|
1
|
Oosterhuis JW and Looijenga LHJ: Human
germ cell tumours from a developmental perspective. Nat Rev Cancer.
19:522–537. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Drozynska E, Bien E, Polczynska K,
Stefanowicz J, Zalewska-Szewczyk B, Izycka-Swieszewska E,
Ploszynska A, Krawczyk M and Karpinsky G: A need for cautious
interpretation of elevated serum germ cell tumor markers in
children. Review and own experiences. Biomark Med. 9:923–932. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lopes LF, Sonaglio V, Ribeiro KCB,
Schneider DT and de Camargo B: Improvement in the outcome of
children with germ cell tumors. Pediatr Blood Cancer. 50:250–253.
2008. View Article : Google Scholar
|
|
4
|
Veneris JT, Mahajan P and Frazier AL:
Contemporary management of ovarian germ cell tumors and remaining
controversies. Gynecol Oncol. 158:467–475. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Trabert B, Chen J, Devesa SS, Bray F and
McGlynn KA: International patterns and trends in testicular cancer
incidence, overall and by histologic subtype, 1973-2007. Andrology.
3:4–12. 2015. View Article : Google Scholar :
|
|
6
|
Smith HO, Berwick M, Verschraegen CF,
Wiggins C, Lansing L, Muller CY and Qualls CR: Incidence and
survival rates for female malignant germ cell tumors. Obstet
Gynecol. 107:1075–1085. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shaikh F, Murray MJ, Amatruda JF, Coleman
N, Nicholson JC, Hale JP, Pashankar F, Stoneham SJ, Poynter JN,
Olson TA, et al: Paediatric extracranial germ-cell tumours. Lancet
Oncol. 17:e149–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Teilum G: Ovarian Cancer. Gentil F and
Junqueira AC: Springer Berlin Heidelberg; Berlin, Heidelberg: 1968,
Available from: http://link.springer.com/10.1007/978-3-642-87755-1.
|
|
9
|
Yao X, Zhou H, Duan C, Wu X, Li B, Liu H
and Zhang Y: Comprehensive characteristics of pathological subtypes
in testicular germ cell tumor: Gene expression, mutation and
alternative splicing. Front Immunol. 13:10964942023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kobayashi K, Saito T, Kitamura Y,
Nobushita T, Kawasaki T, Hara N and Takahashi K: Oncological
outcomes in patients with stage I testicular seminoma and
nonseminoma: Pathological risk factors for relapse and feasibility
of surveillance after orchiectomy. Diagn Pathol. 8:572013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Murray MJ and Nicholson JC: Germ cell
tumours in children and adolescents. Paediatr Child Health.
20:109–116. 2010. View Article : Google Scholar
|
|
12
|
Travis LB, Feldman DR, Fung C, Poynter JN,
Lockley M and Frazier AL: Adolescent and young adult germ cell
tumors: Epidemiology, genomics, treatment, and survivorship. J Clin
Oncol. 42:696–706. 2024. View Article : Google Scholar
|
|
13
|
Fenske AE, Glaesener S, Bokemeyer C,
Thomale J, Dahm-Daphi J, Honecker F and Dartsch DC: Cisplatin
resistance induced in germ cell tumour cells is due to reduced
susceptibility towards cell death but not to altered DNA damage
induction or repair. Cancer Lett. 324:171–178. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fichtner A, Bohnenberger H, Elakad O,
Richter A, Lenz C, Oing C, Ströbel P, Kueffer S, Nettersheim D and
Bremmer F: Proteomic profiling of cisplatin-resistant and
cisplatin-sensitive germ cell tumour cell lines using quantitative
mass spectrometry. World J Urol. 40:373–383. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Selfe J, Goddard NC, McIntyre A, Taylor
KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA,
Gilbert DC and Shipley JM: IGF1R signalling in testicular germ cell
tumour cells impacts on cell survival and acquired cisplatin
resistance. J Pathol. 244:242–253. 2018. View Article : Google Scholar :
|
|
16
|
Galvez-Carvajal L, Sanchez-Muñoz A,
Ribelles N, Saez M, Baena J, Ruiz S, Ithurbisquy C and Alba E:
Targeted treatment approaches in refractory germ cell tumors. Crit
Rev Oncol Hematol. 143:130–138. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lobo J, Guimarães-Teixeira C, Barros-Silva
D, Miranda-Gonçalves V, Camilo V, Guimarães R, Cantante M, Braga I,
Maurício J, Oing C, et al: Efficacy of HDAC inhibitors belinostat
and panobinostat against cisplatin-sensitive and
cisplatin-resistant testicular germ cell tumors. Cancers (Basel).
