You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Valle JW, Kelley RK, Nervi B, Oh DY and Zhu AX: Biliary tract cancer. Lancet. 397:428–444. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, The BT, Wongkham S and Gores GJ: Cholangiocarcinoma. Nat Rev Dis Primers. 7:652021. View Article : Google Scholar : PubMed/NCBI | |
|
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.PubMed/NCBI | |
|
Torre LA, Siegel RL, Islami F, Bray F and Jemal A: Worldwide burden of and trends in mortality from gallbladder and other biliary tract cancers. Clin Gastroenterol Hepatol. 16:427–437. 2018. View Article : Google Scholar | |
|
Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F and Cree IA; WHO classification of tumours editorial board: The 2019 WHO classification of tumours of the digestive system. Histopathology. 76:182–188. 2020. View Article : Google Scholar : | |
|
Nakanuma Y and Kakuda Y: Pathologic classification of cholangiocarcinoma: New concepts. Best Pract Res Clin Gastroenterol. 29:277–293. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Roa JC, García P, Kapoor VK, Maithel SK, Javle M and Koshiol J: Gallbladder cancer. Nat Rev Dis Primers. 8:692022. View Article : Google Scholar : PubMed/NCBI | |
|
Vogel A, Bridgewater J, Edeline J, Kelley RK, Klümpen HJ, Malka D, Primrose JN, Rimassa L, Stenzinger A, Valle JW, et al: Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 34:127–140. 2023. View Article : Google Scholar | |
|
Ruff SM, Cloyd JM and Pawlik TM: Annals of surgical oncology practice guidelines series: Management of primary liver and biliary tract cancers. Ann Surg Oncol. 30:7935–7949. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Baria K, De Toni EN, Yu B, Jiang Z, Kabadi SM and Malvezzi M: Worldwide incidence and mortality of biliary tract cancer. Gastro Hep Adv. 1:618–626. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lamarca A, Edeline J and Goyal L: How I treat biliary tract cancer. ESMO Open. 7:1003782022. View Article : Google Scholar : PubMed/NCBI | |
|
Benson AB, D'Angelica MI, Abrams T, Abbott DE, Ahmed A, Anaya DA, Anders R, Are C, Bachini M, Binder D, et al: NCCN Guidelines® insights: Biliary tract cancers, version 2.2023. J Natl Compr Canc Netw. 21:694–704. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Harding JJ, Khalil DN, Fabris L and Abou-Alfa GK: Rational development of combination therapies for biliary tract cancers. J Hepatol. 78:217–228. 2023. View Article : Google Scholar | |
|
Palmieri LJ, Lavolé J, Dermine S, Brezault C, Dhooge M, Barré A, Chaussade S and Coriat R: The choice for the optimal therapy in advanced biliary tract cancers: Chemotherapy, targeted therapies or immunotherapy. Pharmacol Ther. 210:1075172020. View Article : Google Scholar : PubMed/NCBI | |
|
Lamarca A, Barriuso J, McNamara MG and Valle JW: Molecular targeted therapies: Ready for 'prime time' in biliary tract cancer. J Hepatol. 73:170–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Koren E and Fuchs Y: Modes of regulated cell death in cancer. Cancer Discov. 11:245–265. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An Iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Weinlich R, Oberst A, Beere HM and Green DR: Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar | |
|
Wyllie AH: Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 284:555–556. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Bergsbaken T and Cookson BT: Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 3:e1612007. View Article : Google Scholar : PubMed/NCBI | |
|
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014. View Article : Google Scholar | |
|
Yang WS and Stockwell BR: Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 26:165–176. 2016. View Article : Google Scholar : | |
|
Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao GB, Chen L, Pan JF, Lei T, Cai X, Hao Z, Wang Q, Shan G and Li J: LncRNA RGMB-AS1 inhibits HMOX1 ubiquitination and NAA10 activation to induce ferroptosis in non-small cell lung cancer. Cancer Lett. 590:2168262024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar | |
|
Li J, Liu J, Zhou Z, Wu R, Chen X, Yu C, Stockwell B, Kroemer G, Kang R and Tang D: Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci Transl Med. 15:eadg30492023. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y and Zhang Q: Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol. 14:192021. View Article : Google Scholar | |
|
Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dančík V, et al: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 10:16172019. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Z, Song J, Yung BC, Zhou Z, Wu A and Chen X: Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 30:e17040072018. View Article : Google Scholar : PubMed/NCBI | |
|
