kudłak B and Wieczerzak M: Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives. Crit Rev Environ Sci Technol. 50:816–867. 2020. View Article : Google Scholar

146 

Bauer M, Strom M, Hammond DS and Shigdar S: Anything you can do, I can do better: Can aptamers replace antibodies in clinical diagnostic applications? Molecules. 24:43772019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang Y, Wang Z, Weng L, Fei J and Li Z: Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review). Int J Oncol 67: 93, 2025.
APA
Yang, Y., Wang, Z., Weng, L., Fei, J., & Li, Z. (2025). Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review). International Journal of Oncology, 67, 93. https://doi.org/10.3892/ijo.2025.5799
MLA
Yang, Y., Wang, Z., Weng, L., Fei, J., Li, Z."Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review)". International Journal of Oncology 67.5 (2025): 93.
Chicago
Yang, Y., Wang, Z., Weng, L., Fei, J., Li, Z."Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review)". International Journal of Oncology 67, no. 5 (2025): 93. https://doi.org/10.3892/ijo.2025.5799
Copy and paste a formatted citation
x
Spandidos Publications style
Yang Y, Wang Z, Weng L, Fei J and Li Z: Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review). Int J Oncol 67: 93, 2025.
APA
Yang, Y., Wang, Z., Weng, L., Fei, J., & Li, Z. (2025). Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review). International Journal of Oncology, 67, 93. https://doi.org/10.3892/ijo.2025.5799
MLA
Yang, Y., Wang, Z., Weng, L., Fei, J., Li, Z."Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review)". International Journal of Oncology 67.5 (2025): 93.
Chicago
Yang, Y., Wang, Z., Weng, L., Fei, J., Li, Z."Potential of Fibulin2 as a therapeutic target against cancer and as a diagnostic marker (Review)". International Journal of Oncology 67, no. 5 (2025): 93. https://doi.org/10.3892/ijo.2025.5799
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team