12:29032020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wermann H, Stoop H, Gillis AJ, Honecker F,
van Gurp RJ, Ammerpohl O, Richter J, Oosterhuis JW, Bokemeyer C and
Looijenga LH: Global DNA methylation in fetal human germ cells and
germ cell tumours: Association with differentiation and cisplatin
resistance. J Pathol. 221:433–442. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Juliachs M, Muñoz C, Moutinho CA, Vidal A,
Condom E, Esteller M, Graupera M, Casanovas O, Germà JR, Villanueva
A and Viñals F: The PDGFRβ-AKT pathway contributes to CDDP-acquired
resistance in testicular germ cell tumors. Clin Cancer Res.
20:658–667. 2014. View Article : Google Scholar
|
|
20
|
Galluzzi L, Senovilla L, Vitale I, Michels
J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms
of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar
|
|
21
|
Cardoso I, Rosa M, Moreno D, Tufi L, Ramos
L, Pereira L, Silva L, Galvão JMS, Tosi IC, Lengert AVH, et al:
Cisplatin-resistant germ cell tumor models: An exploration of the
epithelial-mesenchymal transition regulator SLUG. Mol Med Rep.
30:2282024. View Article : Google Scholar
|
|
22
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Thiery JP, Acloque H, Huang RYJ and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kim K, Lu Z and Hay ED: Direct evidence
for a role of β-catenin/LEF-1 signaling pathway in induction of
EMT. Cell Biol Int. 26:463–476. 2002. View Article : Google Scholar
|
|
25
|
Nawshad A, LaGamba D, Polad A and Hay ED:
Transforming growth factor-β signaling during
epithelial-mesenchymal transformation: Implications for
embryogenesis and tumor metastasis. Cells Tissues Organs.
179:11–23. 2005. View Article : Google Scholar
|
|
26
|
Medici D, Hay ED and Olsen BR: Snail and
slug promote epithelial-Mesenchymal Transition through
β-catenin-T-cell Factor-4-dependent expression of transforming
growth factor-β3. Mol Biol Cell. 19:4875–4887. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Grasset EM, Dunworth M, Sharma G, Loth M,
Tandurella J, Cimino-Mathews A, Gentz M, Bracht S, Haynes M, Fertig
EJ and Ewald AJ: Triple-negative breast cancer metastasis involves
complex epithelial-mesenchymal transition dynamics and requires
vimentin. Sci Transl Med. 14:eabn75712022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ugur D, Gungul TB, Yucel S, Ozcivici E,
Yalcin-Ozuysal O and Mese G: Connexin 32 overexpression increases
proliferation, reduces gap junctional intercellular communication,
motility and epithelial-to-mesenchymal transition in Hs578T breast
cancer cells. J Cell Commun Signal. 16:361–376. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zvrko E, Vuckovic L and Radunovic M:
Prognostic significance of a panel of two biomarkers (E-cadherin
and CD105) in laryngeal cancer. Polish J Pathol. 74:225–231. 2023.
View Article : Google Scholar
|
|
30
|
Jiang JX and Gu S: Gap junction- and
hemichannel-independent actions of connexins. Biochim Biophys Acta.
1711:208–214. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li Y, Acosta FM and Jiang JX: Gap
Junctions or Hemichannel-dependent and independent roles of
connexins in fibrosis, epithelial-mesenchymal transitions, and
wound healing. Biomolecules. 13:17962023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Trelstad RL: The extracellular matrix in
development and regeneration. An interview with Elizabeth D. Hay.
Int J Dev Biol. 48:687–694. 2004. View Article : Google Scholar
|
|
33
|
Debnath P, Huirem RS, Dutta P and
Palchaudhuri S: Epithelial-mesenchymal transition and its
transcription factors. Biosci Rep. 42:BSR202117542022. View Article : Google Scholar
|
|
34
|
Piek E, Moustakas A, Kurisaki A, Heldin CH
and ten Dijke P: TGF-β type I receptor/ALK-5 and Smad proteins
mediate epithelial to mesenchymal transdifferentiation in NMuMG
breast epithelial cells. J Cell Sci. 112:4557–4568. 1999.
View Article : Google Scholar
|
|
35
|
Guo X, Yi H, Li TC, Wang Y, Wang H and
Chen X: Role of vascular endothelial growth factor (VEGF) in human
embryo implantation: Clinical implications. Biomolecules.
11:2532021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Batarfi WA, Mohd Yunus MH and Hamid AA:
The Effect of Hydroxytyrosol in Type II Epithelial-Mesenchymal
transition in human skin wound healing. Molecules. 28:26522023.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Marconi GD, Fonticoli L, Rajan TS,
Pierdomenico SD, Trubiani O, Pizzicannella J and Diomede F:
Epithelial-mesenchymal transition (EMT): The Type-2 EMT in wound
healing, tissue regeneration and organ fibrosis. Cells.
10:15872021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tennakoon A, Izawa T, Kuwamura M and
Yamate J: Pathogenesis of type 2 epithelial to mesenchymal
transition (EMT) in renal and hepatic fibrosis. J Clin Med.
