You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI | |
|
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
|
Morgan E, Arnold M, Camargo MC, Gini A, Kunzmann AT, Matsuda T, Meheus F, Verhoeven RHA, Vignat J, Laversanne M, et al: The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: A population-based modelling study. EClinicalMedicine. 47:1014042022. View Article : Google Scholar : PubMed/NCBI | |
|
Correa P, Haenszel W, Cuello C, Tannenbaum S and Archer M: A model for gastric cancer epidemiology. Lancet. 2:58–60. 1975. View Article : Google Scholar : PubMed/NCBI | |
|
Yan L, Li W, Chen F, Wang J, Chen J, Chen Y and Ye W: Inflammation as a mediator of microbiome Dysbiosis-associated DNA methylation changes in gastric premalignant lesions. Phenomics. 3:496–501. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang N, He HW, He YY, Gu W, Xu MJ and Liu L: Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation. J Integr Med. 21:561–574. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Giroux V and Rustgi AK: Metaplasia: Tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 17:594–604. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Petersen CP, Mills JC and Goldenring JR: Murine models of gastric corpus preneoplasia. Cell Mol Gastroenterol Hepatol. 3:11–26. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Hu S, Min M, Ni Y, Lu Z, Sun X, Wu J, Liu B, Ying X and Liu Y: Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut. 70:464–475. 2021. View Article : Google Scholar | |
|
Muthupalani S, Ge Z, Joy J, Feng Y, Dobey C, Cho HY, Langenbach R, Wang TC, Hagen SJ and Fox JG: Muc5ac null mice are predisposed to spontaneous gastric antro-pyloric hyperplasia and adenomas coupled with attenuated H. pylori-induced corpus mucous metaplasia. Lab Invest. 99:1887–1905. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Goldenring JR: Spasmolytic polypeptide-expressing metaplasia (SPEM) cell lineages can be an origin of gastric cancer. J Pathol. 260:109–111. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Schmidt PH, Lee JR, Joshi V, Playford RJ, Poulsom R, Wright NA and Goldenring JR: Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest. 79:639–646. 1999.PubMed/NCBI | |
|
Halldórsdóttir AM, Sigurdardóttrir M, Jónasson JG, Oddsdóttir M, Magnússon J, Lee JR and Goldenring JR: Spasmolytic polypeptide-expressing metaplasia (SPEM) associated with gastric cancer in Iceland. Dig Dis Sci. 48:431–441. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yamaguchi H, Goldenring JR, Kaminishi M and Lee JR: Identification of spasmolytic polypeptide expressing metaplasia (SPEM) in remnant gastric cancer and surveillance postgastrectomy biopsies. Dig Dis Sci. 47:573–578. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Katz JP, Perreault N, Goldstein BG, Actman L, McNally SR, Silberg DG, Furth EE and Kaestner KH: Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology. 128:935–945. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM and Oshima M: Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology. 131:1086–1095. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Goldenring JR, Nam KT, Wang TC, Mills JC and Wright NA: Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: Time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology. 138:2207–2210.e1. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Reyes ME, Pulgar V, Vivallo C, Ili CG, Mora-Lagos B and Brebi P: Epigenetic modulation of cytokine expression in gastric cancer: Influence on angiogenesis, metastasis and chemoresistance. Front Immunol. 15:13475302024. View Article : Google Scholar : PubMed/NCBI | |
|
Bockerstett KA and DiPaolo RJ: Regulation of gastric carcinogenesis by inflammatory cytokines. Cell Mol Gastroenterol Hepatol. 4:47–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA and Kobold S: Interleukins in cancer: From biology to therapy. Nat Rev Cancer. 21:481–499. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dranoff G: Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 4:11–22. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R and Ahmad N: Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm. 2015:2017032015. View Article : Google Scholar : PubMed/NCBI | |
|
Oshima M, Oshima H, Matsunaga A and Taketo MM: Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Res. 65:9147–9151. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lee C, Lee H, Hwang SY, Moon CM and Hong SN: IL-10 plays a pivotal role in Tamoxifen-induced spasmolytic Polypeptide-expressing metaplasia in gastric mucosa. Gut Liver. 11:789–797. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Demitrack ES, Gifford GB, Keeley TM, Horita N, Todisco A, Turgeon DK, Siebel CW and Samuelson LC: NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus. Am J Physiol Gastrointest Liver Physiol. 312:G133–G144. 2017. View Article : Google Scholar : | |
|
