|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
2
|
Lehrer EJ, Singh R, Wang M, Chinchilli VM,
Trifiletti DM, Ost P, Siva S, Meng MB, Tchelebi L and Zaorsky NG:
Safety and survival rates associated with ablative stereotactic
radiotherapy for patients with oligometastatic cancer: A systematic
review and meta-analysis. JAMA Oncol. 7:92–106. 2021. View Article : Google Scholar
|
|
3
|
Gonsalves D, Ocanto A, Martín M and
Couñago F: Radiotherapy in early stages of lung cancer. Revisiones
en Cancer. 37:133–147. 2023.
|
|
4
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bache M, Kadler F, Struck O, Medenwald D,
Ostheimer C, Güttler A, Keßler J, Kappler M, Riemann A, Thews O, et
al: Correlation between Circulating miR-16, miR-29a, miR-144 and
miR-150, and the Radiotherapy response and survival of
non-small-cell lung cancer patients. Int J Mol Sci. 24:128352023.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Panwar V, Singh A, Bhatt M, Tonk RK,
Azizov S, Raza AS, Sengupta S, Kumar D and Garg M: Multifaceted
role of mTOR (mammalian target of rapamycin) signaling pathway in
human health and disease. Signal Transduct Target Ther. 8:3752023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wei F, Liu Y, Guo Y, Xiang A, Wang G, Xue
X and Lu Z: MiR-99b-targeted mTOR induction contributes to
irradiation resistance in pancreatic cancer. Mol Cancer. 12:812013.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Woo Y, Lee HJ, Jung YM and Jung YJ:
MTOR-mediated antioxidant activation in solid tumor
radioresistance. J Oncol. 2019:59568672019. View Article : Google Scholar
|
|
10
|
Yu CC, Hung SK, Lin HY, Chiou WY, Lee MS,
Liao HF, Huang HB, Ho HC and Su YC: Targeting the PI3K/AKT/mTOR
signaling pathway as an effectively radiosensitizing strategy for
treating human oral squamous cell carcinoma in vitro and in vivo.
Oncotarget. 8:68641–68653. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wanigasooriya K, Tyler R, Barros-Silva JD,
Sinha Y, Ismail T and Beggs AD: Radiosensitising cancer using
phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT) or
mammalian target of rapamycin (mTOR) inhibitors. Cancers (Basel).
12:12782020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mardanshahi A, Gharibkandi NA, Vaseghi S,
Abedi SM and Molavipordanjani S: The PI3K/AKT/mTOR signaling
pathway inhibitors enhance radiosensitivity in cancer cell lines.
Mol Biol Rep. 48:1–14. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Feng YQ, Gu SX, Chen YS, Gao XD, Ren YX,
Chen JC, Lu YY, Zhang H and Cao S: Virtual screening and
optimization of novel mTOR inhibitors for radiosensitization of
hepatocellular carcinoma. Drug Des Devel Ther. 14:1779–1798. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ihlamur M, Akgül B, Zengin Y, Korkut ŞV,
Kelleci K and Abamor EŞ: The mTOR signaling pathway and mTOR
inhibitors in cancer: Next-generation inhibitors and approaches.
Curr Mol Med. 24:478–494. 2024. View Article : Google Scholar
|
|
15
|
Vézina C, Kudelski A and Sehgal SN:
Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of
the producing streptomycete and isolation of the active principle.
J Antibiot (Tokyo). 28:721–726. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pignataro G, Capone D, Polichetti G,
Vinciguerra A, Gentile A, Di Renzo G and Annunziato L:
Neuroprotective, immunosuppressant and antineoplastic properties of
mTOR inhibitors: Current and emerging therapeutic options. Curr
Opin Pharmacol. 11:378–394. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Drenan RM, Liu X, Bertram PG and Zheng XF:
FKBP12-rapamycin-associated protein or mammalian target of
rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and
the Golgi apparatus. J Biol Chem. 279:772–778. 2004. View Article : Google Scholar
|
|
18
|
Helfenberger KE, Argentino GF, Benzo Y,
Herrera LM, Finocchietto P and Poderoso C: Angiotensin II regulates
mitochondrial mTOR pathway activity dependent on Acyl-CoA
synthetase 4 in adrenocortical cells. Endocrinology.
