You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Ma R, Li Z, Chiocca EA, Caligiuri MA and Yu J: The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer. 9:122–139. 2023. View Article : Google Scholar : | |
|
Rasa A and Alberts P: Oncolytic virus preclinical toxicology studies. J Appl Toxicol. 43:620–648. 2023. View Article : Google Scholar | |
|
Shalhout SZ, Miller DM, Emerick KS and Kaufman HL: Therapy with oncolytic viruses: Progress and challenges. Nat Rev Clin Oncol. 20:160–177. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J and Tanaka M: Intratumoral oncolytic herpes virus G47 for residual or recurrent glioblastoma: A phase 2 trial. Nat Med. 28:1630–1639. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gazal S, Gazal S, Kaur P, Bhan A and Olagnier D: Breaking barriers: Animal viruses as oncolytic and immunotherapeutic agents for human cancers. Virology. 600:1102382024. View Article : Google Scholar : PubMed/NCBI | |
|
Kaufman HL, Shalhout SZ and Iodice G: Talimogene laherparepvec: Moving from first-in-class to best-in-class. Front Mol Biosci. 9:8348412022. View Article : Google Scholar : PubMed/NCBI | |
|
Xi P, Zeng D, Chen M, Jiang L, Zhang Y, Qin D, Yao Z and He C: Enhancing pancreatic cancer treatment: The role of H101 oncolytic virus in irreversible electroporation. Front Immunol. 16:15462422025. View Article : Google Scholar : PubMed/NCBI | |
|
Lee T, Gianchandani A, Boorjian SA, Shore ND, Narayan VM, Dinney CPN and Kamat AM: Intravesical interferon-α2b gene therapy with nadofaragene firadenovec-vncg: A contemporary review. Future Oncol. 21:2429–2438. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Zuo M, Zhou Q and Wang Y: Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects. Front Immunol. 14:13088902023. View Article : Google Scholar | |
|
Lin D, Shen Y and Liang T: Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct Target Ther. 8:1562023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YT, Tan YJ and Oon CE: Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 834:188–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F and Soria JC: Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov. 11:874–899. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P and Guo ZS: Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer. 21:1962022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Hu S and Wang X: Recent advances in oncolytic virus combined immunotherapy in tumor treatment. Genes Dis. 12:1015992025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Cillis J, Deshpande S, Park AK, Valencia H, Kim SI, Lu J, Vashi Y, Yang A, Zhang Z, et al: Oncolytic virotherapy in solid tumors: A current review. BioDrugs. 39:857–876. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ullah R, Yin Q, Snell AH and Wan L: RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 85:123–154. 2022. View Article : Google Scholar | |
|
Lee S, Yang W, Kim DK, Kim H, Shin M, Choi KU, Suh DS, Kim YH, Hwang TH and Kim JH: Inhibition of MEK-ERK pathway enhances oncolytic vaccinia virus replication in doxorubicin-resistant ovarian cancer. Mol Ther Oncolytics. 25:211–224. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Okemoto K, Wagner B, Meisen H, Haseley A, Kaur B and Chiocca EA: STAT3 activation promotes oncolytic HSV1 replication in glioma cells. PLoS One. 8:e719322013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y and Zheng H: Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol. 53:e23503842023. View Article : Google Scholar : PubMed/NCBI | |
|
Schneider W M, Chevillotte M D and Rice CM: Interferon-stimulated genes: A complex web of host defenses. Annu Rev Immunol. 32:513–545. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Zhao J, Zhang JV, Wu Y, Wang L, Chen X, Ji D and Zhou GG: Enhancing therapeutic efficacy of oncolytic herpes simplex virus with MEK inhibitor trametinib in some BRAF or KRAS-Mutated colorectal or lung carcinoma models. Viruses. 13:17582021. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen TT, Ramsay L, Ahanfeshar-Adams M, Lajoie M, Schadendorf D, Alain T and Watson IR: Mutations in the IFNγ-JAK-STAT pathway causing resistance to immune checkpoint inhibitors in melanoma increase sensitivity to oncolytic virus treatment. Clin Cancer Res. 27:3432–3442. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Patel MR, Dash A, Jacobson BA, Ji Y, Baumann D, Ismail K and Kratzke RA: JAK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther. 26:411–418. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Otani Y, Ishida J, Kurozumi K, Oka T, Shimizu T, Tomita Y, Hattori Y, Uneda A, Matsumoto Y, Michiue H, et al: PIK3R1Met326Ile germline mutation correlates with cysteine-rich protein 61 expression and poor prognosis in glioblastoma. Sci Rep. 7:73912017. View Article : Google Scholar : PubMed/NCBI | |
|
Long QZ, Zhou M, Liu XG, Du YF, Fan JH, Li X and He DL: Interaction of CCN1 with αvβ3 integrin induces P-glycoprotein and confers vinblastine resistance in renal cell carcinoma cells. Anticancer Drugs. 24:810–817. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lin BR, Chang CC, Chen LR, Wu MH, Wang MY, Kuo IH, Chu CY, Chang KJ, Lee PH, Chen WJ, et al: Cysteine-rich 61 (CCN1) enhances chemotactic migration, transendothelial cell migration, and intravasation by concomitantly up-regulating chemokine receptor 1 and 2. Mol Cancer Res. 5:1111–1123. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Di Y, Zhang Y, Nie Q and Chen X: CCN1/Cyr61-PI3K/AKT signaling promotes retinal neovascularization in oxygen-induced retinopathy. Int J Mol Med. 36:1507–1518. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tomita Y, Kurozumi K, Yoo JY, Fujii K, Ichikawa T, Matsumoto Y, Uneda A, Hattori Y, Shimizu T, Otani Y, et al: Oncolytic herpes virus armed with vasculostatin in combination with bevacizumab abrogates glioma invasion via the CCN1 and AKT signaling pathways. Mol Cancer Ther. 18:1418–1429. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y and Todo T: Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Mol Ther Oncolytics. 22:129–142. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma W, He H and Wang H: Oncolytic herpes simplex virus and immunotherapy. BMC Immunol. 19:402018. View Article : Google Scholar : PubMed/NCBI | |
|