5:42015. View Article : Google Scholar
|
|
39
|
Linsdell P: Cystic fibrosis transmembrane
conductance regulator (CFTR): Making an ion channel out of an
active transporter structure. Channels. 12:284–290. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cui H, Huang J, Lei Y, Chen Q, Hu Z, Niu
J, Wei R, Yang K, Li H, Lu T, et al: Design and synthesis of dual
inhibitors targeting snail and histone deacetylase for the
treatment of solid tumour cancer. Eur J Med Chem. 229:1140822022.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hotz B, Arndt M, Dullat S, Bhargava S,
Buhr HJ and Hotz HG: Epithelial to mesenchymal transition:
Expression of the regulators snail, slug, and twist in pancreatic
cancer. Clin Cancer Res. 13:4769–4776. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zivotic M, Kovacevic S, Nikolic G,
Mioljevic A, Filipovic I, Djordjevic M, Jovicic V, Topalovic N,
Ilic K, Radojevic Skodric S, et al: SLUG and SNAIL as potential
immunohistochemical biomarkers for renal cancer staging and
survival. Int J Mol Sci. 24:122452023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ashrafizadeh M, Zarrabi A, Hushmandi K,
Kalantari M, Mohammadinejad R, Javaheri T and Sethi G: Association
of the epithelial-mesenchymal transition (EMT) with Cisplatin
resistance. Int J Mol Sci. 21:40022020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Haslehurst AM, Koti M, Dharsee M, Nuin P,
Evans K, Geraci J, Chen J, Li J, Weberpals J, Davey S, et al: EMT
transcription factors snail and slug directly contribute to
cisplatin resistance in ovarian cancer. BMC Cancer. 12:912012.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cooper S and Pera MF: Vitronectin
production by human yolk sac carcinoma cells resembling parietal
endoderm. Development. 104:565–574. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ruoslahti E, Jalanko H, Comings DE,
Neville AM and Raghavan D: Fibronectin from human germ-cell tumors
resembles amniotic fluid fibronectin. Int J Cancer. 27:763–767.
1981. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tauber S, Jais A, Jeitler M, Haider S,
Husa J, Lindroos J, Knöfler M, Mayerhofer M, Pehamberger H, Wagner
O and Bilban M: Transcriptome analysis of human cancer reveals a
functional role of Heme Oxygenase-1 in tumor cell adhesion. Mol
Cancer. 9:2002010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Borszéková Pulzová LB, Roška J, Kalman M,
Kliment J, Slávik P, Smolková B, Goffa E, Jurkovičová D, Kulcsár Ľ,
Lešková K, et al: Screening for the key proteins associated with
rete testis invasion in clinical stage I seminoma via label-free
quantitative mass spectrometry. Cancers (Basel). 13:55732021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sherman-Baust CA, Weeraratna AT, Rangel
LBA, Pizer ES, Cho KR, Schwartz DR, Shock T and Morin PJ:
Remodeling of the extracellular matrix through overexpression of
collagen VI contributes to cisplatin resistance in ovarian cancer
cells. Cancer Cell. 3:377–386. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Skowron MA, Eul K, Stephan A, Ludwig GF,
Wakileh GA, Bister A, Söhngen C, Raba K, Petzsch P, Poschmann G, et
al: Profiling the 3D interaction between germ cell tumors and
microenvironmental cells at the transcriptome and secretome level.
Mol Oncol. 16:3107–3127. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Henke E, Nandigama R and Ergün S:
Extracellular matrix in the tumor microenvironment and its impact
on cancer therapy. Front Mol Biosci. 6:1602020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sun L, Guo S, Xie Y and Yao Y: The
characteristics and the multiple functions of integrin β1 in human
cancers. J Transl Med. 21:7872023. View Article : Google Scholar
|
|
53
|
Butler TM, Elustondo PA, Hannigan GE and
MacPhee DJ: Integrin-linked kinase can facilitate syncytialization
and hormonal differentiation of the human trophoblast-derived BeWo
cell line. Reprod Biol Endocrinol. 7:512009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sánchez-Tilló E, Liu Y, de Barrios O,
Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A
and Postigo A: EMT-activating transcription factors in cancer:
Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ng YH, Zhu H and Leung PCK: Twist
regulates cadherin-mediated differentiation and fusion of human
trophoblastic cells. J Clin Endocrinol Metab. 96:3881–3890. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang C, Song Y, Yin Y, Hou H and Ge Z:
Twist-1 stimulates the malignant behaviors of Hydatidiform mole via
the PI3K/AKT pathway. Discov Med. 36:2862024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bahar E, Kim JY, Kim HS and Yoon H:
Establishment of acquired cisplatin resistance in ovarian cancer
cell lines characterized by enriched metastatic properties with
increased twist expression. Int J Mol Sci. 21:76132020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
DaSilva-Arnold SC, Kuo CY, Davra V,
Remache Y, Kim PCW, Fisher JP, Zamudio S, Al-Khan A, Birge RB and
Illsley NP: ZEB2, a master regulator of the epithelial-mesenchymal
transition, mediates trophoblast differentiation. Mol Hum Reprod.