163:bqac1702022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen Y and Zhou X: Research progress of
mTOR inhibitors. Eur J Med Chem. 208:1128202020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ali M, Bukhari SA, Ali M and Lee HW:
Upstream signalling of mTORC1 and its hyperactivation in type 2
diabetes (T2D). BMB Rep. 50:601–609. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang G, Chen L, Qin S, Zhang T, Yao J, Yi
Y and Deng L: Mechanistic target of rapamycin complex 1: From a
nutrient sensor to a key regulator of metabolism and health. Adv
Nutr. 13:1882–1900. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Workman JJ, Chen H and Laribee RN:
Environmental signaling through the mechanistic target of rapamycin
complex 1: mTORC1 goes nuclear. Cell Cycle. 13:714–725. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yoon MS: The role of mammalian target of
rapamycin (mTOR) in insulin signaling. Nutrients. 9:11762017.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lamming DW, Ye L, Katajisto P, Goncalves
MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima
RS, et al: Rapamycin-induced insulin resistance is mediated by
mTORC2 loss and uncoupled from longevity. Science. 335:1638–1643.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sarbassov DD, Ali SM, Sengupta S, Sheen
JH, Hsu PP, Bagley AF, Markhard AL and Sabatini DM: Prolonged
rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell.
22:159–168. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang W, Tan J, Liu X, Guo W, Li M, Liu X,
Liu Y, Dai W, Hu L, Wang Y, et al: Cytoplasmic endonuclease G
promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and
endoplasmic reticulum stress. Nat Commun. 14:62012023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Peng H, Kasada A, Ueno M, Hoshii T,
Tadokoro Y, Nomura N, Ito C, Takase Y, Vu HT, Kobayashi M, et al:
Distinct roles of Rheb and Raptor in activating mTOR complex 1 for
the self-renewal of hematopoietic stem cells. Biochem Biophys Res
Commun. 495:1129–1135. 2018. View Article : Google Scholar
|
|
28
|
Miricescu D, Totan A, Stanescu-Spinu II,
Badoiu SC, Stefani C and Greabu M: PI3K/AKT/mTOR signaling pathway
in breast cancer: From molecular landscape to clinical aspects. Int
J Mol Sci. 22:1732020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Inoki K, Kim J and Guan KL: AMPK and mTOR
in cellular energy homeostasis and drug targets. Annu Rev Pharmacol
Toxicol. 52:381–400. 2012. View Article : Google Scholar
|
|
30
|
Chun Y and Kim J: AMPK-mTOR signaling and
cellular adaptations in hypoxia. Int J Mol Sci. 22:97652021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lama-Sherpa TD, Jeong MH and Jewell JL:
Regulation of mTORC1 by the Rag GTPases. Biochem Soc Trans.
51:655–664. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim SJ, DeStefano MA, Oh WJ, Wu CC,
Vega-Cotto NM, Finlan M, Liu D, Su B and Jacinto E: mTOR complex 2
regulates proper turnover of insulin receptor substrate-1 via the
ubiquitin ligase subunit Fbw8. Mol Cell. 48:875–887. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sural-Fehr T, Singh H, Cantuti-Catelvetri
L, Zhu H, Marshall MS, Rebiai R, Jastrzebski MJ, Givogri MI,
Rasenick MM and Bongarzone ER: Inhibition of the
IGF-1-PI3K-Akt-mTORC2 pathway in lipid rafts increases neuronal
vulnerability in a genetic lysosomal glycosphingolipidosis. Dis
Model Mech. 12:dmm0365902019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lazorchak AS and Su B: Perspectives on the
role of mTORC2 in B lymphocyte development, immunity and
tumorigenesis. Protein Cell. 2:523–530. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li X and Gao T: mTORC2 phosphorylates
protein kinase Cζ to regulate its stability and activity. EMBO Rep.
15:191–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Baffi TR, Lordén G, Wozniak JM, Feichtner
A, Yeung W, Kornev AP, King CC, Del Rio JC, Limaye AJ, Bogomolovas
J, et al: mTORC2 controls the activity of PKC and Akt by
phosphorylating a conserved TOR interaction motif. Sci Signal.
14:eabe45092021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Carter CC, Mast FD, Olivier JP, Bourgeois
NM, Kaushansky A and Aitchison JD: Dengue activates mTORC2
signaling to counteract apoptosis and maximize viral replication.