Negovan A, Iancu M, Fülöp E and Bănescu C: Helicobacter pylori and cytokine gene variants as predictors of premalignant gastric lesions. World J Gastroenterol. 25:4105–4124. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng X, Yang M, Ye T, Feng J, Xu X, Yang H, Wang X, Bao L, Li R, Xue B, et al: Mitochondrial GRIM-19 loss in parietal cells promotes spasmolytic polypeptide-expressing metaplasia through NLR family pyrin domain-containing 3 (NLRP3)-mediated IL-33 activation via a reactive oxygen species (ROS)-NRF2-Heme oxygenase-1(HO-1)-NF-кB axis. Free Radic Biol Med. 202:46–61. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E and Melero I: Cytokines in clinical cancer immunotherapy. Br J Cancer. 120:6–15. 2019. View Article : Google Scholar : | |
|
Kureshi CT and Dougan SK: Cytokines in cancer. Cancer Cell. 43:15–35. 2025. View Article : Google Scholar : | |
|
El-Zaatari M, Kao JY, Tessier A, Bai L, Hayes MM, Fontaine C, Eaton KA and Merchant JL: Gli1 deletion prevents Helicobacter-induced gastric metaplasia and expansion of myeloid cell subsets. PLoS One. 8:e589352013. View Article : Google Scholar : PubMed/NCBI | |
|
Goldenring JR, Nam KT and Mills JC: The origin of pre-neoplastic metaplasia in the stomach: Chief cells emerge from the Mist. Exp Cell Res. 317:2759–2764. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kang WQ, Rathinavelu S, Samuelson LC and Merchant JL: Interferon gamma induction of gastric mucous neck cell hypertrophy. Lab Invest. 85:702–715. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bockerstett KA, Osaki LH, Petersen CP, Cai CW, Wong CF, Nguyen TM, Ford EL, Hoft DF, Mills JC, Goldenring JR and DiPaolo RJ: Interleukin-17A promotes parietal cell atrophy by inducing apoptosis. Cell Mol Gastroenterol Hepatol. 5:678–690.e1. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Caldwell B, Meyer AR, Weis JA, Engevik AC and Choi E: Chief cell plasticity is the origin of metaplasia following acute injury in the stomach mucosa. Gut. 71:1068–1077. 2022. View Article : Google Scholar | |
|
Meyer AR, Engevik AC, Madorsky T, Belmont E, Stier MT, Norlander AE, Pilkinton MA, McDonnell WJ, Weis JA, Jang B, et al: Group 2 innate lymphoid cells coordinate damage response in the stomach. Gastroenterology. 159:2077–2091.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
He L, Zhang X, Zhang S, Wang Y, Hu W, Li J, Liu Y, Liao Y, Peng X, Li J, et al: H. pylori-facilitated TERT/Wnt/β-Catenin triggers spasmolytic Polypeptide-expressing metaplasia and oxyntic atrophy. Adv Sci (Weinh). 12:e24012272025. View Article : Google Scholar | |
|
Busada JT, Peterson KN, Khadka S, Xu X, Oakley RH, Cook DN and Cidlowski JA: Glucocorticoids and androgens protect from gastric metaplasia by suppressing group 2 innate lymphoid cell activation. Gastroenterology. 161:637–652.e4. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Contreras-Panta EW, Lee SH, Won Y, Norlander AE, Simmons AJ, Peebles RS Jr, Lau KS, Choi E and Goldenring JR: Interleukin 13 promotes maturation and proliferation in metaplastic gastroids. Cell Mol Gastroenterol Hepatol. 18:1013662024. View Article : Google Scholar : PubMed/NCBI | |
|
Goldenring JR and Nomura S: Differentiation of the gastric mucosa III. Animal models of oxyntic atrophy and metaplasia. Am J Physiol Gastrointest Liver Physiol. 291:G999–G1004. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SH, Jang B, Min J, Contreras-Panta EW, Presentation KS, Delgado AG, Piazuelo MB, Choi E and Goldenring JR: Up-regulation of aquaporin 5 defines spasmolytic Polypeptide-expressing metaplasia and progression to incomplete intestinal metaplasia. Cell Mol Gastroenterol Hepatol. 13:199–217. 2022. View Article : Google Scholar | |
|
Park DJ and Kim SE: The Role of IL-10 in gastric spasmolytic Polypeptide-expressing Metaplasia-related carcinogenesis. Gut Liver. 11:741–742. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bockerstett KA, Petersen CP, Noto CN, Kuehm LM, Wong CF, Ford EL, Teague RM, Mills JC, Goldenring JR and DiPaolo RJ: Interleukin 27 protects from gastric atrophy and metaplasia during chronic autoimmune gastritis. Cell Mol Gastroenterol Hepatol. 10:561–579. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
de Brito BB, da Silva FAF and de Melo FF: Role of polymorphisms in genes that encode cytokines and Helicobacter pylori virulence factors in gastric carcinogenesis. World J Clin Oncol. 9:83–89. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Saleh RO, Jasim SA, Kadhum WR, Hjazi A, Faraz A, Abid MK, Yumashev A, Alawadi A, Aiad IAZ and Alsalamy A: Exploring the detailed role of interleukins in cancer: A comprehensive review of literature. Pathol Res Pract. 257:1552842024. View Article : Google Scholar : PubMed/NCBI | |
|
Propper DJ and Balkwill FR: Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 19:237–253. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lamkanfi M and Dixit VM: Mechanisms and functions of inflammasomes. Cell. 157:1013–1022. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Santos JC, Ladeira MS, Pedrazzoli J Jr and Ribeiro ML: Relationship of IL-1 and TNF-α polymorphisms with Helicobacter pylori in gastric diseases in a Brazilian population. Braz J Med Biol Res. 45:811–817. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Starzyńska T, Ferenc K, Wex T, Kähne T, Lubiński J, Lawniczak M, Marlicz K and Malfertheiner P: The association between the interleukin-1 polymorphisms and gastric cancer risk depends on the family history of gastric carcinoma in the study population. Am J Gastroenterol. 101:248–254. 2006. View Article : Google Scholar | |