Saha D, Wakimoto H, Peters CW, Antoszczyk SJ, Rabkin SD and Martuza RL: Combinatorial effects of VEGFR kinase inhibitor axitinib and oncolytic virotherapy in mouse and human glioblastoma stem-like cell models. Clin Cancer Res. 24:3409–3422. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jha BK, Dong B, Nguyen CT, Polyakova I and Silverman RH: Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol Ther. 21:1749–1757. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Khoury R, Saleh K, Khalife N, Saleh M, Chahine C, Ibrahim R and Lecesne A: Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci. 24:96742023. View Article : Google Scholar : PubMed/NCBI | |
|
Arulanandam R, Taha Z, Garcia V, Selman M, Chen A, Varette O, Jirovec A, Sutherland K, Macdonald E, Tzelepis F, et al: The strategic combination of trastuzumab emtansine with oncolytic rhabdoviruses leads to therapeutic synergy. Commun Biol. 3:2542020. View Article : Google Scholar : PubMed/NCBI | |
|
Du Z, Whitt MA, Baumann J, Garner JM, Morton CL, Davidoff AM and Pfeffer LM: Inhibition of type I interferon-mediated antiviral action in human glioma cells by the IKK inhibitors BMS-345541 and TPCA-1. J Interferon Cytokine Res. 32:368–377. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Dolcetti L, Marigo I, Mantelli B, Peranzoni E, Zanovello P and Bronte V: Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett. 267:216–225. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lawson KA, Mostafa AA, Shi ZQ, Spurrell J, Chen W, Kawakami J, Gratton K, Thakur S and Morris DG: Repurposing sunitinib with oncolytic reovirus as a novel immunotherapeutic strategy for renal cell carcinoma. Clin Cancer Res. 22:5839–5850. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Moehler M, Sieben M, Roth S, Springsguth F, Leuchs B, Zeidler M, Dinsart C, Rommelaere J and Galle PR: Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1. BMC Cancer. 11:4642011. View Article : Google Scholar : PubMed/NCBI | |
|
Ichikawa M, Williams R, Wang L, Vogl T and Srikrishna G: S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 9:133–148. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chai H, Xu H, Jiang S, Zhang T, Chen J, Zhu R, Wang Y, Sun M, Liu B, Wang X, et al: Neural stem cell-delivered oncolytic virus via intracerebroventricular administration enhances glioblastoma therapy and immune modulation. J Immunother Cancer. 13:e0129342025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Z, Chen H, Feng C, Chen L, Ma C, Liu Z, Qu Z, Bartlett DL, Lu B, Li K and Guo ZS: Specific inhibitor to KRASG12C induces tumor-specific immunity and synergizes with oncolytic virus for enhanced cancer immunotherapy. J Immunother Cancer. 13:e0105142025. View Article : Google Scholar | |
|
Herman ML, Geanes ES, McLennan R, Greening GJ, Mwitanti H and Bradley T: ICAM-1 autoantibodies detected in healthy individuals and cross-react with functional epitopes. Immunohorizons. 9:vlaf0252025. View Article : Google Scholar : PubMed/NCBI | |
|
Shin J, Lim J, Han D, Lee S, Sung NS, Kim JS, Kim DK, Lee HY, Lee SK, Shin J, et al: TBK1 inhibitor amlexanox exerts anti-cancer effects against endometrial cancer by regulating AKT/NF-κB signaling. Int J Biol Sci. 21:143–159. 2025. View Article : Google Scholar : | |
|
Guo X, Feng H, Xi Z, Zhou J, Huang Z, Guo J, Zheng J, Lyu Z, Liu Y, Zhou J, et al: Targeting TBK1 potentiates oncolytic virotherapy via amplifying ICAM1-mediated NK cell immunity in chemo-resistant colorectal cancer. J Immunother Cancer. 13:e0114552025. View Article : Google Scholar : PubMed/NCBI | |
|
Meisen WH, Wohleb ES, Jaime-Ramirez AC, Bolyard C, Yoo JY, Russell L, Hardcastle J, Dubin S, Muili K, Yu J, et al: The impact of macrophage- and microglia-secreted TNFα on Oncolytic HSV-1 therapy in the glioblastoma tumor microenvironment. Clin Cancer Res. 21:3274–3285. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yoo JY, Swanner J, Otani Y, Nair M, Park F, Banasavadi-Siddegowda Y, Liu J, Jaime-Ramirez AC, Hong B, Geng F, et al: Oncolytic HSV therapy increases trametinib access to brain tumors and sensitizes them in vivo. Neuro Oncol. 21:1131–1140. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Burch AD and Weller SK: Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol. 79:10740–10749. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yoo JY, Hurwitz BS, Bolyard C, Yu JG, Zhang J, Selvendiran K, Rath KS, He S, Bailey Z, Eaves D, et al: Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clin Cancer Res. 20:3787–3798. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tian L, Xu B, Chen Y, Li Z, Wang J, Zhang J, Ma R, Cao S, Hu W, Chiocca EA, et al: Specific targeting of glioblastoma with an oncolytic virus expressing a cetuximab-CCL5 fusion protein via innate and adaptive immunity. Nat Cancer. 3:1318–1335. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Napolitano F, Di Somma S, Castellano G, Amato J, Pagano B, Randazzo A, Portella G and Malfitano AM: Combination of dl922-947 oncolytic adenovirus and G-quadruplex binders uncovers improved antitumor activity in breast cancer. Cells. 11:24822022. View Article : Google Scholar : PubMed/NCBI | |
|
Passaro C, Volpe M, Botta G, Scamardella E, Perruolo G, Gillespie D, Libertini S and Portella G: PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and in vivo model of anaplastic thyroid carcinoma. Mol Oncol. 9:78–92. 2015. View Article : Google Scholar | |
|
Kyula-Currie J, Roulstone V, Wright J, Butera F, Legrand A, Elliott R, McLaughlin M, Bozhanova G, Krastev D, Pettitt S, et al: The PARP inhibitor talazoparib synergizes with reovirus to induce cancer killing and tumour control in vivo in mouse models. Nat Commun. 16:62992025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong Y, Le H, Zhang X, Dai Y, Guo F, Ran X, Hu G, Xie Q, Wang D and Cai Y: Identification of restrictive molecules involved in oncolytic virotherapy using genome-wide CRISPR screening. J Hematol Oncol. 17:362024. View Article : Google Scholar : PubMed/NCBI | |
|
Tapeinos C and Pandit A: Physical, chemical, and biological structures based on ROS-Sensitive moieties that are able to respond to oxidative microenvironments. Adv Mater. 28:5553–5585. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schieber M and Chandel NS: ROS function in redox signaling and oxidative stress. Curr Biol. 24:R453–R462. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Wang D, Sonzogni O, Ke S, Wang Q, Thavamani A, Batalini F, Stopka SA, Regan MS, Vandal S, et al: PARP-inhibition reprograms macrophages toward an anti-tumor phenotype. Cell Rep. 41:1114622022. View Article : Google Scholar : PubMed/NCBI | |
|