25:61–75. 2019. View Article : Google Scholar
|
|
59
|
Teveroni E, Di Nicuolo F, Vergani E,
Bianchetti G, Bruno C, Maulucci G, De Spirito M, Cenci T, Pierconti
F, Gulino G, et al: PTTG1/ZEB1 axis regulates E-cadherin expression
in human seminoma. Cancers (Basel). 14:48762022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tian Q, Xue Y, Zheng W, Sun R, Ji W, Wang
X and An R: Overexpression of hypoxia-inducible factor 1α induces
migration and invasion through Notch signaling. Int J Oncol.
47:728–738. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xu Y, Ren B and Wang M: HIF-1α contributes
to metastasis in choriocarcinoma by regulating DEC1 expression.
Clin Transl Oncol. 25:1641–1649. 2022. View Article : Google Scholar
|
|
62
|
Iwaki T, Yamamoto K, Matsuura T, Sugimura
M, Kobayashi T and Kanayama N: Alteration of Integrins under
hypoxic stress in early placenta and choriocarcinoma cell line
BeWo. Gynecol Obstet Invest. 57:196–203. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xue Y, Sun R, Zheng W, Yang L and An R:
Forskolin promotes vasculogenic mimicry and invasion via
Notch-1-activated epithelial-to-mesenchymal transition in
syncytiolization of trophoblast cells in choriocarcinoma. Int J
Oncol. 56:1129–1139. 2020.PubMed/NCBI
|
|
64
|
Wu YC, Ling TY, Lu SH, Kuo HC, Ho HN, Yeh
SD, Shen CN and Huang YH: Chemotherapeutic sensitivity of
testicular germ cell tumors under hypoxic conditions is negatively
regulated by SENP1-controlled Sumoylation of OCT4. Cancer Res.
72:4963–4973. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Koch S, Mayer F, Honecker F, Schittenhelm
M and Bokemeyer C: Efficacy of cytotoxic agents used in the
treatment of testicular germ cell tumours under normoxic and
hypoxic conditions in vitro. Br J Cancer. 89:2133–2139. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu Z, Fang B, Cao J, Zhou Q, Zhu F, Fan
L, Xue L, Huang C and Bo H: LINC00313 regulates the metastasis of
testicular germ cell tumors through epithelial-mesenchyme
transition and immune pathways. Bioengineered. 13:12141–12155.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lengert AVH, Pereira LDNB, Cabral ERM,
Gomes INF, Jesus LM, Gonçalves MFS, Rocha AOD, Tassinari TA, Silva
LSD, Laus AC, et al: Potential new therapeutic approaches for
cisplatin-resistant testicular germ cell tumors. Front Biosci
(Landmark Ed). 27:2452022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sun C, Zhang K, Ni C, Wan J, Duan X, Lou
X, Yao X, Li X, Wang M, Gu Z, et al: Transgelin promotes lung
cancer progression via activation of cancer-associated fibroblasts
with enhanced IL-6 release. Oncogenesis. 12:182023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhong W, Hou H, Liu T, Su S, Xi X, Liao Y,
Xie R, Jin G, Liu X, Zhu L, et al: Cartilage Oligomeric Matrix
Protein promotes epithelial-mesenchymal transition by interacting
with Transgelin in colorectal cancer. Theranostics. 10:8790–8806.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Oshi M, Tokumaru Y, Mukhopadhyay S, Yan L,
Matsuyama R, Endo I and Takabe K: Annexin A1 expression is
associated with Epithelial-Mesenchymal transition (EMT), cell
proliferation, prognosis, and drug response in pancreatic cancer.
Cells. 10:6532021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cortes-Dericks L, Froment L, Boesch R,
Schmid RA and Karoubi G: Cisplatin-resistant cells in malignant
pleural mesothelioma cell lines show ALD(Hhigh)CD44(+) phenotype
and sphere-forming capacity. BMC Cancer. 14:3042014. View Article : Google Scholar
|
|
72
|
Liu YP, Yang CJ, Huang MS, Yeh CT, Wu ATH,
Lee YC, Lai TC, Lee CH, Hsiao YW, Lu J, et al: Cisplatin selects
for multidrug-resistant CD133+ cells in lung adenocarcinoma by
activating notch signaling. Cancer Res. 73:406–416. 2013.
View Article : Google Scholar
|
|
73
|
Schmidtova S, Kalavska K, Gercakova K,
Cierna Z, Miklikova S, Smolkova B, Buocikova V, Miskovska V,
Durinikova E, Burikova M, et al: Disulfiram overcomes cisplatin
resistance in human embryonal carcinoma cells. Cancers (Basel).
11:12242019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Schmidtova S, Dorssers LCJ, Kalavska K,
Gillis AJM, Oosterhuis JW, Stoop H, Miklikova S, Kozovska Z,
Burikova M, Gercakova K, et al: Napabucasin overcomes cisplatin
resistance in ovarian germ cell tumor-derived cell line by
inhibiting cancer stemness. Cancer Cell Int. 20:3642020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Roška J, Wachsmannová L, Hurbanová L,
Šestáková Z, Mueller T, Jurkovičová D and Chovanec M: Differential
gene expression in cisplatin-resistant and -sensitive testicular
germ cell tumor cell lines. Oncotarget. 11:4735–4753. 2020.