|
Xue H, Lin B, Ni P, Xu H and Huang G: Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: A meta-analysis. J Gastroenterol Hepatol. 25:1604–1617. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YM, Li ZX, Tang FB, Zhang Y, Zhou T, Zhang L, Ma JL, You WC and Pan KF: Association of genetic polymorphisms of interleukins with gastric cancer and precancerous gastric lesions in a high-risk Chinese population. Tumour Biol. 37:2233–2242. 2016. View Article : Google Scholar | |
|
Myung DS, Lee WS, Park YL, Kim N, Oh HH, Kim MY, Oak CY, Chung CY, Park HC, Kim JS, et al: Association between interleukin-18 gene polymorphism and Helicobacter pylori infection in the Korean population. Sci Rep. 5:115352015. View Article : Google Scholar : PubMed/NCBI | |
|
Cheung H, Chen NJ, Cao Z, Ono N, Ohashi PS and Yeh WC: Accessory protein-like is essential for IL-18-mediated signaling. J Immunol. 174:5351–5357. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Osaki LH, Bockerstett KA, Wong CF, Ford EL, Madison BB, DiPaolo RJ and Mills JC: Interferon-γ directly induces gastric epithelial cell death and is required for progression to metaplasia. J Pathol. 247:513–523. 2019. View Article : Google Scholar : | |
|
Syu LJ, El-Zaatari M, Eaton KA, Liu Z, Tetarbe M, Keeley TM, Pero J, Ferris J, Wilbert D, Kaatz A, et al: Transgenic expression of interferon-γ in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol. 181:2114–2125. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Leung WK, Chan MC, To KF, Man EP, Ng EK, Chu ES, Lau JY, Lin SR and Sung JJ: H. pylori genotypes and cytokine gene polymorphisms influence the development of gastric intestinal metaplasia in a Chinese population. Am J Gastroenterol. 101:714–720. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
He R, Yin H, Yuan B, Liu T, Luo L, Huang P, Dai L and Zeng K: IL-33 improves wound healing through enhanced M2 macrophage polarization in diabetic mice. Mol Immunol. 90:42–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et al: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 23:479–490. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G and Girard JP: IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA. 104:282–287. 2007. View Article : Google Scholar : | |
|
Buzzelli JN, Chalinor HV, Pavlic DI, Sutton P, Menheniott TR, Giraud AS and Judd LM: IL33 is a stomach alarmin that initiates a skewed Th2 response to injury and infection. Cell Mol Gastroenterol Hepatol. 1:203–221.e3. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Schwartz C, O'Grady K, Lavelle EC and Fallon PG: Interleukin 33: An innate alarm for adaptive responses beyond Th2 immunity-emerging roles in obesity, intestinal inflammation, and cancer. Eur J Immunol. 46:1091–1100. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
De Salvo C, Pastorelli L, Petersen CP, Buttò LF, Buela KA, Omenetti S, Locovei SA, Ray S, Friedman HR, Duijser J, et al: Interleukin 33 triggers early Eosinophil-dependent events leading to metaplasia in a chronic model of Gastritis-prone mice. Gastroenterology. 160:302–316.e7. 2021. View Article : Google Scholar | |
|
Petersen CP, Meyer AR, De Salvo C, Choi E, Schlegel C, Petersen A, Engevik AC, Prasad N, Levy SE, Peebles RS, et al: A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut. 67:805–817. 2018. View Article : Google Scholar | |
|
Huang N, Cui X, Li W, Zhang C, Liu L and Li J: IL-33/ST2 promotes the malignant progression of gastric cancer via the MAPK pathway. Mol Med Rep. 23:3612021. View Article : Google Scholar : | |
|
Engevik AC, Feng R, Choi E, White S, Bertaux-Skeirik N, Li J, Mahe MM, Aihara E, Yang L, DiPasquale B, et al: The development of spasmolytic polypeptide/TFF2-expressing metaplasia (SPEM) during gastric repair is absent in the aged stomach. Cell Mol Gastroenterol Hepatol. 2:605–624. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Farrell JJ, Taupin D, Koh TJ, Chen D, Zhao CM, Podolsky DK and Wang TC: TFF2/SP-deficient mice show decreased gastric proliferation, increased acid secretion, and increased susceptibility to NSAID injury. J Clin Invest. 109:193–204. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Nozaki K, Ogawa M, Williams JA, Lafleur BJ, Ng V, Drapkin RI, Mills JC, Konieczny SF, Nomura S and Goldenring JR: A molecular signature of gastric metaplasia arising in response to acute parietal cell loss. Gastroenterology. 134:511–522. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Privitera G, Williams JJ and De Salvo C: The importance of Th2 immune responses in mediating the progression of Gastritis-associated metaplasia to gastric cancer. Cancers (Basel). 16:5222024. View Article : Google Scholar : PubMed/NCBI | |
|
Meyer AR and Goldenring JR: Injury, repair, inflammation and metaplasia in the stomach. J Physiol. 596:3861–3867. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Bernink JH, Germar K and Spits H: The role of ILC2 in pathology of type 2 inflammatory diseases. Curr Opin Immunol. 31:115–120. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Huang X, Han X, Zhang J, Gao L and Chen H: IL-17A in gastric carcinogenesis: Good or bad? Front Immunol. 15:15012932024. View Article : Google Scholar : PubMed/NCBI | |