Front Cell Infect Microbiol. 12:9799962022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Katholnig K, Schütz B, Fritsch SD,
Schörghofer D, Linke M, Sukhbaatar N, Matschinger JM, Unterleuthner
D, Hirtl M, Lang M, et al: Inactivation of mTORC2 in macrophages is
a signature of colorectal cancer that promotes tumorigenesis. JCI
Insight. 4:e1241642019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mehta D, Rajput K, Jain D, Bajaj A and
Dasgupta U: Unveiling the role of mechanistic target of rapamycin
kinase (MTOR) signaling in cancer progression and the emergence of
MTOR inhibitors as therapeutic strategies. ACS Pharmacol Transl
Sci. 7:3758–3779. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Qiu W, Ren M, Wang C, Fu Y and Liu Y: The
clinicopathological and prognostic significance of mTOR and p-mTOR
expression in patients with non-small cell lung cancer: A
meta-analysis. Medicine (Baltimore). 101:e323402022. View Article : Google Scholar
|
|
41
|
Zeng AQ, Chen X, Dai Y and Zhao JN:
Betulinic acid inhibits non-small cell lung cancer by repolarizing
tumor-associated macrophages via mTOR signaling pathway. Zhongguo
Zhong Yao Za Zhi. 49:2376–2384. 2024.In Chinese. PubMed/NCBI
|
|
42
|
Granville CA, Warfel N, Tsurutani J,
Hollander MC, Robertson M, Fox SD, Veenstra TD, Issaq HJ, Linnoila
RI and Dennis PA: Identification of a highly effective rapamycin
schedule that markedly reduces the size, multiplicity, and
phenotypic progression of tobacco carcinogen-induced murine lung
tumors. Clin Cancer Res. 13:2281–2289. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Raskova Kafkova L, Mierzwicka JM,
Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P and Raska M:
NSCLC: From tumorigenesis, immune checkpoint misuse to current and
future targeted therapy. Front Immunol. 15:13420862024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bang J, Jun M, Lee S, Moon H and Ro SW:
Targeting EGFR/PI3K/AKT/mTOR signaling in hepatocellular carcinoma.
Pharmaceutics. 15:21302023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wu YY, Wu HC, Wu JE, Huang KY, Yang SC,
Chen SX, Tsao CJ, Hsu KF, Chen YL and Hong TM: The dual PI3K/mTOR
inhibitor BEZ235 restricts the growth of lung cancer tumors
regardless of EGFR status, as a potent accompanist in combined
therapeutic regimens. J Exp Clin Cancer Res. 38:2822019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xu L, Ding R, Song S, Liu J, Li J, Ju X
and Ju B: Single-cell RNA sequencing reveals the mechanism of
PI3K/AKT/mTOR signaling pathway activation in lung adenocarcinoma
by KRAS mutation. J Gene Med. 26:e36582024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ducray SP, Natarajan K, Garland GD, Turner
SD and Egger G: The transcriptional roles of ALK fusion proteins in
tumorigenesis. Cancers (Basel). 11:10742019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhao T, Fan J, Abu-Zaid A, Burley SK and
Zheng XFS: Nuclear mTOR signaling orchestrates transcriptional
programs underlying cellular growth and metabolism. Cells.
13:7812024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang Q, Zhang Y, Chen Y, Qian J, Zhang X
and Yu K: A Novel mTORC1/2 Inhibitor (MTI-31) inhibits tumor
growth, epithelial-mesenchymal transition, metastases, and improves
antitumor immunity in preclinical models of lung cancer. Clin
Cancer Res. 25:3630–3642. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Marinov M, Ziogas A, Pardo OE, Tan LT,
Dhillon T, Mauri FA, Lane HA, Lemoine NR, Zangemeister-Wittke U,
Seckl MJ and Arcaro A: AKT/mTOR pathway activation and BCL-2 family
proteins modulate the sensitivity of human small cell lung cancer
cells to RAD001. Clin Cancer Res. 15:1277–1287. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li X, Li C, Guo C, Zhao Q, Cao J, Huang
HY, Yue M, Xue Y, Jin Y, Hu L and Ji H: PI3K/Akt/mTOR signaling
orchestrates the phenotypic transition and chemo-resistance of
small cell lung cancer. J Genet Genomics. 48:640–651. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
He C: Activating invasion and metastasis
in small cell lung cancer: Role of the tumour immune
microenvironment and mechanisms of vasculogenesis,
epithelial-mesenchymal transition, cell migration, and organ
tropism. Cancer Rep (Hoboken). 7:e700182024.
|
|
53
|
Fiorentino FP, Tokgün E, Solé-Sánchez S,
Giampaolo S, Tokgün O, Jauset T, Kohno T, Perucho M, Soucek L and
Yokota J: Growth suppression by MYC inhibition in small cell lung
cancer cells with TP53 and RB1 inactivation. Oncotarget.
7:31014–31028. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Matsumoto M, Seike M, Noro R, Soeno C,
Sugano T, Takeuchi S, Miyanaga A, Kitamura K, Kubota K and Gemma A:
Control of the MYC-eIF4E axis plus mTOR inhibitor treatment in
small cell lung cancer. BMC Cancer. 15:2412015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chang L, Graham PH, Ni J, Hao J, Bucci J,
Cozzi PJ and Li Y: Targeting PI3K/Akt/mTOR signaling pathway in the
treatment of prostate cancer radioresistance. Crit Rev Oncol
Hematol. 96:507–517. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu N and Wang P: Development of
PI3K/AKT/mTOR signaling pathway and hypofractionated radiotherapy
in non-small cell lung cancer. Chin J Clin Oncol. 40:1196–1198.