View Article : Google Scholar
|
|
76
|
Makino S, Takahashi H, Okuzaki D, Miyoshi
N, Haraguchi N, Hata T, Matsuda C, Yamamoto H, Mizushima T, Mori M
and Doki Y: DCLK1 integrates induction of TRIB3, EMT, drug
resistance and poor prognosis in colorectal cancer. Carcinogenesis.
41:303–312. 2020. View Article : Google Scholar
|
|
77
|
Chen X, Zhang Y, Zhang P, Wei M, Tian T,
Guan Y, Han C, Wei W and Ma Y: IGFBP2 drives epithelial-mesenchymal
transition in hepatocellular carcinoma via activating the
Wnt/β-catenin pathway. Infect Agent Cancer. 18:732023. View Article : Google Scholar
|
|
78
|
Liu S, Sun J, Cai B, Xi X, Yang L, Zhang
Z, Feng Y and Sun Y: NANOG regulates epithelial-mesenchymal
transition and chemoresistance through activation of the STAT3
pathway in epithelial ovarian cancer. Tumor Biol. 37:9671–9680.
2016. View Article : Google Scholar
|
|
79
|
Bu X, Liu Y, Wang L, Yan Z, Xin G and Su
W: Oct4 promoted proliferation, migration, invasion, and
epithelial-mesenchymal transition (EMT) in colon cancer cells by
activating the SCF/c-Kit signaling pathway. Cell Cycle. 22:291–302.
2023. View Article : Google Scholar :
|
|
80
|
Fukusumi T, Guo T, Ren S, Haft S, Liu C,
Sakai A, Ando M, Saito Y, Sadat S and Califano JA: Reciprocal
activation of HEY1 and NOTCH4 under SOX2 control promotes EMT in
head and neck squamous cell carcinoma. Int J Oncol. 58:226–237.
2020. View Article : Google Scholar
|
|
81
|
Abada PB and Howell SB: Cisplatin induces
resistance by triggering differentiation of testicular embryonal
carcinoma cells. PLoS One. 9:e874442014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Honecker F, Kersemaekers AF, Molier M, van
Weeren PC, Stoop H, de Krijger RR, Wolffenbuttel KP, Oosterhuis W,
Bokemeyer C and Looijenga LH: Involvement of E-cadherin and
β-catenin in germ cell tumours and in normal male fetal germ cell
development. J Pathol. 204:167–174. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Young JC, Kerr G, Micati D, Nielsen JE,
Rajpert-De Meyts E, Abud HE and Loveland KL: WNT signalling in the
normal human adult testis and in male germ cell neoplasms. Hum
Reprod. 35:1991–2003. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Schmidtova S, Kalavska K, Liskova V, Plava
J, Miklikova S, Kucerova L, Matuskova M, Rojikova L, Cierna Z,
Rogozea A, et al: Targeting of deregulated Wnt/β-catenin signaling
by PRI-724 and LGK974 inhibitors in germ cell tumor cell lines. Int
J Mol Sci. 22:42632021. View Article : Google Scholar
|
|
85
|
Serrano-Gomez SJ, Maziveyi M and Alahari
SK: Regulation of epithelial-mesenchymal transition through
epigenetic and post-translational modifications. Mol Cancer.
15:182016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Olaizola P, Lee-Law PY, Fernandez-Barrena
MG, Alvarez L, Cadamuro M, Azkargorta M, O'Rourke CJ,
Caballero-Camino FJ, Olaizola I, Macias RIR, et al: Targeting
NAE1-mediated protein hyper-NEDDylation halts
cholangiocarcinogenesis and impacts on tumor-stroma crosstalk in
experimental models. J Hepatol. 77:177–190. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Nawrocki ST, Kelly KR, Smith PG, Espitia
CM, Possemato A, Beausoleil SA, Milhollen M, Blakemore S, Thomas M,
Berger A and Carew JS: Disrupting protein NEDDylation with MLN4924
is a novel strategy to target cisplatin resistance in ovarian
cancer. Clin Cancer Res. 19:3577–3590. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Funke K, Einsfelder U, Hansen A, Arévalo
L, Schneider S, Nettersheim D, Stein V and Schorle H: Genome-scale
CRISPR screen reveals neddylation to contribute to cisplatin
resistance of testicular germ cell tumours. Br J Cancer.