|
Pisani LF, Teani I, Vecchi M and Pastorelli L: Interleukin-33: Friend or foe in gastrointestinal tract cancers? Cells. 12:14812023. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Q, Zhu Y, Ma Y, Wang Z and Xu G: Emerging role of spasmolytic polypeptide-expressing metaplasia in gastric cancer. J Gastrointest Oncol. 15:2673–2683. 2024. View Article : Google Scholar | |
|
Melchiades JL, Zabaglia LM, Sallas ML, Orcini WA, Chen E, Smith MAC, Payão SLM and Rasmussen LT: Polymorphisms and haplotypes of the interleukin 2 gene are associated with an increased risk of gastric cancer. The possible involvement of Helicobacter pylori. Cytokine. 96:203–207. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shin WG, Jang JS, Kim HS, Kim SJ, Kim KH, Jang MK, Lee JH, Kim HJ and Kim HY: Polymorphisms of interleukin-1 and interleukin-2 genes in patients with gastric cancer in Korea. J Gastroenterol Hepatol. 23:1567–1573. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammadi M, Czinn S, Redline R and Nedrud J: Helicobacter-specific cell-mediated immune responses display a predominant Th1 phenotype and promote a delayed-type hypersensitivity response in the stomachs of mice. J Immunol. 156:4729–4738. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Roth KA, Kapadia SB, Martin SM and Lorenz RG: Cellular immune responses are essential for the development of Helicobacter felis-associated gastric pathology. J Immunol. 163:1490–1497. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Yang E, Chua W, Ng W and Roberts TL: Peripheral cytokine levels as a prognostic indicator in gastric cancer: A review of existing literature. Biomedicines. 9:19162021. View Article : Google Scholar : PubMed/NCBI | |
|
Bevington SL, Keane P, Soley JK, Tauch S, Gajdasik DW, Fiancette R, Matei-Rascu V, Willis CM, Withers DR and Cockerill PN: IL-2/IL-7-inducible factors pioneer the path to T cell differentiation in advance of lineage-defining factors. EMBO J. 39:e1052202020. View Article : Google Scholar : PubMed/NCBI | |
|
Bamford KB, Fan X, Crowe SE, Leary JF, Gourley WK, Luthra GK, Brooks EG, Graham DY, Reyes VE and Ernst PB: Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology. 114:482–492. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Padol IT and Hunt RH: Effect of Th1 cytokines on acid secretion in pharmacologically characterised mouse gastric glands. Gut. 53:1075–1081. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Togawa S, Joh T, Itoh M, Katsuda N, Ito H, Matsuo K, Tajima K and Hamajima N: Interleukin-2 gene polymorphisms associated with increased risk of gastric atrophy from Helicobacter pylori infection. Helicobacter. 10:172–178. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Van Dyken SJ and Locksley RM: Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: Roles in homeostasis and disease. Annu Rev Immunol. 31:317–343. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pan K, Li Q, Guo Z and Li Z: Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther. 265:1087602025. View Article : Google Scholar | |
|
Labonte AC, Tosello-Trampont AC and Hahn YS: The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells. 37:275–285. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu YC, Zou XB, Chai YF and Yao YM: Macrophage polarization in inflammatory diseases. Int J Biol Sci. 10:520–529. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Petersen CP, Weis VG, Nam KT, Sousa JF, Fingleton B and Goldenring JR: Macrophages promote progression of spasmolytic polypeptide-expressing metaplasia after acute loss of parietal cells. Gastroenterology. 146:1727–1738.e8. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimoto T: The hunt for the source of primary Interleukin-4: How we discovered that natural killer T cells and basophils determine T helper type 2 cell differentiation in vivo. Front Immunol. 9:7162018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou JY, Alvarez CA and Cobb BA: Integration of IL-2 and IL-4 signals coordinates divergent regulatory T cell responses and drives therapeutic efficacy. Elife. 10:e574172021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Chen Z, Que Z, Fang Z, Zhu H and Tian J: Chinese medicines and natural medicine as immunotherapeutic agents for gastric cancer: Recent advances. Cancer Rep (Hoboken). 7:e21342024. | |
|
Yang F, Shaibu Z, Liu Q and Zhu W: Cytokine profiles as predictive biomarkers for treatment outcomes in advanced gastric cancer patients undergoing PD-1 blockade immunochemotherapy: A meta-analysis. Clin Exp Med. 25:1362025. View Article : Google Scholar : PubMed/NCBI | |
|