Tubbs A and Nussenzweig A: Endogenous DNA damage as a source of genomic instability in cancer. Cell. 168:644–656. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Packiriswamy N, Upreti D, Zhou Y, Khan R, Miller A, Diaz RM, Rooney CM, Dispenzieri A, Peng KW and Russell SJ: Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia. 34:3310–3322. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Li Y, Huang F, Zhang B, Yi T, Li Z, Luo H, He X, Zhong Q, Bian C, et al: Live-attenuated measles virus vaccine confers cell contact loss and apoptosis of ovarian cancer cells via ROS-induced silencing of E-cadherin by methylation. Cancer Lett. 318:14–25. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang CD, Jiang LH, Zhou X, He YP, Liu Y, Zhou DM, Lv Y, Wu BQ and Zhao ZY: Synergistic antitumor efficacy of rMV-Hu191 and Olaparib in pancreatic cancer by generating oxidative DNA damage and ROS-dependent apoptosis. Transl Oncol. 39:1018122024. View Article : Google Scholar | |
|
Meikrantz W and Schlegel R: Apoptosis and the cell cycle. J Cell Biochem. 58:160–174. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Lee B, Min JA, Nashed A, Lee SO, Yoo JC, Chi SW and Yi GS: A novel mechanism of irinotecan targeting MDM2 and Bcl-xL. Biochem Biophys Res Commun. 514:518–523. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hubbard JM and Grothey A: Napabucasin: An update on the first-in-class cancer stemness inhibitor. Drugs. 77:1091–1103. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Babaei A, Soleimanjahi H, Soleimani M and Arefian E: The synergistic anticancer effects of ReoT3D, CPT-11, and BBI608 on murine colorectal cancer cells. Daru. 28:555–565. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y and Zhou X: Research progress of mTOR inhibitors. Eur J Med Chem. 208:1128202020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Zhang H: Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 1206:67–83. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida GJ: Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: From pathophysiology to treatment. J Hematol Oncol. 10:672017. View Article : Google Scholar : PubMed/NCBI | |
|
Saran U, Foti M and Dufour JF: Cellular and molecular effects of the mTOR inhibitor everolimus. Clin Sci (Lond). 129:895–914. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Alonso MM, Jiang H, Yokoyama T, Xu J, Bekele NB, Lang FF, Kondo S, Gomez-Manzano C and Fueyo J: Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther. 16:487–493. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldape KD, et al: Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: Replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 36:1419–1427. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J and Li L: Wnt signaling pathways in biology and disease: Mechanisms and therapeutic advances. Signal Transduct Target Ther. 10:1062025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Hang W, Jing Z, Liu B, Wang X, Li Y, Luo H, Lv H, Tao X, Timashev P, et al: The role of notch signaling pathway in cancer: Mechanistic insights, therapeutic potential, and clinical progress. Front Immunol. 16:15675242025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F and Liu Q: The hippo pathway in breast cancer: The extracellular matrix and hypoxia. Int J Mol Sci. 25:128682024. View Article : Google Scholar : PubMed/NCBI | |
|
Ushijima Y, Luo C, Goshima F, Yamauchi Y, Kimura H and Nishiyama Y: Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. Microbes Infect. 9:142–149. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamura K, Kasuya H, Sahin TT, Tan G, Hotta Y, Tsurumaru N, Fukuda S, Kanda M, Kobayashi D, Tanaka C, et al: Combination treatment of human pancreatic cancer xenograft models with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib and oncolytic herpes simplex virus HF10. Ann Surg Oncol. 21:691–698. 2014. View Article : Google Scholar | |
|
Tan G, Kasuya H, Sahin TT, Yamamura K, Wu Z, Koide Y, Hotta Y, Shikano T, Yamada S, Kanzaki A, et al: Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft. Int J Cancer. 136:1718–1730. 2015. View Article : Google Scholar | |
|
Libertini S, Iacuzzo I, Perruolo G, Scala S, Ieranò C, Franco R, Hallden G and Portella G: Bevacizumab increases viral distribution in human anaplastic thyroid carcinoma xenografts and enhances the effects of E1A-defective adenovirus dl922-947. Clin Cancer Res. 14:6505–6514. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Mahller YY, Vaikunth SS, Currier MA, Miller SJ, Ripberger MC, Hsu YH, Mehrian-Shai R, Collins MH, Crombleholme TM, Ratner N and Cripe TP: Oncolytic HSV and erlotinib inhibit tumor growth and angiogenesis in a novel malignant peripheral nerve sheath tumor xenograft model. Mol Ther. 15:279–286. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bin Y, Ren J and Zhang H, Zhang T, Liu P, Xin Z, Yang H, Feng Z, Chen Z and Zhang H: Against all odds: The road to success in the development of human immune reconstitution mice. Animal Model Exp Med. 7:460–470. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Liao S, Xiao Z and Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF and Pan Q: The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol. 13:10075792022. View Article : Google Scholar : PubMed/NCBI | |
|
Reeh M, Bockhorn M, Görgens D, Vieth M, Hoffmann T, Simon R, Izbicki JR, Sauter G, Schumacher U and Anders M: Presence of the coxsackievirus and adenovirus receptor (CAR) in human neoplasms: A multitumour array analysis. Br J Cancer. 109:1848–1858. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT and Bergelson JM: The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA. 98:15191–15196. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Su Y, Liu Y, Behrens CR, Bidlingmaier S, Lee NK, Aggarwal R, Sherbenou DW, Burlingame AL, Hann BC, Simko JP, et al: Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight. 3:e1214972018. View Article : Google Scholar : PubMed/NCBI | |
|
Do MH, To PK, Cho YS, Kwon SY, Hwang EC, Choi C, Cho SH, Lee SJ, Hemmi S and Jung C: Targeting CD46 enhances anti-tumoral activity of adenovirus type 5 for bladder cancer. Int J Mol Sci. 19:26942018. View Article : Google Scholar : PubMed/NCBI | |
|
Trinh HV, Lesage G, Chennamparampil V, Vollenweider B, Burckhardt CJ, Schauer S, Havenga M, Greber UF and Hemmi S: Avidity binding of human adenovirus serotypes 3 and 7 to the membrane cofactor CD46 triggers infection. J Virol. 86:1623–1637. 2012. View Article : Google Scholar : | |
|
Dhiman N, Jacobson RM and Poland GA: Measles virus receptors: SLAM and CD46. Rev Med Virol. 14:217–229. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Nestić D, Uil TG, Ma J, Roy S, Vellinga J, Baker AH, Custers J and Majhen D: αvβ3 integrin is required for efficient infection of epithelial cells with human adenovirus type 26. J Virol. 93:e01474–18. 2018. | |