2013.In Chinese.
|
|
57
|
Glaviano A, Foo ASC, Lam HY, Yap KCH,
Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al:
PI3K/AKT/mTOR signaling transduction pathway and targeted therapies
in cancer. Mol Cancer. 22:1382023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sarbassov DD, Guertin DA, Ali SM and
Sabatini DM: Phosphorylation and regulation of Akt/PKB by the
rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ,
Chen TG and Wang L: Targeting the PI3K/AKT/mTOR signaling pathway
in the treatment of human diseases: Current status, trends, and
solutions. J Med Chem. 65:16033–16061. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Schuurbiers OC, Kaanders JH, van der
Heijden HF, Dekhuijzen RP, Oyen WJ and Bussink J: The
PI3-K/AKT-pathway and radiation resistance mechanisms in non-small
cell lung cancer. J Thorac Oncol. 4:761–767. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Toulany M, Iida M, Keinath S, Iyi FF,
Mueck K, Fehrenbacher B, Mansour WY, Schaller M, Wheeler DL and
Rodemann HP: Dual targeting of PI3K and MEK enhances the radiation
response of K-RAS mutated non-small cell lung cancer. Oncotarget.
7:43746–43761. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang T, Cui GB, Zhang J, Zhang F, Zhou
YA, Jiang T and Li XF: Inhibition of PI3 kinases enhances the
sensitivity of non-small cell lung cancer cells to ionizing
radiation. Oncol Rep. 24:1683–1689. 2010.PubMed/NCBI
|
|
63
|
Chen K, Shang Z, Dai AL and Dai PL: Novel
PI3K/Akt/mTOR pathway inhibitors plus radiotherapy: Strategy for
non-small cell lung cancer with mutant RAS gene. Life Sci.
255:1178162020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kim SY, Jeong EH, Lee TG, Kim HR and Kim
CH: The combination of trametinib, a MEK inhibitor, and
temsirolimus, an mTOR Inhibitor, radiosensitizes lung cancer cells.
Anticancer Res. 41:2885–2894. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
He GH, Xing DJ, Jin D, Lu Y, Guo L, Li YL
and Li D: Scutellarin improves the radiosensitivity of non-small
cell lung cancer cells to iodine-125 seeds via downregulating the
AKT/mTOR pathway. Thorac Cancer. 12:2352–2359. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sebastian NT, Webb A, Shilo K, Robb R,
Xu-Welliver M, Haglund K, Brownstein J, DeNicola GM, Shen C and
Williams TM: A PI3K gene expression signature predicts for
recurrence in early-stage non-small cell lung cancer treated with
stereotactic body radiation therapy. Cancer. 129:3971–3977. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Choi EJ, Ryu YK, Kim SY, Wu HG, Kim JS,
Kim IH and Kim IA: Targeting epidermal growth factor
receptor-associated signaling pathways in non-small cell lung
cancer cells: Implication in radiation response. Mol Cancer Res.
8:1027–1036. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Holler M, Grottke A, Mueck K, Manes J,
Jücker M, Rodemann HP and Toulany M: Dual Targeting of Akt and
mTORC1 impairs repair of DNA double-strand breaks and increases
radiation sensitivity of human tumor cells. PLoS One.
11:e01547452016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang P, He D, Song E, Jiang M and Song Y:
Celecoxib enhances the sensitivity of non-small-cell lung cancer
cells to radiation-induced apoptosis through downregulation of the
Akt/mTOR signaling pathway and COX-2 expression. PLoS One.
14:e02237602019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xiong L, Tan B, Lei X, Zhang B, Li W, Liu
D and Xia T: SIRT6 through PI3K/Akt/mTOR signaling pathway to
enhance radiosensitivity of non-Small cell lung cancer and inhibit
tumor progression. IUBMB Life. 73:1092–1102. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hamid MB, Serafin AM and Akudugu JM:
Selective therapeutic benefit of X-rays and inhibitors of EGFR,
PI3K/mTOR, and Bcl-2 in breast, lung, and cervical cancer cells.
Eur J Pharmacol. 912:1746122021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Biswas U, Roy R, Ghosh S and Chakrabarti
G: The interplay between autophagy and apoptosis: Its implication
in lung cancer and therapeutics. Cancer Lett. 585:2166622024.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gargalionis AN, Papavassiliou KA and
Papavassiliou AG: Implication of mTOR Signaling in NSCLC:
Mechanisms and therapeutic perspectives. Cells. 12:20142023.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Loizzo D, Pandolfo SD, Rogers D, Cerrato
C, di Meo NA, Autorino R, Mirone V, Ferro M, Porta C, Stella A, et
al: Novel insights into autophagy and prostate cancer: A
comprehensive review. Int J Mol Sci. 23:38262022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang J, Gong M, Fan X, Huang D, Zhang J
and Huang C: Autophagy-related signaling pathways in non-small cell
lung cancer. Mol Cell Biochem. 477:385–393. 2022. View Article : Google Scholar
|
|
77
|
Kim KW, Hwang M, Moretti L, Jaboin JJ, Cha
YI and Lu B: Autophagy upregulation by inhibitors of caspase-3 and
mTOR enhances radiotherapy in a mouse model of lung cancer.