128:2270–2282. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhao Y, Morgan MA and Sun Y: Targeting
Neddylation pathways to inactivate Cullin-RING ligases for
anticancer therapy. Antioxid Redox Signal. 21:2383–2400. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Miranda-Gonçalves V, Lobo J,
Guimarães-Teixeira C, Barros-Silva D, Guimarães R, Cantante M,
Braga I, Maurício J, Oing C, Honecker F, et al: The component of
the m6A writer complex VIRMA is implicated in aggressive
tumor phenotype, DNA damage response and cisplatin resistance in
germ cell tumors. J Exp Clin Cancer Res. 40:2682021. View Article : Google Scholar
|
|
91
|
Port M, Glaesener S, Ruf C, Riecke A,
Bokemeyer C, Meineke V, Honecker F and Abend M: Micro-RNA
expression in cisplatin resistant germ cell tumor cell lines. Mol
Cancer. 10:522011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Skowron MA, Vermeulen M, Winkelhausen A,
Becker TK, Bremmer F, Petzsch P, Schönberger S, Calaminus G, Köhrer
K, Albers P and Nettersheim D: CDK4/6 inhibition presents as a
therapeutic option for paediatric and adult germ cell tumours and
induces cell cycle arrest and apoptosis via canonical and
non-canonical mechanisms. Br J Cancer. 123:378–391. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Noel EE, Yeste-Velasco M, Mao X, Perry J,
Kudahetti SC, Li NF, Sharp S, Chaplin T, Xue L, McIntyre A, et al:
The association of CCND1 overexpression and cisplatin resistance in
testicular germ cell tumors and other cancers. Am J Pathol.
176:2607–2615. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Moyret-Lalle C, Prodhomme MK, Burlet D,
Kashiwagi A, Petrilli V, Puisieux A, Seimiya H and Tissier A: Role
of EMT in the DNA damage response, double-strand break repair
pathway choice and its implications in cancer treatment. Cancer
Sci. 113:2214–2223. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Scheel C and Weinberg RA: Cancer stem
cells and epithelial-mesenchymal transition: Concepts and molecular
links. Semin Cancer Biol. 22:396–403. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Assani G and Zhou Y: Effect of modulation
of epithelial-mesenchymal transition regulators Snail1 and Snail2
on cancer cell radiosensitivity by targeting of the cell cycle,
cell apoptosis and cell migration/invasion. Oncol Lett. 17:23–30.
2019.PubMed/NCBI
|
|
97
|
Damjanov I, Clark RK and Andrews PW:
Cytoskeleton of human embryonal carcinoma cells. Cell Differ.
15:133–139. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tian Q, Xue Y, Zheng W, Sun R, Ji W, Wang
X and An R: Overexpression of hypoxia-inducible factor 1α induces
migration and invasion through Notch signaling. Int J Oncol.
47:728–738. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Micati DJ, Hime GR, McLaughlin EA, Abud HE
and Loveland KL: Differential expression profiles of conserved
Snail transcription factors in the mouse testis. Andrology.
6:362–373. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Micati DJ, Radhakrishnan K, Young JC,
Rajpert-De Meyts E, Hime GR, Abud HE and Loveland KL: Snail factors
in testicular germ cell tumours and their regulation by the BMP4
signalling pathway. Andrology. 8:1456–14570. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Moody SE, Perez D, Pan TC, Sarkisian CJ,
Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD and
Chodosh LA: The transcriptional repressor Snail promotes mammary
tumor recurrence. Cancer Cell. 8:197–209. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Dominis M: The generation and in vivo
differentiation of murine embryonal stem cells genetically null for
either N-cadherin or N-and P-cadherin [Internet]. Article in the
International Journal of Developmental Biology. 1999, Available
from: https://www.researchgate.net/publication/12607650.
|
|
103
|
Sasaki T, Forsberg E, Bloch W, Addicks K,
Fässler R and Timpl R: Deficiency of β1 Integrins in teratoma
interferes with basement membrane assembly and Laminin-1
expression. Exp Cell Res. 238:70–81. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Rusciano D, Lorenzoni P and Burger MM: The
role of both specific cellular adhesion and growth promotion in
liver colonization by F9 embryonal carcinoma cells. Int J Cancer.
48:450–456. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Rossin R, Berndorff D, Friebe M,
Dinkelborg LM and Welch MJ: Small-animal PET of tumor angiogenesis
using a 76Br-labeled human recombinant antibody fragment to the
ED-B domain of Fibronectin. J Nuclear Med. 48:1172–1179. 2007.
View Article : Google Scholar
|
|
106
|
Andrews PA, Jones JA, Varki NM and Howell
SB: Rapid emergence of acquired cis-Diamminedichloroplatinum(II)
resistance in an in vivo model of human ovarian carcinoma. Cancer
Commun. 2:93–100. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Caffrey PB and Frenkel GD: Prevention of
carboplatin-induced resistance in human ovarian tumor xenografts by
selenite. Anticancer Res. 33:4249–4254. 2013.PubMed/NCBI
|
|
108
|
Caffrey PB, Frenkel GD, Mcandrew KL and
Marks K: A model of the development of cisplatin resistance in
human small cell lung cancer Xenografts. In Vivo. 30:745–750. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Jones C, Dziadowicz S, Suite S, Eby A,
Chen WC, Hu G and Hazlehurst LA: Emergence of resistance to MTI-101
selects for a MET genotype and phenotype in EGFR driven PC-9 and
PTEN deleted H446 lung cancer cell lines. Cancers (Basel).