|
Weis SM and Cheresh DA: αV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med. 1:a0064782011. View Article : Google Scholar | |
|
Lyle C and McCormick F: Integrin alphavbeta5 is a primary receptor for adenovirus in CAR-negative cells. Virol J. 7:1482010. View Article : Google Scholar : PubMed/NCBI | |
|
Koehler M, Petitjean SJL, Yang J, Aravamudhan P, Somoulay X, Lo Giudice C, Poncin MA, Dumitru AC, Dermody TS and Alsteens D: Reovirus directly engages integrin to recruit clathrin for entry into host cells. Nat Commun. 12:21492021. View Article : Google Scholar : PubMed/NCBI | |
|
Ioannou M and Stanway G: Tropism of Coxsackie virus A9 depends on the +1 position of the RGD (arginine-glycine-aspartic acid) motif found at the C' terminus of its VP1 capsid protein. Virus Res. 294:1982922021. View Article : Google Scholar | |
|
Stern PL and Harrop R: 5T4 oncofoetal antigen: An attractive target for immune intervention in cancer. Cancer Immunol Immunother. 66:415–426. 2017. View Article : Google Scholar | |
|
Scurr M, Pembroke T, Bloom A, Roberts D, Thomson A, Smart K, Bridgeman H, Adams R, Brewster A, Jones R, et al: Effect of modified vaccinia ankara-5T4 and low-dose cyclophosphamide on antitumor immunity in metastatic colorectal cancer: A Randomized clinical trial. JAMA Oncol. 3:e1725792017. View Article : Google Scholar : PubMed/NCBI | |
|
Jian C, Jing Z, Yinhang W, Jinlong D, Yuefen P, Quan Q and Shuwen H: Colorectal cancer and gut viruses: A visualized analysis based on CiteSpace knowledge graph. Front Microbiol. 14:12398182023. View Article : Google Scholar : PubMed/NCBI | |
|
Yi J, Quji S, Guo L, Chai Z, Kong X and Meng J: Exploring novel strategies of oncolytic viruses and gut microbiota to enhance CAR-T cell therapy for colorectal cancer. Cell Immunol. 417:1050262025. View Article : Google Scholar : PubMed/NCBI | |
|
Boixareu C, Taha T, Venkadakrishnan VB, de Bono J and Beltran H: Targeting the tumour cell surface in advanced prostate cancer. Nat Rev Urol. 22:569–589. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Vannini A, Parenti F, Bressanin D, Barboni C, Zaghini A, Campadelli-Fiume G and Gianni T: Towards a precision medicine approach and in situ vaccination against prostate cancer by PSMA-Retargeted oHSV. Viruses. 13:20852021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Shen Y, Tang T, Tang Z, Song W, Yang Z, Zhang X, Wang M, Bai X and Liang T: Oncolytic virus combined with traditional treatment versus traditional treatment alone in patients with cancer: A meta-analysis. Int J Clin Oncol. 25:1901–1913. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hirooka Y, Kasuya H, Ishikawa T, Kawashima H, Ohno E, Villalobos IB, Naoe Y, Ichinose T, Koyama N, Tanaka M, et al: A Phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer. BMC Cancer. 18:5962018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JH, Oh JY, Park BH, Lee DE, Kim JS, Park HE, Roh MS, Je JE, Yoon JH, Thorne SH, et al: Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 14:361–370. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Breitbach CJ, Parato K, Burke J, Hwang TH, Bell JC and Kirn DH: Pexa-Vec double agent engineered vaccinia: Oncolytic and active immunotherapeutic. Curr Opin Virol. 13:49–54. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Heo J, Breitbach CJ, Moon A, Kim CW, Patt R, Kim MK, Lee YK, Oh SY, Woo HY, Parato K, et al: Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: Preclinical and clinical demonstration of combination efficacy. Mol Ther. 19:1170–1179. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, Yim HJ, Byun KS, Baron A, Ungerechts G, et al: Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: A randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology. 8:16158172019. View Article : Google Scholar : PubMed/NCBI | |
|
Abou-Alfa GK, Galle PR, Chao Y, Erinjeri J, Heo J, Borad MJ, Luca A, Burke J, Pelusio A, Agathon D, et al: PHOCUS: A phase 3, Randomized, open-label study of sequential treatment with pexa-vec (JX-594) and sorafenib in patients with advanced hepatocellular carcinoma. Liver Cancer. 13:248–264. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chaurasiya S, Yang A, Zhang Z, Lu J, Valencia H, Kim SI, Woo Y, Warner SG, Olafsen T, Zhao Y, et al: A comprehensive preclinical study supporting clinical trial of oncolytic chimeric poxvirus CF33-hNIS-anti-PD-L1 to treat breast cancer. Mol Ther Methods Clin Dev. 24:102–116. 2021. View Article : Google Scholar | |
|
Yuan Y, Egelston C, Colunga Flores O, Chaurasiya S, Lin D, Chang H, Chong LMO, Seiz A, Shah M, Meisen WH, et al: CF33-hNIS-anti-PD-L1 oncolytic virus followed by trastuzumab-deruxtecan in a patient with metastatic triple negative breast cancer: A case study. Ther Adv Med Oncol. 15:175883592312106752023. View Article : Google Scholar : PubMed/NCBI | |
|
Tilgase A, Olmane E, Nazarovs J, Brokāne L, Erdmanis R, Rasa A and Alberts P: Multimodality treatment of a colorectal cancer stage IV patient with FOLFOX-4, bevacizumab, rigvir oncolytic virus, and surgery. Case Rep Gastroenterol. 12:457–465. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Filho AM, Laversanne M, Ferlay J, Colombet M, Piñeros M, Znaor A, Parkin DM, Soerjomataram I and Bray F: The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int J Cancer. 156:1336–1346. 2025. View Article : Google Scholar | |
|
Liu S, Jiang W, Sheng J, Wang L and Cui M: Adoptive cell therapy for cancer: Combination strategies and biomarkers. Front Immunol. 16:16037922025. View Article : Google Scholar : PubMed/NCBI | |
|
Goswami S, Pauken KE, Wang L and Sharma P: Next-generation combination approaches for immune checkpoint therapy. Nat Immunol. 25:2186–2199. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xie B, Zhang L, Hu W, Fan M, Jiang N, Duan Y, Jing D, Xiao W, Fragoso RC, Lam KS, et al: Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells. Redox Biol. 24:1011892019. View Article : Google Scholar : PubMed/NCBI | |
|
Nagathihalli NS, Castellanos JA, Lamichhane P, Messaggio F, Shi C, Dai X, Rai P, Chen X, VanSaun MN and Merchant NB: Inverse correlation of STAT3 and MEK signaling mediates resistance to RAS pathway inhibition in pancreatic cancer. Cancer Res. 78:6235–6246. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Vultur A, Villanueva J, Krepler C, Rajan G, Chen Q, Xiao M, Li L, Gimotty PA, Wilson M, Hayden J, et al: MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene. 33:1850–1861. 2014. View Article : Google Scholar | |