Autophagy. 4:659–668. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fei HR, Tian H, Zhou XL, Yang MF, Sun BL,
Yang XY, Jiao P and Wang FZ: Inhibition of autophagy enhances
effects of PF-04691502 on apoptosis and DNA damage of lung cancer
cells. Int J Biochem Cell Biol. 78:52–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yan J, Xie Y, Wang F, Chen Y, Zhang J, Dou
Z, Gan L, Li H, Si J, Sun C, et al: Carbon ion combined with
tigecycline inhibits lung cancer cell proliferation by inducing
mitochondrial dysfunction. Life Sci. 263:1185862020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kim KW, Moretti L, Mitchell LR, Jung DK
and Lu B: Combined Bcl-2/mammalian target of rapamycin inhibition
leads to enhanced radiosensitization via induction of apoptosis and
autophagy in non-small cell lung tumor xenograft model. Clin Cancer
Res. 15:6096–6105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kim EJ, Jeong JH, Bae S, Kang S, Kim CH
and Lim YB: mTOR inhibitors radiosensitize PTEN-deficient
non-small-cell lung cancer cells harboring an EGFR activating
mutation by inducing autophagy. J Cell Biochem. 114:1248–1256.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kim KW, Myers CJ, Jung DK and Lu B:
NVP-BEZ-235 enhances radiosensitization via blockade of the
PI3K/mTOR pathway in cisplatin-resistant non-small cell lung
carcinoma. Genes Cancer. 5:293–302. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Liang N, Zhong R, Hou X, Zhao G, Ma S,
Cheng G and Liu X: Ataxia-telangiectasia mutated (ATM) participates
in the regulation of ionizing radiation-induced cell death via
MAPK14 in lung cancer H1299 cells. Cell Prolif. 48:561–572. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang X, Ji J, Yang Y, Zhang J and Shen L:
Stathmin1 increases radioresistance by enhancing autophagy in
non-small-cell lung cancer cells. Onco Targets Ther. 9:2565–2574.
2016.PubMed/NCBI
|
|
85
|
Lai C, Zhang J, Tan Z, Shen LF, Zhou RR
and Zhang YY: Maf1 suppression of ATF5-dependent mitochondrial
unfolded protein response contributes to rapamycin-induced
radio-sensitivity in lung cancer cell line A549. Aging (Albany NY).
13:7300–7313. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi
S, Xie H, Peng X, Yin W, Tao Y and Wang X: Mirna-based biomarkers,
therapies, and resistance in cancer. Int J Biol Sci. 6:2628–2647.
2020. View Article : Google Scholar
|
|
87
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra
E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA,
et al: MicroRNA expression profiles classify human cancers. Nature.
435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Volinia S, Calin GA, Liu CG, Ambs S,
Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et
al: A microRNA expression signature of human solid tumors defines
cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Avvari S, Prasad DKV and Khan IA: Role of
MicroRNAs in cell growth proliferation and tumorigenesis. Role of
MicroRNAs in Cancers. Prasad D and Santosh Sushma P: Springer;
Singapore: pp. 37–51. 2022, View Article : Google Scholar
|
|
90
|
Chen Y, Li WW, Peng P, Zhao WH, Tian YJ,
Huang Y, Xia S and Chen Y: mTORC1 inhibitor RAD001 (everolimus)
enhances non-small cell lung cancer cell radiosensitivity in vitro
via suppressing epithelial-mesenchymal transition. Acta Pharmacol
Sin. 40:1085–1094. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yuan Y, Liao H, Pu Q, Ke X, Hu X, Ma Y,
Luo X, Jiang Q, Gong Y, Wu M, et al: miR-410 induces both
epithelial-mesenchymal transition and radioresistance through
activation of the PI3K/mTOR pathway in non-small cell lung cancer.
Signal Transduct Target Ther. 5:852020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li T, Wei L, Zhang X, Fu B, Zhou Y, Yang
M, Cao M, Chen Y, Tan Y, Shi Y, et al: Serotonin Receptor HTR2B
facilitates colorectal cancer metastasis via CREB1-ZEB1
axis-mediated epithelial-mesenchymal transition. Mol Cancer Res.
22:538–554. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen Y, Liao W, Yuan A, Xu H, Yuan R and
Cao J: MiR-181a reduces radiosensitivity of non-small-cell lung
cancer via inhibiting PTEN. Panminerva Med. 64:374–383. 2022.