Ham IH, Oh HJ, Jin H, Bae CA, Jeon SM, Choi KS, Son SY, Han SU, Brekken RA, Lee D and Hur H: Targeting interleukin-6 as a strategy to overcome Stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer. 18:682019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, Li J, Li C, Yan M, Zhu Z, et al: IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 8:20741–20750. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuo K, Oka M, Murase K, Soda H, Isomoto H, Takeshima F, Mizuta Y, Murata I and Kohno S: Expression of interleukin 6 and its receptor in human gastric and colorectal cancers. J Int Med Res. 31:69–75. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Leja M, Wex T and Malfertheiner P: Markers for gastric cancer premalignant lesions: Where do we go? Dig Dis. 30:268–276. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Giraud AS, Jackson C, Menheniott TR and Judd LM: Differentiation of the gastric mucosa IV. Role of trefoil peptides and IL-6 cytokine family signaling in gastric homeostasis. Am J Physiol Gastrointest Liver Physiol. 292:G1–G5. 2007. View Article : Google Scholar | |
|
Kamimura D, Ishihara K and Hirano T: IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev Physiol Biochem Pharmacol. 149:1–38. 2003.PubMed/NCBI | |
|
Lee IO, Kim JH, Choi YJ, Pillinger MH, Kim SY, Blaser MJ and Lee YC: Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem. 285:16042–16050. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Judd LM, Menheniott TR, Ling H, Jackson CB, Howlett M, Kalantzis A, Priebe W and Giraud AS: Inhibition of the JAK2/STAT3 pathway reduces gastric cancer growth in vitro and in vivo. PLoS One. 9:e959932014. View Article : Google Scholar : PubMed/NCBI | |
|
Hwang IR, Hsu PI, Peterson LE, Gutierrez O, Kim JG, Graham DY and Yamaoka Y: Interleukin-6 genetic polymorphisms are not related to Helicobacter pylori-associated gastroduodenal diseases. Helicobacter. 8:142–148. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Howlett M, Chalinor HV, Buzzelli JN, Nguyen N, van Driel IR, Bell KM, Fox JG, Dimitriadis E, Menheniott TR, Giraud AS and Judd LM: IL-11 is a parietal cell cytokine that induces atrophic gastritis. Gut. 61:1398–1409. 2012. View Article : Google Scholar | |
|
Buzzelli JN, O'Connor L, Scurr M, Chung Nien Chin S, Catubig A, Ng GZ, Oshima M, Oshima H, Giraud AS, Sutton P, et al: Overexpression of IL-11 promotes premalignant gastric epithelial hyperplasia in isolation from germline gp130-JAK-STAT driver mutations. Am J Physiol Gastrointest Liver Physiol. 316:G251–G262. 2019. View Article : Google Scholar | |
|
Howlett M, Giraud AS, Lescesen H, Jackson CB, Kalantzis A, Van Driel IR, Robb L, Van der Hoek M, Ernst M, Minamoto T, et al: The interleukin-6 family cytokine interleukin-11 regulates homeostatic epithelial cell turnover and promotes gastric tumor development. Gastroenterology. 136:967–977. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, Malki S, Alderman BM, Grail D, Hollande F, et al: Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nature medicine. 8:1089–1097. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Pastorelli L, Garg RR, Hoang SB, Spina L, Mattioli B, Scarpa M, Fiocchi C, Vecchi M and Pizarro TT: Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci USA. 107:8017–8022. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Saha A, Hammond CE, Gooz M and Smolka AJ: The role of Sp1 in IL-1beta and H. pylori-mediated regulation of H,K-ATPase gene transcription. Am J Physiol Gastrointest Liver Physiol. 295:G977–G986. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wallace JL, Cucala M, Mugridge K and Parente L: Secretagogue-specific effects of interleukin-1 on gastric acid secretion. Am J Physiol. 261:G559–G564. 1991.PubMed/NCBI | |
|
Ham IH, Lee D and Hur H: Role of Cancer-associated fibroblast in gastric cancer progression and resistance to treatments. J Oncol. 2019:62707842019. View Article : Google Scholar : PubMed/NCBI | |
|
Howlett M, Menheniott TR, Judd LM and Giraud AS: Cytokine signalling via gp130 in gastric cancer. Biochim Biophys Acta. 1793:1623–1633. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Iyer SS and Cheng G: Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 32:23–63. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Qu X, Tang Y and Hua S: Immunological approaches towards cancer and inflammation: A cross talk. Front Immunol. 9:5632018. View Article : Google Scholar : PubMed/NCBI | |
|
Gao L, Weck MN, Michel A, Pawlita M and Brenner H: Association between chronic atrophic gastritis and serum antibodies to 15 Helicobacter pylori proteins measured by multiplex serology. Cancer Res. 69:2973–2980. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sugai H, Kono K, Takahashi A, Ichihara F, Kawaida H, Fujii H and Matsumoto Y: Characteristic alteration of monocytes with increased intracellular IL-10 and IL-12 in patients with advanced-stage gastric cancer. J Surg Res. 116:277–287. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Li R, Cao Y, Gu Y, Lin C, Liu X, Lv K, He X, Fang H, Jin K, et al: Poor clinical outcomes and immunoevasive contexture in intratumoral IL-10-Producing macrophages enriched gastric cancer patients. Ann Surg. 275:e626–e635. 2022. View Article : Google Scholar | |
|
Park HS, Kwon WS, Park S, Jo E, Lim SJ, Lee CK, Lee JB, Jung M, Kim HS, Beom SH, et al: Comprehensive immune profiling and immune-monitoring using body fluid of patients with metastatic gastric cancer. J Immunother Cancer. 7:2682019. View Article : Google Scholar : PubMed/NCBI | |
|