|
Appleton E, Chiocca EA, Ungerechts G, Melcher A and Vile R: Oncolytic viruses as anticancer agents: clinical progress and remaining challenges. Lancet. 406:1295–1312. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Hossain MA: Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol. 979:1767272024. View Article : Google Scholar : PubMed/NCBI | |
|
Zou J, Han W, Hu Y, Zeng C, Li J, Lei W, Cao J, Fei Q, Shao M, Yi J, et al: Gene mutation, clinical characteristics and pathology in resectable lung adenocarcinoma. World J Surg Oncol. 23:162025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang T, Li W, Huang T and Zhou J: Genetic testing enhances the precision diagnosis and treatment of breast cancer. Int J Mol Sci. 24:166072023. View Article : Google Scholar : PubMed/NCBI | |
|
Chaudagar K, Hieromnimon HM, Khurana R, Labadie B, Hirz T, Mei S, Hasan R, Shafran J, Kelley A, Apostolov E, et al: Reversal of lactate and PD-1-mediated macrophage immunosuppression controls growth of PTEN/p53-deficient prostate cancer. Clin Cancer Res. 29:1952–1968. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao F, Jiang X, Li Y, Huang T, Xiahou Z, Nie W and Li Q: Characterizing tumor biology and immune microenvironment in high-grade serous ovarian cancer via single-cell RNA sequencing: Insights for targeted and personalized immunotherapy strategies. Front Immunol. 15:15001532025. View Article : Google Scholar : PubMed/NCBI | |
|
Cooper AJ, Sequist LV and Lin JJ: Third-generation EGFR and ALK inhibitors: Mechanisms of resistance and management. Nat Rev Clin Oncol. 19:499–514. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Taverna JA, Hung CN, DeArmond DT, Chen M, Lin CL, Osmulski PA, Gaczynska ME, Wang CM, Lucio ND, Chou CW, et al: Single-cell proteomic profiling identifies combined AXL and JAK1 inhibition as a novel therapeutic strategy for lung cancer. Cancer Res. 80:1551–1563. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yadav M, Sharma A, Patne K, Tabasum S, Suryavanshi J, Rawat L, Machaalani M, Eid M, Singh RP, Choueiri TK, et al: AXL signaling in cancer: From molecular insights to targeted therapies. Signal Transduct Target Ther. 10:372025. View Article : Google Scholar : PubMed/NCBI | |
|
Shen M, Jiang X, Peng Q, Oyang L, Ren Z, Wang J, Peng M, Zhou Y, Deng X and Liao Q: The cGAS-STING pathway in cancer immunity: mechanisms, challenges, and therapeutic implications. J Hematol Oncol. 18:402025. View Article : Google Scholar | |
|
Xia T, Konno H, Ahn J and Barber GN: Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14:282–297. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xia T, Konno H and Barber GN: Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76:6747–6759. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
de Queiroz N, Xia T, Konno H and Barber GN: Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol Cancer Res. 17:974–986. 2019. View Article : Google Scholar : | |
|
Meric-Bernstam F, Sweis RF, Hodi FS, Messersmith WA, Andtbacka RHI, Ingham M, Lewis N, Chen X, Pelletier M, Chen X, et al: Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin Cancer Res. 28:677–688. 2022. View Article : Google Scholar | |
|
Chang W, Altman MD, Lesburg CA, Perera SA, Piesvaux JA, Schroeder GK, Wyss DF, Cemerski S, Chen Y, DiNunzio E, et al: Discovery of MK-1454: A potent cyclic dinucleotide stimulator of interferon genes agonist for the treatment of cancer. J Med Chem. 65:5675–5689. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Song Z, Wang X, Zhang Y, Gu W, Shen A, Ding C, Li H, Xiao R, Geng M, Xie Z and Zhang A: Structure-activity relationship study of amidobenzimidazole analogues leading to potent and systemically administrable stimulator of interferon gene (STING) agonists. J Med Chem. 64:1649–1669. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sibal PA, Matsumura S, Ichinose T, Bustos-Villalobos I, Morimoto D, Eissa IR, Abdelmoneim M, Aboalela MAM, Mukoyama N, Tanaka M, et al: STING activator 2'3'-cGAMP enhanced HSV-1-based oncolytic viral therapy. Mol Oncol. 18:1259–1277. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Thoresen D, Wang W, Galls D, Guo R, Xu L and Pyle AM: The molecular mechanism of RIG-I activation and signaling. Immunol Rev. 304:154–168. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Berry N, Suspène R, Caval V, Khalfi P, Beauclair G, Rigaud S, Blanc H, Vignuzzi M, Wain-Hobson S and Vartanian JP: Herpes simplex virus type 1 infection disturbs the mitochondrial network, leading to type I interferon production through the RNA polymerase III/RIG-I pathway. mBio. 12:e02557212021. View Article : Google Scholar : PubMed/NCBI | |
|
Farhangnia P, Khorramdelazad H, Nickho H and Delbandi AA: Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol. 17:402024. View Article : Google Scholar : PubMed/NCBI | |
|
Dan J, Cai J, Zhong Y, Wang C, Huang S, Zeng Y, Fan Z, Xu C, Hu L, Zhang J, et al: Oncolytic virus M1 functions as a bifunctional checkpoint inhibitor to enhance the antitumor activity of DC vaccine. Cell Rep Med. 4:1012292023. View Article : Google Scholar : PubMed/NCBI | |
|
Shen KY, Zhu Y, Xie SZ and Qin LX: Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: Current status and prospectives. J Hematol Oncol. 17:252024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JW, Feng Q, Liu JH and Xun JJ: Opportunities, challenges, and future perspectives of oncolytic virus therapy for malignant melanoma. Front Immunol. 16:16536832025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JW, Liu JH, Liu YL, Xu WZ and Zhang ZB: Oncolytic virus therapy in the elderly: Immune frailty, challenges, and perspectives. Front Immunol. 16:16866592025. View Article : Google Scholar : PubMed/NCBI | |
|
Lang SI, Giese NA, Rommelaere J, Dinsart C and Cornelis JJ: Humoral immune responses against minute virus of mice vectors. J Gene Med. 8:1141–1150. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hirasawa K, Nishikawa SG, Norman KL, Coffey MC, Thompson BG, Yoon CS, Waisman DM and Lee PW: Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res. 63:348–353. 2003.PubMed/NCBI | |
|
Chen G, Yuan Y, Li Y, He Q, Qin Z, Hu H, Gao C, Xu Z, Xu Q, Gao Q and Li F: Enhancing oncolytic virus efficiency with methionine and N-(3-aminoprolil)methacrylamide modified acrylamide cationic block polymer. J Mater Chem B. 12:3741–3750. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Perera AS and Coppens MO: Re-designing materials for biomedical applications: From biomimicry to nature-inspired chemical engineering. Philos Trans A Math Phys Eng Sci. 377:201802682019.PubMed/NCBI | |