View Article : Google Scholar
|
|
94
|
Jiang LP, He CY and Zhu ZT: Role of
microRNA-21 in radiosensitivity in non-small cell lung cancer cells
by targeting PDCD4 gene. Oncotarget. 8:23675–23689. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Huang M, Li T, Wang Q, Li C, Zhou H, Deng
S, Lv Z, He Y, Hou B and Zhu G: Silencing circPVT1 enhances
radiosensitivity in non-small cell lung cancer by sponging
microRNA-1208. Cancer Biomark. 31:263–279. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yin H, Ma J, Chen L, Piao S, Zhang Y,
Zhang S, Ma H, Li Y, Qu Y, Wang X and Xu Q: MiR-99a enhances the
radiation sensitivity of non-small cell lung cancer by targeting
mTOR. Cell Physiol Biochem. 46:471–481. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Meng X, Sun Y, Liu S and Mu Y: miR-101-3p
sensitizes lung adenocarcinoma cells to irradiation via targeting
BIRC5. Oncol Lett. 21:2822021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Li Z, Qu Z, Wang Y, Qin M and Zhang H:
miR-101-3p sensitizes non-small cell lung cancer cells to
irradiation. Open Med (Wars). 15:413–423. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He
Y, Chen G, Zhou Q, Wang W, Zhou X, et al: Radiation-induced
miR-208a increases the proliferation and radioresistance by
targeting p21 in human lung cancer cells. J Exp Clin Cancer Res.
35:72016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Deng H, Chen Y, Li P, Hang Q, Zhang P, Jin
Y and Chen M: PI3K/AKT/mTOR pathway, hypoxia, and glucose
metabolism: Potential targets to overcome radioresistance in small
cell lung cancer. Cancer Pathog Ther. 1:56–66. 2023. View Article : Google Scholar
|
|
101
|
Liu B, Huang ZB, Chen X, See YX, Chen ZK
and Yao HK: Mammalian target of rapamycin 2 (MTOR2) and C-MYC
modulate glucosamine-6-phosphate synthesis in glioblastoma (GBM)
cells through glutamine: fructose-6-phosphate aminotransferase 1
(GFAT1). Cell Mol Neurobiol. 39:415–434. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Deng H, Chen Y, Wang L, Zhang Y, Hang Q,
Li P, Zhang P, Ji J, Song H, Chen M and Jin Y: PI3K/mTOR inhibitors
promote G6PD autophagic degradation and exacerbate oxidative stress
damage to radiosensitize small cell lung cancer. Cell Death Dis.
14:6522023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cardnell RJ, Feng Y, Mukherjee S, Diao L,
Tong P, Stewart CA, Masrorpour F, Fan Y, Nilsson M, Shen Y, et al:
Activation of the PI3K/mTOR pathway following PARP Inhibition in
small cell lung cancer. PLoS One. 11:e01525842016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Knelson EH, Patel SA and Sands JM: PARP
inhibitors in small-cell lung cancer: Rational combinations to
improve responses. Cancers (Basel). 13:7272021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kim WY, Oh SH, Woo JK, Hong WK and Lee HY:
Targeting heat shock protein 90 overrides the resistance of lung
cancer cells by blocking radiation-induced stabilization of
hypoxia-inducible factor-1alpha. Cancer Res. 69:1624–1632. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Subtil FS, Wilhelm J, Bill V, Westholt N,
Rudolph S, Fischer J, Scheel S, Seay U, Fournier C, Taucher-Scholz
G, et al: Carbon ion radiotherapy of human lung cancer attenuates
HIF-1 signaling and acts with considerably enhanced therapeutic
efficiency. FASEB J. 28:1412–1421. 2014. View Article : Google Scholar
|
|
107
|
Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB,
Ko YG, Lee JS, Lee SJ, Lee JC and Park MJ: Upregulation of CXCR4 is
functionally crucial for maintenance of stemness in drug-resistant
non-small cell lung cancer cells. Oncogene. 32:209–221. 2013.
View Article : Google Scholar
|
|
108
|
Dodson M, Dai W, Anandhan A, Schmidlin CJ,
Liu P, Wilson NC, Wei Y, Kitamura N, Galligan JJ, Ooi A, et al:
CHML is an NRF2 target gene that regulates mTOR function. Mol
Oncol. 16:1714–1727. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zheng H, Wang M, Wu J, Wang ZM, Nan HJ and
Sun H: Inhibition of mTOR enhances radiosensitivity of lung cancer
cells and protects normal lung cells against radiation. Biochem
Cell Biol. 94:213–220. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lastwika KJ, Wilson W III, Li QK, Norris
J, Xu H, Ghazarian SR, Kitagawa H, Kawabata S, Taube JM, Yao S, et
al: Control of PD-L1 expression by oncogenic activation of the
AKT-mTOR pathway in non-small cell lung cancer. Cancer Res.