Yarmohammadi R, Najafi K, Noroozbeygi M, Didehvar K, Rastin A, Ataei F, Atashzar MR and Shushtari SS: The Role of IL-6, IL-10 and CRP in gastrointestinal cancers. Cell Biol Int. 49:1061–1078. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen TLM, Khurana SS, Sagartz JE, Mills JC and DiPaolo R: EBI3 (IL-27/IL-35) regulates the progression from atrophic gastritis to gastric cancer by Regulating IL-17 production in the gastric mucosa. Gastroenterology. 146(Suppl 1): S64–S65. 2014. View Article : Google Scholar | |
|
Bockerstett KA, Nguyen TLM, Wong CF, Ford EL and DiPaolo RJ: IL-27 Regulates gastric metaplasia through effects on both immune and epithelial cells. Gastroenterology. 152(Suppl 1): S55–S56. 2017. View Article : Google Scholar | |
|
Bockerstett K, Petersen C, Ford E, Goldenring JR and DiPaolo R: IL-17A promotes the progression from gastritis to gastric cancer. Gastroenterology. 150(Suppl 1): S110. 2016. View Article : Google Scholar | |
|
Bockerstett KA, Petersen C, Noto CN, Kuehm L, Wong CF, Ford EL, Mills J, Goldenring JR and DiPaolo RJ: Interleukin-27-producing immune cells in the gastric mucosa protect the stomach from inflammation-induced atrophy and metaplasia. Gastroenterology. 156(Suppl 1): S186. 2019. View Article : Google Scholar | |
|
Gu C, Wu L and Li X: IL-17 family: Cytokines, receptors and signaling. Cytokine. 64:477–485. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Chen X, Herjan T and Li X: The role of interleukin-17 in tumor development and progression. J Exp Med. 217:e201902972020. View Article : Google Scholar : | |
|
Kabir S: The role of interleukin-17 in the Helicobacter pylori induced infection and immunity. Helicobacter. 16:1–8. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Meng XY, Zhou CH, Ma J, Jiang C and Ji P: Expression of interleukin-17 and its clinical significance in gastric cancer patients. Med Oncol. 29:3024–3028. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Brackman LC, Jung MS, Green EH, Joshi N, Revetta FL, McClain MS, Markham NO, Piazuelo MB and Scott Algood HM: IL-17 signaling protects against Helicobacter pylori-induced gastric cancer. Gut microbes. 16:24304212024. View Article : Google Scholar : PubMed/NCBI | |
|
Tangye SG and Puel A: The Th17/IL-17 Axis and host defense against fungal infections. J Allergy Clin Immunol Pract. 11:1624–1634. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kabil AK, Liu LT, Xu C, Nayyar N, González L, Chopra S, Brassard J, Beaulieu MJ, Li Y, Damji A, et al: Microbial dysbiosis sculpts a systemic ILC3/IL-17 axis governing lung inflammatory responses and central hematopoiesis. Mucosal Immunol. 18:1139–1158. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J and Shen M: The Role of IL-17 in systemic autoinflammatory diseases: Mechanisms and therapeutic perspectives. Clin Rev Allergy Immunol. 68:272025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong F, Cui D, Tao H, Du H and Xing C: IL-17A-producing T cells and associated cytokines are involved in the progression of gastric cancer. Oncol Rep. 34:2365–2374. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Li S, Zhao Y, Ma P, Cao Y, Liu C, Zhang X, Wang W, Chen L and Li Y: Cancer-associated fibroblasts promote the migration and invasion of gastric cancer cells via activating IL-17a/JAK2/STAT3 signaling. Ann Transl Med. 8:8772020. View Article : Google Scholar : PubMed/NCBI | |
|
Karabulut M, Usul Afsar C, Serimez M and Karabulut S: Serum IL-17 levels can be diagnostic for gastric cancer. J BUON. 24:1601–1609. 2019.PubMed/NCBI | |
|
Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q and Dong C: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 6:1133–1141. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Onishi RM and Gaffen SL: Interleukin-17 and its target genes: Mechanisms of interleukin-17 function in disease. Immunology. 129:311–321. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Otani K, Watanabe T, Tanigawa T, Okazaki H, Yamagami H, Watanabe K, Tominaga K, Fujiwara Y, Oshitani N and Arakawa T: Anti-inflammatory effects of IL-17A on Helicobacter pylori-induced gastritis. Biochem Biophys Res Commun. 382:252–258. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chong Y, Yu D, Lu Z and Nie F: Role and research progress of spasmolytic polypeptide-expressing metaplasia in gastric cancer (Review). Int J Oncol. 64:332024. View Article : Google Scholar : | |
|
O'Keefe RN, Carli ALE, Baloyan D, Chisanga D, Shi W, Afshar-Sterle S, Eissmann MF, Poh AR, Pal B, Seillet C, et al: A tuft cell-ILC2 signaling circuit provides therapeutic targets to inhibit gastric metaplasia and tumor development. Nat Commun. 14:68722023. View Article : Google Scholar | |
|
von Moltke J, Ji M, Liang HE and Locksley RM: Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 529:221–225. 2016. View Article : Google Scholar | |
|
Waugh DJ and Wilson C: The interleukin-8 pathway in cancer. Clin Cancer Res. 14:6735–6741. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Brat DJ, Bellail AC and Van Meir EG: The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 7:122–133. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