Friedmann Angeli JP, Krysko DV and Conrad M: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 19:405–414. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hassannia B, Vandenabeele P and Vanden Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Angeli JPF, Shah R, Pratt DA and Conrad M: Ferroptosis inhibition: Mechanisms and opportunities. Trends Pharmacol Sci. 38:489–498. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI | |
|
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : | |
|
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : | |
|
Zeng F, Nijiati S, Tang L, Ye J, Zhou Z and Chen X: Ferroptosis detection: From approaches to applications. Angew Chem Int Ed Engl. 62:e2023003792023. View Article : Google Scholar : PubMed/NCBI | |
|
Frey PA and Reed GH: The ubiquity of iron. ACS Chem Biol. 7:1477–1481. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hentze MW, Muckenthaler MU and Andrews NC: Balancing acts: Molecular control of mammalian iron metabolism. Cell. 117:285–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Gonciarz RL, Collisson EA and Renslo AR: Ferrous Iron-dependent pharmacology. Trends Pharmacol Sci. 42:7–18. 2021. View Article : Google Scholar | |
|
Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Geng N, Shi BJ, Li SL, Zhong ZY, Li YC, Xua WL, Zhou H and Cai JH: Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci. 22:3826–3836. 2018.PubMed/NCBI | |
|
Wang Y, Liu Y, Liu J, Kang R and Tang D: NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem Biophys Res Commun. 531:581–587. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 551:639–643. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, Ren X, An Y, Wu Y, Sun W, et al: DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 131:356–369. 2019. View Article : Google Scholar | |
|
Knutson MD: Non-transferrin-bound iron transporters. Free Radic Biol Med. 133:101–111. 2019. View Article : Google Scholar | |
|
Song N, Zhang J, Zhai J, Hong J, Yuan C and Liang M: Ferritin: A multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery. Acc Chem Res. 54:3313–3325. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, Zhang Z and Wang X: Membrane Damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 81:355–369.e10. 2021. View Article : Google Scholar | |
|
Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar | |
|
Magtanong L, Ko PJ, To M, Cao JY, Forcina GC, Tarangelo A, Ward CC, Cho K, Patti GJ, Nomura DK, et al: Exogenous monounsaturated fatty acids promote a Ferroptosis-resistant cell state. Cell Chem Biol. 26:420–432.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, Furdui CM, Hegde P, Torti FM and Torti SV: Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79:5355–5366. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, et al: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 172:409–422.e421. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dai C, Chen X, Li J, Comish P, Kang R and Tang D: Transcription factors in ferroptotic cell death. Cancer Gene Ther. 27:645–656. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP Cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA, Birsoy K, et al: Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 16:1351–1360. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR and Jiang X: Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 186:2748–2764.e2722. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lei G, Zhuang L and Gan B: The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell. 42:513–534. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Elhanani O, Ben-Uri R and Keren L: Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell. 41:404–420. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cui K, Wang K and Huang Z: Ferroptosis and the tumor microenvironment. J Exp Clin Cancer Res. 43:3152024. View Article : Google Scholar : PubMed/NCBI | |
|
Bhowmick S, Banerjee S, Shridhar V and Mondal S: Reprogrammed immuno-metabolic environment of cancer: The driving force of ferroptosis resistance. Mol Cancer. 24:1612025. View Article : Google Scholar : PubMed/NCBI | |
|
Kim R, Taylor D, Vonderheide RH and Gabrilovich DI: Ferroptosis of immune cells in the tumor microenvironment. Trends Pharmacol Sci. 44:542–552. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Sun L, Guo J and Ma J: The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: Molecular mechanisms and therapeutic controversy. Cancer Commun (Lond). 43:1071–1096. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Demuynck R, Efimova I, Naessens F and Krysko DV: Immunogenic ferroptosis and where to find it? J Immunother Cancer. 9:e0034302021. View Article : Google Scholar : PubMed/NCBI | |
|
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G and Galluzzi L: Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11:10132020. View Article : Google Scholar : PubMed/NCBI | |
|
Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao YY, Lian JX, Lan Z, Zou KL, Wang WM and Yu GT: Ferroptosis promotes anti-tumor immune response by inducing immunogenic exposure in HNSCC. Oral Dis. 29:933–941. 2023. View Article : Google Scholar | |
|
Han W, Duan X, Ni K, Li Y, Chan C and Lin W: Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy. Biomaterials. 280:1213152022. View Article : Google Scholar : | |
|
Wan C, Sun Y, Tian Y, Lu L, Dai X, Meng J, Huang J, He Q, Wu B, Zhang Z, et al: Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci Adv. 6:eaay97892020. View Article : Google Scholar : PubMed/NCBI | |
|
Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C, Bachert C, Coppieters F, et al: Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 8:e0013692020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Zhu S, Zeng L, Li J, Klionsky DJ, Kroemer G, Jiang J, Tang D and Kang R: DCN released from ferroptotic cells ignites AGER-dependent immune responses. Autophagy. 18:2036–2049. 2022. View Article : Google Scholar : | |
|
Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS and Vandenabeele P: Cancer cells dying from ferroptosis impede dendritic Cell-mediated Anti-tumor immunity. Nat Commun. 13:36762022. View Article : Google Scholar : PubMed/NCBI | |
|
Han C, Ge M, Xing P, Xia T, Zhang C, Ma K, Ma Y, Li S, Li W, Liu X, et al: Cystine deprivation triggers CD36-mediated ferroptosis and dysfunction of tumor infiltrating CD8+ T cells. Cell Death Dis. 15:1452024. View Article : Google Scholar : | |
|
Luo X, Gong HB, Gao HY, Wu YP, Sun WY, Li ZQ, Wang G, Liu B, Liang L, Kurihara H, et al: Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 28:1971–1989. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kim KS, Choi B, Choi H, Ko MJ and Kim DH and Kim DH: Enhanced natural killer cell anti-tumor activity with nanoparticles mediated ferroptosis and potential therapeutic application in prostate cancer. J Nanobiotechnology. 20:4282022. View Article : Google Scholar : PubMed/NCBI | |
|
Drijvers JM, Gillis JE, Muijlwijk T, Nguyen TH, Gaudiano EF, Harris IS, LaFleur MW, Ringel AE, Yao CH, Kurmi K, et al: Pharmacologic screening identifies metabolic vulnerabilities of CD8+ T cells. Cancer Immunol Res. 9:184–199. 2021. View Article : Google Scholar : | |
|
Arensman MD, Yang XS, Leahy DM, Toral-Barza L, Mileski M, Rosfjord EC, Wang F, Deng S, Myers JS, Abraham RT and Eng CH: Cystine-glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc Natl Acad Sci USA. 116:9533–9542. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Chaudhary O, Rodríguez-Morales P, Sun X, Chen D, Zappasodi R, Xu Z, Pinto AFM, Williams A, Schulze I, et al: Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity. 54:1561–1577.e7. 2021. View Article : Google Scholar | |
|
Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J and Yang K: The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 35:1092352021. View Article : Google Scholar : PubMed/NCBI | |
|
Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, St Croix CM, Mikulska-Ruminska K, Liu B, Shrivastava IH, et al: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 16:278–290. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu H, Klement JD, Lu C, Redd PS, Yang D, Smith AD, Poschel DB, Zou J, Liu D, Wang PG, et al: Asah2 represses the p53-Hmox1 axis to protect Myeloid-derived suppressor cells from ferroptosis. J Immunol. 206:1395–1404. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ždralević M, Vučetić M, Daher B, Marchiq I, Parks SK and Pouysségur J: Disrupting the 'Warburg effect' re-routes cancer cells to OXPHOS offering a vulnerability point via 'ferroptosis'-induced cell death. Adv Biol Regul. 68:55–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Amos A, Amos A, Wu L and Xia H: The Warburg effect modulates DHODH role in ferroptosis: A review. Cell Commun Signal. 21:1002023. View Article : Google Scholar : PubMed/NCBI | |
|
Song X, Liu J, Kuang F, Chen X, Zeh HJ III, Kang R, Kroemer G, Xie Y and Tang D: PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep. 34:1087672021. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Y, Cui C, Jiao D and Zhu X: JAK/STAT signaling as a key regulator of ferroptosis: Mechanisms and therapeutic potentials in cancer and diseases. Cancer Cell Int. 25:832025. View Article : Google Scholar : PubMed/NCBI | |
|
Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31197. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia-Bermudez J, Baudrier L, Bayraktar EC, Shen Y, La K, Guarecuco R, Yucel B, Fiore D, Tavora B, Freinkman E, et al: Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 567:118–122. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL and Faust JR: Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine. J Biol Chem. 275:28110–28119. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Qu L, He X, Tang Q, Fan X, Liu J and Lin A: Iron metabolism, ferroptosis, and lncRNA in cancer: Knowns and unknowns. J Zhejiang Univ Sci B. 23:844–862. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Xin W, Anderson GJ, Li R, Gao L, Chen S, Zhao J and Liu S: Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis. 13:402022. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Ling Y, Zhang Z, Mertens RT, Cao Q, Xu X, Guo K, Shi Q, Zhang X, Huo L, et al: Butyrate reverses ferroptosis resistance in colorectal cancer by inducing c-Fos-dependent xCT suppression. Redox Biol. 65:1028222023. View Article : Google Scholar : PubMed/NCBI | |