76:227–238. 2016. View Article : Google Scholar
|
|
111
|
Xiao P, Sun LL, Wang J, Han RL, Ma Q and
Zhong DS: LKB1 gene inactivation does not sensitize non-small cell
lung cancer cells to mTOR inhibitors in vitro. Acta Pharmacol Sin.
36:1107–1112. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Li H, Li X, Liu S, Guo L, Zhang B, Zhang J
and Ye Q: Programmed cell death-1 (PD-1) checkpoint blockade in
combination with a mammalian target of rapamycin inhibitor
restrains hepatocellular carcinoma growth induced by hepatoma
cell-intrinsic PD-1. Hepatology. 66:1920–1933. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Dong L, Lv H, Li W, Song Z, Li L, Zhou S,
Qiu L, Qian Z, Liu X, Feng L, et al: Co-expression of PD-L1 and
p-AKT is associated with poor prognosis in diffuse large B-cell
lymphoma via PD-1/PD-L1 axis activating intracellular AKT/mTOR
pathway in tumor cells. Oncotarget. 7:33350–33362. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chiarini F, Evangelisti C, McCubrey JA and
Martelli AM: Current treatment strategies for inhibiting mTOR in
cancer. Trends Pharmacol Sci. 36:124–135. 2015. View Article : Google Scholar
|
|
115
|
Mohindra NA and Platanias LC: Catalytic
mammalian target of rapamycin inhibitors as antineoplastic agents.
Leuk Lymphoma. 56:2518–2523. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ushijima H, Suzuki Y, Oike T, Komachi M,
Yoshimoto Y, Ando K, Okonogi N, Sato H, Noda SE, Saito J and Nakano
T: Radio-sensitization effect of an mTOR inhibitor, temsirolimus,
on lung adenocarcinoma A549 cells under normoxic and hypoxic
conditions. J Radiat Res. 56:663–668. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Chen H, Ma Z, Vanderwaal RP, Feng Z,
Gonzalez-Suarez I, Wang S and Zhang J, Roti Roti JL, Gonzalo S and
Zhang J: The mTOR inhibitor rapamycin suppresses DNA double-strand
break repair. Radiat Res. 175:214–224. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Waqar SN, Robinson C, Bradley J, Goodgame
B, Rooney M, Williams K, Gao F and Govindan R: A phase I study of
temsirolimus and thoracic radiation in non-small-cell lung cancer.
Clin Lung Cancer. 15:119–123. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Waldner M, Fantus D, Solari M and Thomson
AW: New perspectives on mTOR inhibitors (rapamycin, rapalogs and
TORKinibs) in transplantation. Br J Clin Pharmacol. 82:1158–1170.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Dancey J: MTOR signaling and drug
development in cancer. Nat Rev Clin Oncol. 7:209–219. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Occhiuzzi MA, Lico G, Ioele G, De Luca M,
Garofalo A and Grande F: Recent advances in PI3K/PKB/mTOR
inhibitors as new anticancer agents. Eur J Med Chem.
246:1149712023. View Article : Google Scholar
|
|
122
|
Waqar SN, Gopalan PK, Williams K,
Devarakonda S and Govindan R: A phase I trial of sunitinib and
rapamycin in patients with advanced non-small cell lung cancer.
Chemotherapy. 59:8–13. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Waqar SN, Baggstrom MQ, Morgensztern D,
Williams K, Rigden C and Govindan R: A Phase I Trial of
temsirolimus and pemetrexed in patients with advanced non-small
cell lung cancer. Chemotherapy. 61:144–147. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Riely GJ, Brahmer J, Planchard D, Crinò L,
Doebele RC, Lopez LAM, Gettinger SN, Schumann C, Li X, Atkins BM,
et al: A randomized discontinuation phase II trial of ridaforolimus
in non-small cell lung cancer (NSCLC) patients with KRAS mutations.
J Clin Oncol. 30(Suppl 15): 75322011.
|
|
125
|
National Library of Medicine: Adagrasib in
Combination With Nab-Sirolimus in Patients With Advanced Solid
Tumors. Non-Small Cell Lung Cancer With a KRAS G12C Mutation
(KRYSTAL-19). ClinicalTrials.gov ID NCT05840510. https://clinicaltrials.gov/study/NCT05840510.