He R, Li X, Zhang S, Liu Y, Xue Q, Luo Y, Yu B, Li X and Liu Z: Dexamethasone inhibits IL-8 via glycolysis and mitochondria-related pathway to regulate inflammatory pain. BMC Anesthesiol. 23:3172023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee KE, Khoi PN, Xia Y, Park JS, Joo YE, Kim KK, Choi SY and Jung YD: Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol. 19:8192–8202. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Noto CN, Hoft SG, Bockerstett KA, Jackson NM, Ford EL, Vest LS and DiPaolo RJ: IL13 acts directly on gastric epithelial cells to promote metaplasia development during chronic gastritis. Cell Mol Gastroenterol Hepatol. 13:623–642. 2022. View Article : Google Scholar : | |
|
Zhao R, Cao G, Zhang B, Wei L, Zhang X, Jin M, He B, Zhang B, He Z and Bie Q: TNF+ regulatory T cells regulate the stemness of gastric cancer cells through the IL13/STAT3 pathway. Front Oncol. 13:11629382023. View Article : Google Scholar : PubMed/NCBI | |
|
Grünig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM and Corry DB: Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 282:2261–2263. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Seyfizadeh N, Seyfizadeh N, Gharibi T and Babaloo Z: Interleukin-13 as an important cytokine: A review on its roles in some human diseases. Acta Microbiol Immunol Hung. 62:341–378. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bockerstett K, Lewis SA, Wolf KJ, Noto CN, Jackson NM, Ford EL, Ahn TH and DiPaolo RJ: Single-cell transcriptional analyses of spasmolytic polypeptide-expressing metaplasia arising from acute drug injury and chronic inflammation in the stomach. Gut. 69:1027–1038. 2020. View Article : Google Scholar | |
|
Miska J, Lui JB, Toomer KH, Devarajan P, Cai X, Houghton J, Lopez DM, Abreu MT, Wang G and Chen Z: Initiation of inflammatory tumorigenesis by CTLA4 insufficiency due to type 2 cytokines. J Exp Med. 215:841–858. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dahl CA, Schall RP, He HL and Cairns JS: Identification of a novel gene expressed in activated natural killer cells and T cells. J Immunol. 148:597–603. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Meng D, Dong H, Wang C, Zang R and Wang J: Role of interleukin-32 in cancer progression (review). Oncol Lett. 27:542024. View Article : Google Scholar | |
|
Han S and Yang Y: Interleukin-32: Frenemy in cancer? BMB Rep. 52:165–174. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fung KY, Nguyen PM and Putoczki TL: Emerging roles for Interleukin-18 in the gastrointestinal tumor microenvironment. Adv Exp Med Biol. 1240:59–72. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Khawar MB, Abbasi MH and Sheikh N: IL-32: A novel pluripotent inflammatory interleukin, towards gastric inflammation, gastric cancer, and chronic rhino sinusitis. Mediators Inflamm. 2016:84137682016. View Article : Google Scholar : PubMed/NCBI | |
|
Bagheri V, Memar B, Momtazi AA, Sahebkar A, Gholamin M and Abbaszadegan MR: Cytokine networks and their association with Helicobacter pylori infection in gastric carcinoma. J Cell Physiol. 233:2791–2803. 2018. View Article : Google Scholar | |
|
Li ML, Hong XX, Zhang WJ, Liang YZ, Cai TT, Xu YF, Pan HF, Kang JY, Guo SJ and Li HW: Helicobacter pylori plays a key role in gastric adenocarcinoma induced by spasmolytic polypeptide-expressing metaplasia. World J Clin Cases. 11:3714–3724. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kuo HY, Chang WL, Yeh YC, Cheng HC, Tsai YC, Wu CT, Lin SH, Yang HB, Lu CC and Sheu BS: Spasmolytic polypeptide-expressing metaplasia associated with higher expressions of miR-21, 155, and 223 can be regressed by Helicobacter pylori eradication in the gastric cancer familial relatives. Helicobacter. 24:e125782019. View Article : Google Scholar : PubMed/NCBI | |
|
Yamaoka Y, Kodama T, Kita M, Imanishi J, Kashima K and Graham DY: Relation between clinical presentation, Helicobacter pylori density, interleukin 1beta and 8 production, and cagA status. Gut. 45:804–811. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, et al: Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature. 404:398–402. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Jackson CB, Judd LM, Menheniott TR, Kronborg I, Dow C, Yeomans ND, Boussioutas A, Robb L and Giraud AS: Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol. 213:140–151. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yamaoka Y, Kita M, Kodama T, Sawai N and Imanishi J: Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa. Gastroenterology. 110:1744–1752. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer. 9:361–371. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Adamsson J, Ottsjö LS, Lundin SB, Svennerholm AM and Raghavan S: Gastric expression of IL-17A and IFNγ in Helicobacter pylori infected individuals is related to symptoms. Cytokine. 99:30–34. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Meng W, Wang B and Qiao L: Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 345:196–202. 2014. View Article : Google Scholar | |
|