|
Pang L, Zhang C, Qin J, Han L, Li R, Hong C, He H and Wang J: A novel strategy to achieve effective drug delivery: Exploit cells as carrier combined with nanoparticles. Drug Deliv. 24:83–91. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Yang N, Xu L, Lu H, Chen Y, Wang Z, Lu Q, Zhong K, Zhu Z, Wang G, et al: Systemic delivery of oncolytic herpes virus using CAR-T cells enhances targeting of antitumor immuno-virotherapy. Cancer Immunol Immunother. 73:1732024. View Article : Google Scholar : PubMed/NCBI | |
|
Reale A, Calistri A and Altomonte J: Giving oncolytic viruses a free ride: Carrier cells for oncolytic virotherapy. Pharmaceutics. 13:21922021. View Article : Google Scholar : PubMed/NCBI | |
|
Ghasemi Darestani N, Gilmanova AI, Al-Gazally ME, Zekiy AO, Ansari MJ, Zabibah RS, Jawad MA, Al-Shalah SAJ, Rizaev JA, Alnassar YS, et al: Mesenchymal stem cell-released oncolytic virus: An innovative strategy for cancer treatment. Cell Commun Signal. 21:432023. View Article : Google Scholar : PubMed/NCBI | |
|
Collet G, Grillon C, Nadim M and Kieda C: Trojan horse at cellular level for tumor gene therapies. Gene. 525:208–216. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E, Russell SJ, Dietz AB and Peng KW: Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res. 15:7246–7255. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hakkarainen T, Särkioja M, Lehenkari P, Miettinen S, Ylikomi T, Suuronen R, Desmond RA, Kanerva A and Hemminki A: Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors. Hum Gene Ther. 18:627–641. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Cook M and Chauhan A: Clinical application of oncolytic viruses: A systematic review. Int J Mol Sci. 21:75052020. View Article : Google Scholar : PubMed/NCBI | |
|
Rathod LS, Sakle NS and Mokale SN: KRAS inhibitors in drug resistance and potential for combination therapy. Tumori. 111:20–40. 2025. View Article : Google Scholar | |
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R and Khorramdelazad H: Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother. 186:1180142025. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Deng H, Liu W, Hu L and Tan X: Advances in understanding drug resistance mechanisms and innovative clinical treatments for melanoma. Curr Treat Options Oncol. 25:1615–1633. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xuan Y, Yan W, Wang R, Wang X, Guo Y, Dun H, Huan Z, Xu L, Han R, Sun X, et al: GM-CSF and IL-21-armed oncolytic vaccinia virus significantly enhances anti-tumor activity and synergizes with anti-PD1 immunotherapy in pancreatic cancer. Front Immunol. 15:15066322025. View Article : Google Scholar : PubMed/NCBI | |
|
Ottolino-Perry K, Tang N, Head R, Ng C, Arulanandam R, Angarita FA, Acuna SA, Chen Y, Bell J, Dacosta RS and McCart JA: Tumor vascularization is critical for oncolytic vaccinia virus treatment of peritoneal carcinomatosis. Int J Cancer. 134:717–730. 2014. View Article : Google Scholar | |
|
Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, Burgess E, Falls TJ, De Silva N, Tsang J, et al: VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell. 28:210–224. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G, Hochberg FH, Weissleder R, Carson W, Chiocca EA and Kaur B: Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst. 99:1768–1781. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Maliepaard M, Faber YS and van Bussel MTJ: Reported hepatotoxicity and hepatotoxicity guidance in the product information of protein kinase inhibitors in oncology registered at the European medicines agency. Pharmacol Res Perspect. 11:e010672023. View Article : Google Scholar : PubMed/NCBI | |
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, et al: Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 87:1315–1530. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rock EP, Goodman V, Jiang JX, Mahjoob K, Verbois SL, Morse D, Dagher R, Justice R and Pazdur R: Food and drug administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist. 12:107–113. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Fukuhara H, Ino Y and Todo T: Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 107:1373–1379. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
LaFargue CJ, Dal Molin GZ, Sood AK and Coleman RL: Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 20:e15–e28. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Arrillaga-Romany I, Gardner SL, Odia Y, Aguilera D, Allen JE, Batchelor T, Butowski N, Chen C, Cloughesy T, Cluster A, et al: ONC201 (Dordaviprone) in recurrent H3 K27M-Mutant diffuse midline glioma. J Clin Oncol. 42:1542–1552. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Peters C, Paget M, Tshilenge KT, Saha D, Antoszczyk S, Baars A, Frost T, Martuza RL, Wakimoto H and Rabkin SD: Restriction of replication of oncolytic herpes simplex virus with a deletion of γ34.5 in glioblastoma stem-like cells. J Virol. 92:e00246–18. 2018. View Article : Google Scholar : | |
|
Nakashima H, Nguyen T, Kasai K, Passaro C, Ito H, Goins WF, Shaikh I, Erdelyi R, Nishihara R, Nakano I, et al: Toxicity and efficacy of a novel GADD34-expressing oncolytic HSV-1 for the treatment of experimental glioblastoma. Clin Cancer Res. 24:2574–2584. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Balathasan L, Tang VA, Yadollahi B, Brun J, Labelle M, Lefebvre C, Swift SL and Stojdl DF: Activating peripheral innate immunity enables safe and effective oncolytic virotherapy in the brain. Mol Ther Oncolytics. 7:45–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Takata F, Nakagawa S, Matsumoto J and Dohgu S: Blood-Brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB Dysfunction. Front Cell Neurosci. 15:6618382021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang H, Shi S, Yuan Z and Chang JY: Bevacizumab treatment for radiation brain necrosis: mechanism, efficacy and issues. Mol Cancer. 18:212019. View Article : Google Scholar : PubMed/NCBI | |
|
Seet RC, Rabinstein AA, Lindell PE, Uhm JH and Wijdicks EF: Cerebrovascular events after bevacizumab treatment: an early and severe complication. Neurocrit Care. 15:421–427. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou BX and Li Y: Significance of desmoglein-2 on cell malignant behaviors via mediating MAPK signaling in cervical cancer. Kaohsiung J Med Sci. 36:336–343. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun R, Ma C, Wang W and Yang S: Upregulation of desmoglein 2 and its clinical value in lung adenocarcinoma: A comprehensive analysis by multiple bioinformatics methods. PeerJ. 8:e84202020. View Article : Google Scholar : PubMed/NCBI | |