|
Cui W, Guo M, Liu D, Xiao P, Yang C, Huang H, Liang C, Yang Y, Fu X, Zhang Y, et al: Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nat Cell Biol. 26:124–137. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cavalli G and Heard E: Advances in epigenetics link genetics to the environment and disease. Nature. 571:489–499. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S and Zheng X: Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235:3425–3437. 2020. View Article : Google Scholar | |
|
Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X, Huang B, Shan Z, Liu J, Fan S, et al: Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med. 160:552–565. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JW, Min DW, Kim D, Kim J, Kim MJ, Lim H and Lee JY: GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis. Sci Rep. 13:88722023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J, You JH, Kim MS and Roh JL: Epigenetic reprogramming of epithelial-mesenchymal transition promotes ferroptosis of head and neck cancer. Redox Biol. 37:1016972020. View Article : Google Scholar : PubMed/NCBI | |
|
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : | |
|
Liu J, Xia X and Huang P: xCT: A critical molecule that links cancer metabolism to redox signaling. Mol Ther. 28:2358–2366. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pontel LB, Bueno-Costa A, Morellato AE, Carvalho Santos J, Roué G and Esteller M: Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing. Redox Biol. 55:1024082022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Kong X, Feng X and Jiang DS: Effects of DNA, RNA, and protein methylation on the regulation of ferroptosis. Int J Biol Sci. 19:3558–3575. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lv D, Zhong C, Dixit D, Yang K, Wu Q, Godugu B, Prager BC, Zhao G, Wang X, Xie Q, et al: EGFR promotes ALKBH5 nuclear retention to attenuate N6-methyladenosine and protect against ferroptosis in glioblastoma. Mol Cell. 83:4334–4351.e4337. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Xiu M, Wang J, Gao Y and Li Y: METTL16-SENP3-LTF axis confers ferroptosis resistance and facilitates tumorigenesis in hepatocellular carcinoma. J Hematol Oncol. 17:782024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J and Wang H: Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther. 8:4492023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun QR, He Q, Zhao S, Zhang GA, Wang Y and Chen S: Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 20:e475632019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma M, Kong P, Huang Y, Wang J, Liu X, Hu Y, Chen X, Du C and Yang H: Activation of MAT2A-ACSL3 pathway protects cells from ferroptosis in gastric cancer. Free Radic Biol Med. 181:288–299. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Liu W, Zhang X, Wu F, Sun D and Wang Z: Ketamine suppresses proliferation and induces ferroptosis and apoptosis of breast cancer cells by targeting KAT5/GPX4 axis. Biochem Biophys Res Commun. 585:111–116. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Du L, Qiao Y, Zhang X, Zheng W, Wu Q, Chen Y, Zhu G, Liu Y, Bian Z, et al: Ferroptosis is governed by differential regulation of transcription in liver cancer. Redox Biol. 24:1012112019. View Article : Google Scholar : PubMed/NCBI | |
|
Zille M, Kumar A, Kundu N, Bourassa MW, Wong VSC, Willis D, Karuppagounder SS and Ratan RR: Ferroptosis in neurons and cancer cells is similar but differentially regulated by histone deacetylase inhibitors. eNeuro. 6:ENEURO.0263-18.20192019. View Article : Google Scholar : PubMed/NCBI | |
|
Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK and Karunagaran D: SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett. 522:211–224. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Deng SH, Wu DM, Li L, Liu T, Zhang T, Li J, Yu Y, He M, Zhao YY, Han R and Xu Y: miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun. 549:54–60. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bao C, Zhang J, Xian SY and Chen F: MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res. 55:853–864. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma LL, Liang L, Zhou D and Wang SW: Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4. Neoplasma. 68:165–173. 2021. View Article : Google Scholar | |
|