Goldenring JR, Ray GS, Coffey RJ, Meunier PC, Haley PJ, Barnes TB and Car BD: Reversible drug-induced oxyntic atrophy in rats. Gastroenterology. 118:1080–1093. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Nam KT, Lee HJ, Sousa JF, Weis VG, O'Neal RL, Finke PE, Romero-Gallo J, Shi G, Mills JC, Peek RM Jr, et al: Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology. 139:2028–2037.e9. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Weis VG, Sousa JF, LaFleur BJ, Nam KT, Weis JA, Finke PE, Ameen NA, Fox JG and Goldenring JR: Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut. 62:1270–1279. 2013. View Article : Google Scholar | |
|
Nomura S, Yamaguchi H, Ogawa M, Wang TC, Lee JR and Goldenring JR: Alterations in gastric mucosal lineages induced by acute oxyntic atrophy in wild-type and gastrin-deficient mice. Am J Physiol Gastrointest Liver Physiol. 288:G362–G375. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Cardoso CM, Custódio JB, Almeida LM and Moreno AJ: Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency. Toxicol Appl Pharmacol. 176:145–152. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Huh WJ, Khurana SS, Geahlen JH, Kohli K, Waller RA and Mills JC: Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology. 142:21–24.e27. 2012. View Article : Google Scholar | |
|
Kudo-Saito C, Imazeki H, Nagashima K, Shoji H, Tsugaru K, Takahashi N, Kawakami T, Amanuma Y, Wakatsuki T, Okano N, et al: IL33-ST2 axis is a predictive biomarker for anti-PD1 therapeutic efficacy in advanced gastric cancer. J Transl Med. 23:11252025. View Article : Google Scholar : PubMed/NCBI | |
|
Leidner R, Conlon K, McNeel DG, Wang-Gillam A, Gupta S, Wesolowski R, Chaudhari M, Hassounah N, Lee JB, Ho Lee L, et al: First-in-human phase I/Ib study of NIZ985, a recombinant heterodimer of IL-15 and IL-15Rα, as a single agent and in combination with spartalizumab in patients with advanced and metastatic solid tumors. J Immunother Cancer. 11:e0077252023. View Article : Google Scholar | |
|
Lordick F, Thuss-Patience P, Bitzer M, Maurus D, Sahin U and Türeci Ö: Immunological effects and activity of multiple doses of zolbetuximab in combination with zoledronic acid and interleukin-2 in a phase 1 study in patients with advanced gastric and gastroesophageal junction cancer. J Cancer Res Clin Oncol. 149:5937–5950. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gooderham M, Ameen M, Hong HC, Katoh N, Langley RG, Peris K, Reich K, Silvestre JF, Simpson E, Werfel T, et al: Efficacy of up to 4 years of tralokinumab in adults with moderate-to-severe atopic dermatitis. J Eur Acad Dermatol Venereol. Nov 11–2025. View Article : Google Scholar : Epub ahead of print. | |
|
Song EJ, Ehst B, Glick B, Lewitt GM, Rich P, Ezra N, Bagel J, Anschutz T, Bialik B, Duan C, et al: Efficacy and safety of risankizumab in genital or scalp psoriasis in the UnlIMMited phase 4 randomized clinical trial at week 16. Dermatol Ther (Heidelb). Oct 25–2025. View Article : Google Scholar : Epub ahead of print. | |
|
Yu S, Yang M, Lim KM, Cho Y, Kim H, Lee K, Jeong SH, Coffey RJ, Goldenring JR and Nam KT: Expression of LRIG1, a negative regulator of EGFR, is dynamically altered during different stages of gastric carcinogenesis. Am J Pathol. 188:2912–2923. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dickerson LK, Carter JA, Kohli K and Pillarisetty VG: Emerging interleukin targets in the tumour microenvironment: Implications for the treatment of gastrointestinal tumours. Gut. 72:1592–1606. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC and Mudhafar M: Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol. 41:1822024. View Article : Google Scholar : PubMed/NCBI | |
|
Tanigawa K and Redmond WL: Current landscape and future prospects of interleukin-2 receptor (IL-2R) agonists in cancer immunotherapy. Oncoimmunology. 14:24526542025. View Article : Google Scholar : PubMed/NCBI | |
|
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y and He Q: Interleukin-12 delivery strategies and advances in tumor immunotherapy. Curr Issues Mol Biol. 46:11548–11579. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Sun X and Tong Y: Interleukin-12 in multimodal tumor therapies for induction of anti-tumor immunity. Discov Oncol. 15:1702024. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HM, Lee HJ and Chang JE: Inflammatory cytokine: An attractive target for cancer treatment. Biomedicines. 10:21162022. View Article : Google Scholar : PubMed/NCBI | |
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K and Dai Z: Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther. 9:1762024. View Article : Google Scholar : PubMed/NCBI | |
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B and Sockolosky JT: Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev. 182:1141122022. View Article : Google Scholar : PubMed/NCBI | |
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS and Spangler JB: Molecular engineering of interleukin-2 for enhanced therapeutic activity in autoimmune diseases. BioDrugs. 38:227–248. 2024. View Article : Google Scholar : | |
|
Jeong H, Lee B, Kim KH, Cho SY, Cho Y, Park J, Lee Y, Oh Y, Hwang BR, Jang AR, et al: WFDC2 Promotes spasmolytic Polypeptide-Expressing metaplasia through the Up-Regulation of IL33 in response to injury. Gastroenterology. 161:953–967.e15. 2021. View Article : Google Scholar |