|
Han CP, Yu YH, Wang AG, Tian Y, Zhang HT, Zheng ZM and Liu YS: Desmoglein-2 overexpression predicts poor prognosis in hepatocellular carcinoma patients. Eur Rev Med Pharmacol Sci. 22:5481–5489. 2018.PubMed/NCBI | |
|
Cai F, Zhu Q, Miao Y, Shen S, Su X and Shi Y: Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2. J Cancer Res Clin Oncol. 143:59–69. 2017. View Article : Google Scholar | |
|
Tan LY, Mintoff C, Johan MZ, Ebert BW, Fedele C, Zhang YF, Szeto P, Sheppard KE, McArthur GA, Foster-Smith E, et al: Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget. 7:46492–46508. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M, Parkos CA and Nusrat A: Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene. 33:4531–4536. 2014. View Article : Google Scholar : | |
|
Brennan D and Mahoney MG: Increased expression of Dsg2 in malignant skin carcinomas: A tissue-microarray based study. Cell Adh Migr. 3:148–154. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Liu X, Zhang J and Liu Y, Gao A, Xu Y, Lin Y, Du Q, Zhu Z, Hu Y and Liu Y: Characterization of desmoglein 2 expression in ovarian serous tumors and its prognostic significance in high-grade serous carcinoma. Int J Clin Exp Pathol. 11:4977–4986. 2018.PubMed/NCBI | |
|
Ramani VC, Hennings L and Haun RS: Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer. 8:3732008. View Article : Google Scholar : PubMed/NCBI | |
|
Biedermann K, Vogelsang H, Becker I, Plaschke S, Siewert JR, Höfler H and Keller G: Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J Pathol. 207:199–206. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Mundy RM, Baker AT, Bates EA, Cunliffe TG, Teijeira-Crespo A, Moses E, Rizkallah PJ and Parker AL: Broad sialic acid usage amongst species D human adenovirus. Npj Viruses. 1:12023. View Article : Google Scholar : PubMed/NCBI | |
|
Rodrigues E and Macauley MS: Hypersialylation in cancer: Modulation of inflammation and therapeutic opportunities. Cancers (Basel). 10:2072018. View Article : Google Scholar : PubMed/NCBI | |
|
Hu K, He S, Xiao J, Li M, Luo S, Zhang M and Hu Q: Interaction between herpesvirus entry mediator and HSV-2 glycoproteins mediates HIV-1 entry of HSV-2-infected epithelial cells. J Gen Virol. 98:2351–2361. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Montgomery RI, Warner MS, Lum BJ and Spear PG: Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 87:427–436. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Ren S, Tian Q, Amar N, Yu H, Rivard CJ, Caldwell C, Ng TL, Tu M, Liu Y, Gao D, et al: The immune checkpoint, HVEM may contribute to immune escape in non-small cell lung cancer lacking PD-L1 expression. Lung Cancer. 125:115–120. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tsang JYS, Chan KW, Ni YB, Hlaing T, Hu J, Chan SK, Cheung SY and Tse GM: Expression and clinical significance of herpes virus entry mediator (HVEM) in breast cancer. Ann Surg Oncol. 24:4042–4050. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lan X, Li S, Gao H, Nanding A, Quan L, Yang C, Ding S and Xue Y: Increased BTLA and HVEM in gastric cancer are associated with progression and poor prognosis. Onco Targets Ther. 10:919–926. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Migita K, Sho M, Shimada K, Yasuda S, Yamato I, Takayama T, Matsumoto S, Wakatsuki K, Hotta K, Tanaka T, et al: Significant involvement of herpesvirus entry mediator in human esophageal squamous cell carcinoma. Cancer. 120:808–817. 2014. View Article : Google Scholar | |
|
Ahn AR, Noh SJ, Hussein UK, Park HS, Chung MJ, Lee H, Moon WS, Kang MJ, Kim HJ, Lee NR, et al: FAM83H and Nectin1 expression are related with survival and relapse of bladder urothelial carcinoma patients. BMC Urol. 21:1432021. View Article : Google Scholar : PubMed/NCBI | |
|
Tampakis A, Tampaki EC, Nonni A, Droeser R, Posabella A, Tsourouflis G, Kontzoglou K, Patsouris E, von Flüe M and Kouraklis G: Nectin-1 expression in colorectal cancer: Is there a group of patients with high risk for early disease recurrence? Oncology. 96:318–325. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cocchi F, Menotti L, Dubreuil P, Lopez M and Campadelli-Fiume G: Cell-to-cell spread of wild-type herpes simplex virus type 1, but not of syncytial strains, is mediated by the immunoglobulin-like receptors that mediate virion entry, nectin1 (PRR1/HveC/HIgR) and nectin2 (PRR2/HveB). J Virol. 74:3909–3917. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Girgis NM, Dehaven BC, Fan X, Viner KM, Shamim M and Isaacs SN: Cell surface expression of the vaccinia virus complement control protein is mediated by interaction with the viral A56 protein and protects infected cells from complement attack. J Virol. 82:4205–4214. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Marques C, Reis CA, Vivès RR and Magalhães A: Heparan sulfate biosynthesis and sulfation profiles as modulators of cancer signalling and progression. Front Oncol. 11:7787522021. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Luo P, Guo F, Jia X, Shen M, Zhang T, Wang S and Du T: Identification of HSPG2 as a bladder pro-tumor protein through NID1/AKT signaling. Cancer Cell Int. 24:3452024. View Article : Google Scholar : PubMed/NCBI | |
|
Lambrecht V, Le Bourhis X, Toillon RA, Boilly B and Hondermarck H: Alterations in both heparan sulfate proteoglycans and mitogenic activity of fibroblast growth factor-2 are triggered by inhibitors of proliferation in normal and breast cancer epithelial cells. Exp Cell Res. 245:239–244. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Yi B, Qiu Y, Ji W, Wei M, Liu C, Peng Z, Zhang Y, Quan Z, Tang Z and Su C: Desulfation of cell surface HSPG is an effective strategy for the treatment of gallbladder carcinoma. Cancer Lett. 381:349–358. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong R, Long Q, Zhang X, Xu J, Liu Y, Xiong L, Yang S, Feng G, Song G and Liu K: HOXD11 upregulates JAM-A and exerts oncogenic properties via NF-κB signaling pathway in esophageal squamous cell carcinoma. Hum Cell. 36:244–257. 2023. View Article : Google Scholar | |
|
Aravamudhan P, Guzman-Cardozo C, Urbanek K, Welsh OL, Konopka-Anstadt JL, Sutherland DM and Dermody TS: The murine neuronal receptor NgR1 is dispensable for reovirus pathogenesis. J Virol. 96:e00055222022. View Article : Google Scholar : PubMed/NCBI | |
|