Qi W, Li Z, Xia L, Dai J, Zhang Q, Wu C and Xu S: LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep. 9:161852019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Guo S, Wang S, Li X, Hou D, Li H, Wang L, Xu Y, Ma B, Wang H and Jiang X: LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling. Ecotoxicol Environ Saf. 220:1123762021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang B, Wang H, Liu S, Hao M, Luo D, Zhou Y, Huang Y, Nian Y, Zhang L, Chu B and Yin C: Palmitoylation-dependent regulation of GPX4 suppresses ferroptosis. Nat Commun. 16:8672025. View Article : Google Scholar : PubMed/NCBI | |
|
Gong R, Wan X, Jiang S, Guan Y, Li Y, Jiang T, Chen Z, Zhong C, He L, Xiang Z, et al: GPX4-AUTAC induces ferroptosis in breast cancer by promoting the selective autophagic degradation of GPX4 mediated by TRAF6-p62. Cell Death Differ. May 20–2025. View Article : Google Scholar : Epub ahead of print. | |
|
Yao L, Yang N, Zhou W, Akhtar MH, Zhou W, Liu C, Song S, Li Y, Han W and Yu C: Exploiting cancer vulnerabilities by blocking of the DHODH and GPX4 pathways: A multifunctional Bodipy/PROTAC nanoplatform for the efficient synergistic ferroptosis therapy. Adv Healthc Mater. 12:e23008712023. View Article : Google Scholar : PubMed/NCBI | |
|
Dong J, Ma F, Cai M, Cao F, Li H, Liang H, Li Y, Ding G, Li J, Cheng X and Qin JJ: Heat shock protein 90 interactome-mediated proteolysis targeting chimera (HIM-PROTAC) degrading glutathione peroxidase 4 to trigger ferroptosis. J Med Chem. 67:16712–16736. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Zhu L, Li T, Lin X, Zheng Y, Xu D, Guo Y, Zhang Z, Fu Y, Wang H, et al: Disruption of MerTK increases the efficacy of checkpoint inhibitor by enhancing ferroptosis and immune response in hepatocellular carcinoma. Cell Rep Med. 5:1014152024. View Article : Google Scholar : PubMed/NCBI | |
|
Lamperis SM, McMahon KM, Calvert AE, Rink JS, Vasan K, Pandkar MR, Crentsil EU, Chalmers ZR, McDonald NR, Kosmala CJ, et al: CRISPR screen reveals a simultaneous targeted mechanism to reduce cancer cell selenium and increase lipid oxidation to induce ferroptosis. Proc Natl Acad Sci USA. 122:e25028761222025. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Ye T, Miao H, Liu M, Wen L, Tian Y, Fu Z, Sun L, Wang L and Wang Y: Antibody-functionalized iron-based nanoplatform for ferroptosis-augmented targeted therapy of HER2-positive breast cancer. Bioact Mater. 52:702–718. 2025.PubMed/NCBI | |
|
Burris HA III, Okusaka T, Vogel A, Lee MA, Takahashi H, Breder V, Blanc JF, Li J, Bachini M, Żotkiewicz M, et al: Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer (TOPAZ-1): Patient-reported outcomes from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 25:626–635. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kelley RK, Ueno M, Yoo C, Finn RS, Furuse J, Ren Z, Yau T, Klümpen HJ, Chan SL, Ozaka M, et al: Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 401:1853–1865. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Liu X, Jin S, Chen Y and Guo R: Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheok CF, Verma CS, Baselga J and Lane DP: Translating p53 into the clinic. Nat Rev Clin Oncol. 8:25–37. 2011. View Article : Google Scholar | |
|
Bykov VJN, Eriksson SE, Bianchi J and Wiman KG: Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 18:89–102. 2018. View Article : Google Scholar | |
|
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng C, Lin J, Zhang K, Ou H, Shen K, Liu Q, Wei Z, Dong X, Zeng X, Zeng L, et al: SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci. 113:3766–3775. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Ma Y, Qi F, Lei J, Chen F, Sun W, Wang D, Zhou S, Liu Z, Lu Z, et al: HSDL2 knockdown promotes the progression of cholangiocarcinoma by inhibiting ferroptosis through the P53/SLC7A11 axis. World J Surg Oncol. 21:2932023. View Article : Google Scholar : PubMed/NCBI | |
|
Cai C, Zhu Y, Mu J, Liu S, Yang Z, Wu Z, Zhao C, Song X, Ye Y, Gu J, et al: DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis. Cell Signal. 108:1107102023. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Z, Liu Q, Gao Y, Wang R, Qi Y, Wang D, Chen L, Yin X, He M and Li W: GOLPH3 promotes tumor malignancy via inhibition of ferroptosis by upregulating SLC7A11 in cholangiocarcinoma. Mol Carcinog. 63:912–925. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Toshida K, Itoh S, Iseda N, Izumi T, Yoshiya S, Toshima T, Ninomiya M, Iwasaki T, Oda Y and Yoshizumi T: Impact of TP53-induced glycolysis and apoptosis regulator on malignant activity and resistance to ferroptosis in intrahepatic cholangiocarcinoma. Cancer science. 115:170–183. 2024. View Article : Google Scholar | |
|
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
|
Kerins MJ and Ooi A: The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 29:1756–1773. 2018. View Article : Google Scholar : | |
|