|
|
126
|
Owonikoko TK, Ramalingam SS, Miller DL,
Force SD, Sica GL, Mendel J, Chen Z, Rogatko A, Tighiouart M,
Harvey RD, et al: A translational, pharmacodynamic, and
pharmacokinetic phase IB clinical study of everolimus in resectable
non-small cell lung cancer. Clin Cancer Res. 21:1859–1868. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Bendell JC, Kelley RK, Shih KC, Grabowsky
JA, Bergsland E, Jones S, Martin T, Infante JR, Mischel PS,
Matsutani T, et al: A phase I dose-escalation study to assess
safety, tolerability, pharmacokinetics, and preliminary efficacy of
the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with
advanced solid tumors or multiple myeloma. Cancer. 121:3481–3490.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Basu B, Dean E, Puglisi M, Greystoke A,
Ong M, Burke W, Cavallin M, Bigley G, Womack C, Harrington EA, et
al: First-in-human pharmacokinetic and pharmacodynamic study of the
dual m-TORC 1/2 inhibitor AZD2014. Clin Cancer Res. 21:3412–3419.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Heist RS, Infante JR, Campana F, Egile C,
Jego V, Damstrup L, Mita M, Grande E and Rizv N: 443O-Pimasertib
(Pim) and Sar245409 (Sar)-a Mek and Pi3K/Mtor inhibitor
combination: A Phase Ib trial with expansions in selected
genotype-defined solid tumors. Ann Oncol. 25(Suppl 4): iv1462014.
View Article : Google Scholar
|
|
130
|
National Library of Medicine: Study of the
CDK4/6 Inhibitor Palbociclib (PD-0332991) in Combination With the
PI3K/mTOR Inhibitor Gedatolisib (PF-05212384) for Patients With
Advanced Squamous Cell Lung Pancreatic, Head & Neck Other Solid
Tumors. ClinicalTrials.gov ID NCT03065062. https://clinicaltrials.gov/study/NCT03065062.
|
|
131
|
McCay J and Gribben JG: PI3 kinase, AKT,
and mTOR inhibitors. Precision Cancer Therapies. O'Connor OA,
Ansell SM and Seymour JF: 1. John Wiley & Sons, Inc.; pp.
113–129. 2023
|
|
132
|
Saran U, Foti M and Dufour JF: Cellular
and molecular effects of the mTOR inhibitor everolimus. Clin Sci
(Lond). 129:895–914. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Rodrik-Outmezguine VS, Okaniwa M, Yao Z,
Novotny CJ, McWhirter C, Banaji A, Won H, Wong W, Berger M, de
Stanchina E, et al: Overcoming mTOR resistance mutations with a
new-generation mTOR inhibitor. Nature. 534:272–276. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Porcelli L, Quatrale AE, Mantuano P,
Silvestris N, Rolland JF, Biancolillo L, Paradiso A and Azzariti A:
Synergistic antiproliferative and antiangiogenic effects of EGFR
and mTOR inhibitors. Curr Pharm Des. 19:918–926. 2013. View Article : Google Scholar
|
|
135
|
Weigelt B, Warne PH and Downward J: PIK3CA
mutation, but not PTEN loss of function, determines the sensitivity
of breast cancer cells to mTOR inhibitory drugs. Oncogene.
30:3222–3233. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A
and Bashash D: The PI3K/Akt/mTOR pathway in lung cancer; oncogenic
alterations, therapeutic opportunities, challenges, and a glance at
the application of nanoparticles. Transl Oncol. 18:1013642022.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Papadimitrakopoulou VA, Soria JC, Jappe A,
Jehl V, Klimovsky J and Johnson BE: Everolimus and erlotinib as
second- or third-line therapy in patients with advanced
non-small-cell lung cancer. J Thorac Oncol. 7:1594–1601. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Ponticelli C: The pros and the cons of
mTOR inhibitors in kidney transplantation. Expert Rev Clin Immunol.
10:295–305. 2015. View Article : Google Scholar
|
|
139
|
Boers-Doets CB, Raber-Durlacher JE,
Treister NS, Epstein JB, Arends AB, Wiersma DR, Lalla RV, Logan RM,
van Erp NP and Gelderblom H: Mammalian target of rapamycin
inhibitor-associated stomatitis. Future Oncol. 9:1883–1892. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Gartrell BA, Ying J, Sivendran S, Boucher
KM, Choueiri TK, Sonpavde G, Oh WK, Agarwal N and Galsky MD:
Pulmonary complications with the use of mTOR inhibitors in targeted
cancer therapy: A systematic review and meta-analysis. Target
Oncol. 9:195–204. 2014. View Article : Google Scholar
|
|
141
|
Gaumann A, Schlitt HJ and Geissler EK:
Immunosuppression and tumor development in organ transplant
recipients: The emerging dualistic role of rapamycin. Transpl Int.
21:207–217. 2008. View Article : Google Scholar
|
|
142
|
El Hage A and Dormond O: Combining mtor
inhibitors and T cell-based immunotherapies in cancer treatment.
Cancers (Basel). 13:13592021. View Article : Google Scholar : PubMed/NCBI
|