14:30622022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Fuchs J, Wenderoth M, von Schweinitz D,
Haindl J and Leuschner I: Comparative activity of cisplatin,
ifosfamide, doxorubicin, carboplatin, and etoposide in
heterotransplanted hepatoblastoma. Cancer. 83:2400–2407. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Warmann S, Hunger M, Teichmann B, Flemming
P, Gratz KF and Fuchs J: The role of the MDR1 gene in the
development of multidrug resistance in human hepatoblastoma.
Cancer. 95:1795–1801. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Rendón-Barrón MJ, Pérez-Arteaga E,
Delgado-Waldo I, Coronel-Hernández J, Pérez-Plasencia C,
Rodríguez-Izquierdo F, Linares R, González-Esquinca AR,
Álvarez-González I, Madrigal-Bujaidar E and Jacobo-Herrera NJ:
Laherradurin inhibits tumor growth in an Azoxymethane/dextran
sulfate sodium colorectal cancer model in vivo. Cancers (Basel).
16:5732024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Venkatasamy A, Guerin E, Blanchet A,
Orvain C, Devignot V, Jung M, Jung AC, Chenard MP, Romain B,
Gaiddon C and Mellitzer G: Ultrasound and transcriptomics identify
a differential impact of cisplatin and histone deacetylation on
tumor structure and microenvironment in a Patient-derived in vivo
model of gastric cancer. Pharmaceutics. 13:14852021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Satta T, Isobe K, Yamauchi M, Nakashima I,
Akiyama S, Itou K, Watanabe T and Takagi H: Establishment of drug
resistance in human gastric and colon carcinoma xenograft lines.
Jpn J Cancer Res. 82:593–598. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Rocha CRR, Garcia CCM, Vieira DB, Quinet
A, de Andrade-Lima LC, Munford V, Belizário JE and Menck CF:
Glutathione depletion sensitizes cisplatin- and
temozolomide-resistant glioma cells in vitro and in vivo. Cell
Death Dis. 5:e1505. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Gumbarewicz E, Tylżanowski P, Łuszczki J,
Kałafut J, Czerwonka A, Szumiło J, Wawruszak A, Kupisz K, Polberg
K, Smok-Kalwat J and Stepulak A: Differential molecular response of
larynx cancer cell lines to combined VPA/CDDP treatment. Am J
Cancer Res. 11:2821–2837. 2021.PubMed/NCBI
|
|
117
|
Albany C, Hever-Jardine MP, von Herrmann
KM, Yim CY, Tam J, Warzecha JM, Shin L, Bock SE, Curran BS,
Chaudhry AS, et al: Refractory testicular germ cell tumors are
highly sensitive to the second generation DNA methylation inhibitor
guadecitabine. Oncotarget. 8:2949–2959. 2017. View Article : Google Scholar :
|
|
118
|
Jørgensen A, Blomberg Jensen M, Nielsen
JE, Juul A and Rajpert-De Meyts E: Influence of vitamin D on
cisplatin sensitivity in testicular germ cell cancer-derived cell
lines and in a NTera2 xenograft model. J Steroid Biochem Mol Biol.
136:238–246. 2013. View Article : Google Scholar
|
|
119
|
de Vries G, Rosas-Plaza X, Meersma GJ,
Leeuwenburgh VC, Kok K, Suurmeijer AJH, van Vugt MATM, Gietema JA
and de Jong S: Establishment and characterisation of testicular
cancer patient-derived xenograft models for preclinical evaluation
of novel therapeutic strategies. Sci Rep. 10:189382020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Juliachs M, Castillo-Ávila W, Vidal A,
Piulats JM, Garcia del Muro X, Condom E, Hernández-Losa J, Teixidó
C, Pandiella A, Graupera M, et al: ErbBs inhibition by lapatinib
blocks tumor growth in an orthotopic model of human testicular germ
cell tumor. Int J Cancer. 133:235–246. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kitayama S, Ikeda K, Sato W, Takeshita H,
Kawakami S, Inoue S and Horie K: Testis-expressed gene 11 inhibits
cisplatin-induced DNA damage and contributes to chemoresistance in
testicular germ cell tumor. Sci Rep. 12:184232022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Sakurai Y, Ichinoe M, Yoshida K, Nakazato
Y, Saito S, Satoh M, Nakada N, Sanoyama I, Umezawa A, Numata Y, et
al: Inactivation of REV7 enhances chemosensitivity and overcomes
acquired chemoresistance in testicular germ cell tumors. Cancer
Lett. 489:100–110. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Olayioye MA, Neve RM, Lane HA and Hynes
NE: The ErbB signaling network: Receptor heterodimerization in
development and cancer. EMBO J. 19:3159–3167. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Yonesaka K, Zejnullahu K, Okamoto I, Satoh
T, Cappuzzo F, Souglakos J, Ercan D, Rogers A, Roncalli M, Takeda
M, et al: Activation of ERBB2 signaling causes resistance to the
EGFR-directed therapeutic antibody cetuximab. Sci Transl Med.