Huang HX, Yang G, Yang Y, Yan J, Tang XY and Pan Q: TFAP2A is a novel regulator that modulates ferroptosis in gallbladder carcinoma cells via the Nrf2 signalling axis. Eur Rev Med Pharmacol Sci. 24:4745–4755. 2020.PubMed/NCBI | |
|
Zheng X, Li H, Lin J, Li P, Yang X, Luo Z and Jin L: METTL3-mediated m6A modification promotes chemoresistance of intrahepatic cholangiocarcinoma by up-regulating NRF2 to inhibit ferroptosis in cisplatin-resistant cells. J Chemother. 37:596–606. 2025. View Article : Google Scholar | |
|
Zhao S, Cao J, Liang R, Peng T, Wu S, Liu Z, Wu Y, Song L, Sun C, Liu Y, et al: METTL16 suppresses ferroptosis in cholangiocarcinoma by promoting ATF4 via m6A modification. Int J Biol Sci. 21:189–203. 2025. View Article : Google Scholar : | |
|
Ursini F, Maiorino M, Valente M, Ferri L and Gregolin C: Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 710:197–211. 1982. View Article : Google Scholar : PubMed/NCBI | |
|
Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A and Prolla TA: The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med. 34:496–502. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hori Y, Yoh T, Nishino H, Okura K, Kurimoto M, Takamatsu Y, Satoh M, Nishio T, Koyama Y, Ishii T, et al: Ferroptosis-related gene glutathione peroxidase 4 promotes reprogramming of glucose metabolism via Akt-mTOR axis in intrahepatic cholangiocarcinoma. Carcinogenesis. 45:119–130. 2024. View Article : Google Scholar | |
|
Lei S, Cao W, Zeng Z, Zhang Z, Jin B, Tian Q, Wu Y, Zhang T, Li D, Hu C, et al: JUND/linc00976 promotes cholangiocarcinoma progression and metastasis, inhibits ferroptosis by regulating the miR-3202/GPX4 axis. Cell Death Dis. 13:9672022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Z, Zheng Y, He H, Yang L, Yang J, Li M, Dai W and Huang H: FBXO31 sensitizes cancer stem cells-like cells to cisplatin by promoting ferroptosis and facilitating proteasomal degradation of GPX4 in cholangiocarcinoma. Liver Int. 42:2871–2888. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen ZW, Shan JJ, Chen M, Wu Z, Zhao YM, Zhu HX, Jin X, Wang YX, Wu YB, Xiang Z, et al: Targeting GPX4 to induce ferroptosis overcomes chemoresistance mediated by the PAX8-AS1/GPX4 axis in intrahepatic cholangiocarcinoma. Adv Sci (Weinh). 12:e010422025. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : | |
|
Gan B: ACSL4, PUFA, and ferroptosis: New arsenal in anti-tumor immunity. Signal Transduct Target Ther. 7:1282022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Fan S, Wang Y, Chen R, Wang Z, Zhang Y, Jiang W, Chen Y, Xu X, Yu Y, et al: ACSL4 serves as a novel prognostic biomarker correlated with immune infiltration in Cholangiocarcinoma. BMC Cancer. 23:4442023. View Article : Google Scholar : PubMed/NCBI | |
|
Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, Sell A, Wei S, Grove S, Johnson JK, et al: CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 40:365–378.e6. 2022. View Article : Google Scholar : | |
|
Wang Y, Hu M, Cao J, Wang F, Han JR, Wu TW, Li L, Yu J, Fan Y, Xie G, et al: ACSL4 and polyunsaturated lipids support metastatic extravasation and colonization. Cell. 188:412–429.e27. 2025. View Article : Google Scholar | |
|
Huang Q, Ru Y, Luo Y, Luo X, Liu D, Ma Y, Zhou X, Linghu M, Xu W, Gao F and Huang Y: Identification of a targeted ACSL4 inhibitor to treat ferroptosis-related diseases. Sci Adv. 10:eadk12002024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Li Y, Cao D, Qiu S, Li Y, Jiang C, Bian R, Yang Y, Li L, Li X, et al: SIRT3 inhibits gallbladder cancer by induction of AKT-dependent ferroptosis and blockade of epithelial-mesenchymal transition. Cancer Lett. 510:93–104. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sae-Fung A, Vinayavekhin N, Fadeel B and Jitkaew S: ACSL3 is an unfavorable prognostic marker in cholangiocarcinoma patients and confers ferroptosis resistance in cholangiocarcinoma cells. NPJ Precis Oncol. 8:2842024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Hu Z, Yu S, Su S, Wu R, Chen C, Ye Y, Wang H, Ye X, Zhou Z, et al: A novel protein encoded by circFOXP1 enhances ferroptosis and inhibits tumor recurrence in intrahepatic cholangiocarcinoma. Cancer Lett. 598:2170922024. View Article : Google Scholar : PubMed/NCBI | |
|
Shi X, Yang J, Wang M, Xia L, Zhang L and Qiao S: Hsa_circ_0050900 affects ferroptosis in intrahepatic cholangiocarcinoma cells by targeting hsa-miR-605-3p to regulate SLC3A2. Oncol Lett. 27:22024. View Article : Google Scholar | |
|
Toshida K, Itoh S, Iseda N, Izumi T, Bekki Y, Yoshiya S, Toshima T, Iwasaki T, Oda Y and Yoshizumi T: The association of transferrin receptor with prognosis and biologic role in intrahepatic cholangiocarcinoma. Ann Surg Oncol. 31:8627–8637. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Duan W, Ma Z, Wen H, Mao X and Liu C: ETV4/ALYREF-mediated glycolytic metabolism through PKM2 enhances resistance to ferroptosis and promotes the development of intrahepatic cholangiocarcinoma. Cancer Metab. 13:192025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Zhang C, Wu H, Zhao Z, Wang Z, Zhang X, Yang J, Yu W, Lian Z, Gao M and Zhou L: The AKR1C1-CYP1B1-cAMP signaling axis controls tumorigenicity and ferroptosis susceptibility of extrahepatic cholangiocarcinoma. Cell Death Differ. 32:506–520. 2025. View Article : Google Scholar | |
|
Zhang Q, Zhou J, Zhai D, Jiang Q, Yang M and Zhou M: Gut microbiota regulates the ALK5/NOX1 axis by altering glutamine metabolism to inhibit ferroptosis of intrahepatic cholangiocarcinoma cells. Biochim Biophys Acta Mol Basis Dis. 1870:1671522024. View Article : Google Scholar : PubMed/NCBI | |
|
Amontailak S, Titapun A, Jusakul A, Thanan R, Kimawaha P, Jamnongkan W, Thanee M, Sirithawat P and Techasen A: Prognostic values of Ferroptosis-related proteins ACSL4, SLC7A11, and CHAC1 in cholangiocarcinoma. Biomedicines. 12:20912024. View Article : Google Scholar : PubMed/NCBI | |
|
Saisomboon S, Kariya R, Boonnate P, Sawanyawisuth K, Cha'on U, Luvira V, Chamgramol Y, Pairojkul C, Seubwai W, Silsirivanit A, et al: Diminishing acetyl-CoA carboxylase 1 attenuates CCA migration via AMPK-NF-κB-snail axis. Biochim Biophys Acta Mol Basis Dis. 1869:1666942023. View Article : Google Scholar | |
|
Wang J, Zhang M, Zhang L, Cai H, Zhou S, Zhang J and Wang Y: Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival. J Surg Res. 164:e99–e105. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sarcognato S, Sacchi D, Fabris L, Zanus G, Gringeri E, Niero M, Gallina G and Guido M: Ferroptosis in intrahepatic cholangiocarcinoma: IDH1(105GGT) single nucleotide polymorphism is associated with its activation and better prognosis. Front Med (Lausanne). 9:8862292022. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzato M, Brignola S, Munari G, Gatti M, Dadduzio V, Borga C, Bergamo F, Pellino A, Angerilli V, Mescoli C, et al: Prognostic impact of FGFR2/3 alterations in patients with biliary tract cancers receiving systemic chemotherapy: The BITCOIN study. Eur J Cancer. 166:165–175. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Qian Y, Liang X, Kong P, Cheng Y, Cui H, Yan T, Wang J, Zhang L, Liu Y, Guo S, et al: Elevated DHODH expression promotes cell proliferation via stabilizing β-catenin in esophageal squamous cell carcinoma. Cell Death Dise. 11:8622020. View Article : Google Scholar | |
|
Hu J, Jiang Q, Mao W, Zhong S, Sun H and Mao K: STARD7 could be an immunological and prognostic biomarker: From pan-cancer analysis to hepatocellular carcinoma validation. Discov Oncol. 15:5432024. View Article : Google Scholar | |
|
Sun J, Zhou C, Ma Q, Chen W, Atyah M, Yin Y, Fu P, Liu S, Hu B, Ren N and Zhou H: High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection. J Cancer. 10:3333–3343. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Lu Y, Wang H, Wu Y, Xu X and Li Y: High ATF4 expression is associated with poor prognosis, amino acid metabolism, and autophagy in gastric cancer. Front Oncol. 11:7401202021. View Article : Google Scholar | |
|
Luis G, Godfroid A, Nishiumi S, Cimino J, Blacher S, Maquoi E, Wery C, Collignon A, Longuespée R, Montero-Ruiz L, et al: Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 43:1020062021. View Article : Google Scholar : PubMed/NCBI | |
|
Wei JL, Wu SY, Yang YS, Xiao Y, Jin X, Xu XE, Hu X, Li DQ, Jiang YZ and Shao ZM: GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer. J Immunother Cancer. 9:e0023832021. View Article : Google Scholar : PubMed/NCBI | |
|
Wen F, Ling H, Ran R, Li X, Wang H, Liu Q, Li M and Yu T: LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid. Transl Oncol. 52:1022562025. View Article : Google Scholar : | |
|
Takahara H, Kanazawa T, Oshita H, Tomita Y, Hananoi Y, Ishibashi S, Ikeda M, Furukawa A, Kinoshita M, Yamamoto K, et al: GPX4 and FSP1 expression in lung adenocarcinoma: Prognostic implications and Ferroptosis-based therapeutic strategies. Cancers (Basel). 16:38882024. View Article : Google Scholar : PubMed/NCBI | |
|
Su L, Huang Y, Zheng L, Zhu Z, Wu Y and Li P: Isocitrate dehydrogenase 1 mutation in cholangiocarcinoma impairs tumor progression by sensitizing cells to ferroptosis. Open Med (Wars). 17:863–870. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Abou-Alfa GK, Macarulla T, Javle MM, Kelley RK, Lubner SJ, Adeva J, Cleary JM, Catenacci DV, Borad MJ, Bridgewater J, et al: Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 21:796–807. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dong S, An S, Liu Q, Wang X, Hu Y and Jiang A: Study on the synergistic mechanism of photodynamic therapy combined with ferroptosis inducer to induce ferroptosis in cholangiocarcinoma. Lancet Oncol. 56:845–853. 2024. | |
|
Li S, Chen X, Shi H, Yi M, Xiong B and Li T: Tailoring traditional Chinese medicine in cancer therapy. Mol Cancer. 24:272025. View Article : Google Scholar : PubMed/NCBI | |