3:99ra862011. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Jonckheere S, Adams J, De Groote D,
Campbell K, Berx G and Goossens S: Epithelial-mesenchymal
transition (EMT) as a therapeutic target. Cells Tissues Organs.
211:157–182. 2022. View Article : Google Scholar
|
|
126
|
Zhao HB, Wang C, Li RX, Tang CL, Li MQ, Du
MR, Hou XF and Li DJ: E-Cadherin, as a negative regulator of
invasive behavior of human trophoblast cells, is Down-regulated by
cyclosporin A via epidermal growth Factor/extracellular
Signal-regulated protein kinase signaling pathway1. Biol Reprod.
83:370–376. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Hsien Lai S, Zervoudakis G, Chou J, Gurney
ME and Quesnelle KM: PDE4 subtypes in cancer. Oncogene.
39:3791–3802. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Huang Y, Zheng Y, Wang Q and Qi C:
Rolipram suppresses migration and invasion of human choriocarcinoma
cells by inhibiting phosphodiesterase 4-mediated
epithelial-mesenchymal transition. J Biochem Mol Toxicol.
37:e233632023. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Dyshlovoy SA, Venz S, Hauschild J,
Tabakmakher KM, Otte K, Madanchi R, Walther R, Guzii AG, Makarieva
TN, Shubina LK, et al: Anti-migratory activity of marine alkaloid
monanchocidin A-proteomics-based discovery and confirmation.
Proteomics. 16:1590–1603. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ooki A, Satoh T, Muro K, Takashima A,
Kadowaki S, Sakai D, Ichimura T, Mitani S, Kudo T, Chin K, et al: A
phase 1b study of andecaliximab in combination with S-1 plus
platinum in Japanese patients with gastric adenocarcinoma. Sci Rep.
12:11002022. View Article : Google Scholar
|
|
131
|
Bendell J, Sharma S, Patel MR, Windsor KS,
Wainberg ZA, Gordon M, Chaves J, Berlin J, Brachmann CB,
Zavodovskaya M, et al: Safety and efficacy of andecaliximab
(GS-5745) plus gemcitabine and nab-paclitaxel in patients with
advanced pancreatic adenocarcinoma: Results from a phase I study.
Oncologist. 25:954–962. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Yoshikawa AK, Yamaguchi K, Muro K,
Takashima A, Ichimura T, Sakai D, Kadowaki S, Chin K, Kudo T,
Mitani S, et al: Safety and tolerability of andecaliximab as
monotherapy and in combination with an anti-PD-1 antibody in
Japanese patients with gastric or gastroesophageal junction
adenocarcinoma: A phase 1b study. J Immunother Cancer.
10:e0035182022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Shah MA, Cunningham D, Metges JP, Van
Cutsem E, Wainberg Z, Elboudwarej E, Lin KW, Turner S, Zavodovskaya
M, Inzunza D, et al: Randomized, open-label, phase 2 study of
andecaliximab plus nivolumab versus nivolumab alone in advanced
gastric cancer identifies biomarkers associated with survival. J
Immunother Cancer. 9:e0035802021. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Coleman N, Stephen B, Fu S, Karp D,
Subbiah V, Ahnert JR, Piha-Paul SA, Wright J, Fessahaye SN, Ouyang
F, et al: Phase I study of sapanisertib (CB-228/TAK-228/MLN0128) in
combination with Ziv-aflibercept in patients with advanced solid
tumors. Cancer Med. 13:e68772024. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Ferrarotto R, Swiecicki PL, Zandberg DP,
Baiocchi RA, Wesolowski R, Rodriguez CP, McKean M, Kang H, Monga V,
Nath R, et al: PRT543, a protein arginine methyltransferase 5
inhibitor, in patients with advanced adenoid cystic carcinoma: An
open-label, phase I dose-expansion study. Oral Oncol.
149:1066342024. View Article : Google Scholar
|
|
136
|
Xi M, Guo S, Bayin C, Peng L, Chuffart F,
Bourova-Flin E, Rousseaux S, Khochbin S, Mi JQ and Wang J:
Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute
lymphoblastic leukemia. Front Med. 16:442–458. 2022. View Article : Google Scholar
|
|
137
|
Falchook GS, Wheler JJ, Naing A, Jackson
EF, Janku F, Hong D, Ng CS, Tannir NM, Lawhorn KN, Huang M, et al:
Targeting hypoxia-inducible factor-1α (HIF-1α) in combination with
antiangiogenic therapy: A phase I trial of bortezomib plus
bevacizumab. Oncotarget. 5:10280–10292. 2014. View Article : Google Scholar : PubMed/NCBI
|