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M and Xu H: Traditional Chinese medicine in lung cancer treatment. Mol Cancer. 24:572025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y and Wang N: Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: From clinical evidence to drug discovery. Mol Cancer. 23:2182024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HI, Lee SJ, Choi YJ, Kim MJ, Kim TY and Ko SG: Quercetin induces apoptosis in glioblastoma cells by suppressing Axl/IL-6/STAT3 signaling pathway. Am J Chin Med. 49:767–784. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammed HA, Sulaiman GM, Anwar SS, Tawfeeq AT, Khan RA, Mohammed SAA, Al-Omar MS, Alsharidah M, Rugaie OA and Al-Amiery AA: Quercetin against MCF7 and CAL51 breast cancer cell lines: Apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine (Lond). 16:1937–1961. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Zhang Z, Chai Q, Zheng H, Qi Y, Xia G, Yu Z, Yang R, Huang J, Li Y, et al: Quercetin inhibits intrahepatic cholangiocarcinoma by inducing ferroptosis and inhibiting invasion via the NF-[Formula: See text]B pathway. Am J Chin Med. 51:701–721. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Zhang Z, Chai Q, Zheng H, Qi Y, Xia G, Yu Z, Yang R, Huang J, Li Y, et al: ERRATUM: Quercetin inhibits intrahepatic cholangiocarcinoma by inducing ferroptosis and inhibiting invasion via the NF-[Formula: See text]B pathway. Am J Chin Med. 51:1613–1614. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Shenoy AK, Padia R, Fang D, Jing Q, Yang P, Su SB and Huang S: Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2', 4'-Tetrahydroxychalcone. J Exp Clin Cancer Res. 37:2432018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Huang S, Chen CL, Su SB and Fang DD: Isoliquiritigenin inhibits ovarian cancer metastasis by reversing Epithelial-to-mesenchymal transition. Molecules. 24:37252019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Li W, Wang X, Zhu Q, Liu L, Qiu S, Zou L, Liu K, Li G, Miao H, et al: Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells. Chin Med J (Engl). 136:2210–2220. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Zhang Y, Shen Y, Zhu C, Qin X and Gao Y: Liquidambaric acid inhibits cholangiocarcinoma progression by disrupting the STAMBPL1/NRF2 positive feedback loop. Phytomedicine. 136:1563032025. View Article : Google Scholar | |
|
Zhao J, Shi L, Yang Y, Zhu J, Zhou Z, Dong P, Liu S, Yang Z and Gong W: Wu-Mei-Wan promotes ferroptosis in gallbladder cancer through STAT3 negative regulation: An integrated HPLC, proteomics, network pharmacology, and experimental validation study. J Ethnopharmacol. 347:1196712025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Xiong Y, Zhang Y, Liang H, Cheng K, Lu Y, Cai G, Wu Y, Fan Y, Chen X, et al: Simvastatin overcomes the pPCK1-pLDHA-SPRINGlac axis-mediated ferroptosis and chemo-immunotherapy resistance in AKT-hyperactivated intrahepatic cholangiocarcinoma. Cancer Commun (Lond). 45:1038–1071. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Wang Z, Lin R, Huang S, Miao H, Zou L, Liu K, Cui X, Wang Z, Zhang Y, et al: Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism. Biochem Pharmacol. 205:1152532022. View Article : Google Scholar : PubMed/NCBI | |
|
Pham TC, Nguyen VN, Choi Y, Lee S and Yoon J: Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem Rev. 121:13454–13619. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Brown SB, Brown EA and Walker I: The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 5:497–508. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV and Krysko DV: Targeting immunogenic cancer cell death by photodynamic therapy: Past, present and future. J Immunother Cancer. 9:e0019262021. View Article : Google Scholar : PubMed/NCBI | |
|
Yan X, Li Z, Chen H, Yang F, Tian Q and Zhang Y: Photodynamic therapy inhibits cancer progression and induces ferroptosis and apoptosis by targeting P53/GPX4/SLC7A11 signaling pathways in cholangiocarcinoma. Photodiagnosis Photodyn Ther. 47:1041042024. View Article : Google Scholar : PubMed/NCBI | |
|
An W, Zhang K, Li G, Zheng S, Cao Y and Liu J: Hypericin mediated photodynamic therapy induces ferroptosis via inhibiting the AKT/mTORC1/GPX4 axis in cholangiocarcinoma. Transl Oncol. 52:1022342025. View Article : Google Scholar : | |
|
Huang YP, Wang YX, Zhou H, Liu ZT, Zhang ZJ, Xiong L, Zou H and Wen Y: Surufatinib combined with photodynamic therapy induces ferroptosis to inhibit cholangiocarcinoma in vitro and in tumor models. Front Pharmacol. 15:12882552024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Gao Y, Xu J, Zou T, Yang B, Hu S, Cheng X, Xia Y and Zheng Q: A NRF2 regulated and the immunosuppressive microenvironment reversed nanoplatform for cholangiocarcinoma Photodynamic-Gas therapy. Adv Sci (Weinh). 11:e23071432024. View Article : Google Scholar : PubMed/NCBI |