Rosager AM, Sørensen MD, Dahlrot RH, Boldt HB, Hansen S, Lathia JD and Kristensen BW: Expression and prognostic value of JAM-A in gliomas. J Neurooncol. 135:107–117. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ikeo K, Oshima T, Shan J, Matsui H, Tomita T, Fukui H, Watari J and Miwa H: Junctional adhesion molecule-A promotes proliferation and inhibits apoptosis of gastric cancer. Hepatogastroenterology. 62:540–545. 2015.PubMed/NCBI | |
|
McSherry EA, McGee SF, Jirstrom K, Doyle EM, Brennan DJ, Landberg G, Dervan PA, Hopkins AM and Gallagher WM: JAM-A expression positively correlates with poor prognosis in breast cancer patients. Int J Cancer. 125:1343–1351. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Marcq I, Nyga R, Cartier F, Amrathlal RS, Ossart C, Ouled-Haddou H, Ghamlouch H, Galmiche A, Chatelain D, Lamotte L, et al: Identification of SLAMF3 (CD229) as an inhibitor of hepatocellular carcinoma cell proliferation and tumour progression. PLoS One. 8:e829182013. View Article : Google Scholar : | |
|
Agresta L, Lehn M, Lampe K, Cantrell R, Hennies C, Szabo S, Wise-Draper T, Conforti L, Hoebe K and Janssen EM: CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. J Immunother Cancer. 8:e0002452020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhu Y, Wang Q, Kong Y, Sheng H, Guo J, Xu J and Dai B: Poliovirus receptor CD155 is up-regulated in muscle-invasive bladder cancer and predicts poor prognosis. Urol Oncol. 38:41.e11–41.e18. 2020. View Article : Google Scholar | |
|
Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I, Akahori T, Kinoshita S, Nagai M, Konishi N and Nakajima Y: Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 35:2287–2297. 2015.PubMed/NCBI | |
|
Li YC, Zhou Q, Song QK, Wang RB, Lyu S, Guan X, Zhao YJ and Wu JP: Overexpression of an immune checkpoint (CD155) in breast cancer associated with prognostic significance and exhausted tumor-infiltrating lymphocytes: A cohort study. J Immunol Res. 2020:39489282020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuo B, Li Y, Gu F, Li Z, Sun Q, Shi Y, Shen Y, Zhang F, Wang R and Wang X: Overexpression of CD155 relates to metastasis and invasion in osteosarcoma. Oncol Lett. 15:7312–7318. 2018.PubMed/NCBI | |
|
Murakami D, Matsuda K, Iwamoto H, Mitani Y, Mizumoto Y, Nakamura Y, Matsuzaki I, Iwamoto R, Takahashi Y, Kojima F, et al: Prognostic value of CD155/TIGIT expression in patients with colorectal cancer. PLoS One. 17:e02659082022. View Article : Google Scholar : PubMed/NCBI | |
|
Finkelshtein D, Werman A, Novick D, Barak S and Rubinstein M: LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci USA. 110:7306–7311. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Behrouj H, Erfani M and Mokarram P: Examining the expression of low-density lipoprotein receptor (LDLR) and low-density lipoprotein receptor-related protein 6 (LRP6) genes in breast cancer cell lines. Mol Biol Res Commun. 13:85–88. 2024.PubMed/NCBI | |
|
Zhang GM, Chen W, Yao Y, Luo L and Sun LJ: LDLR promotes growth and invasion in renal cell carcinoma and activates the EGFR pathway. Neoplasma. 69:113–122. 2022. View Article : Google Scholar | |
|
Tang S, Chen K, Zheng F, Fu Z, Niu Y, Liu X, Ni H, Yuan X, Cui Z, Lu W, et al: High serum LDL promotes EMT and stemness through LDLR/FOXQ1/NF-κB1 pathway in epithelial ovarian cancer. Oncogene. 44:4587–4600. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Örbom A, Evans-Axelsson S, Jansson B, Vilhelmsson Timmermand O, Tran TA, Bjartell A and Strand SE: Intratumoral distribution and pharmacokinetics of the radiolabeled ICAM-1 targeting monoclonal antibody R6.5 in a prostate cancer mouse model. Nuklearmedizin. 64:163–169. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Gultekin O, Gonzalez-Molina J, Sarhan D, Groes-Kofoed N, Hassan MU, Lehti K and Salehi S: Systemic and tumor-specific inflammatory markers VCAM-1 and ICAM-1 as indicators of extent of surgery and oncologic outcome in advanced ovarian cancer. Transl Oncol. 59:1024622025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YH, Chu CC, Liu JF, Lai HS and Chen YT: C-X-C motif ligand 1 induces cell migration by upregulating ICAM-1 expression by activating PI3K/Akt and NF-κB signaling pathway in liver cancer. Adv Biol (Weinh). 9:e24002952025. View Article : Google Scholar | |
|
Annels NE, Mansfield D, Arif M, Ballesteros-Merino C, Simpson GR, Denyer M, Sandhu SS, Melcher AA, Harrington KJ, Davies B, et al: Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin Cancer Res. 25:5818–5831. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tempia-Caliera AA, Horvath LZ, Zimmermann A, Tihanyi TT, Korc M, Friess H and Büchler MW: Adhesion molecules in human pancreatic cancer. J Surg Oncol. 79:93–100. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Yang Q, Liu C, Wang G, Song H, Shang G, Peng R, Qu X, Liu S, Cui Y, et al: Molecular basis of differential receptor usage for naturally occurring CD55-binding and -nonbinding coxsackievirus B3 strains. Proc Natl Acad Sci USA. 119:e21185901192022. View Article : Google Scholar : PubMed/NCBI | |
|
Koretz K, Brüderlein S, Henne C and Möller P: Decay-accelerating factor (DAF, CD55) in normal colorectal mucosa, adenomas and carcinomas. Br J Cancer. 66:810–814. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Madjd Z, Durrant LG, Bradley R, Spendlove I, Ellis IO and Pinder SE: Loss of CD55 is associated with aggressive breast tumors. Clin Cancer Res. 10:2797–2803. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Mäenpää A, Junnikkala S, Hakulinen J, Timonen T and Meri S: Expression of complement membrane regulators membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59) in human malignant gliomas. Am J Pathol. 148:1139–1152. 1996.PubMed/NCBI | |
|
Mustafa T, Klonisch T, Hombach-Klonisch S, Kehlen A, Schmutzler C, Koehrle J, Gimm O, Dralle H and Hoang-Vu C: Expression of CD97 and CD55 in human medullary thyroid carcinomas. Int J Oncol. 24:285–294. 2004.PubMed/NCBI | |
|
Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, Nishimura H, Sanjoh K, Katsushima N, Itagaki T, et al: Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol. 86:5686–5696. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D, Fang J, Shan J, Xu L, Wu Y, Lu B, Zhang X, Wang C, Sun P and Wang Q: SCARB2 associates with tumor-infiltrating neutrophils and predicts poor prognosis in breast cancer. Breast Cancer Res Treat. 207:15–24. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Gao Y, Xue S, Zhao L, Jiang H, Zhang T, Li Y, Zhao C, Wu F, Siqin T, et al: SCARB2 drives hepatocellular carcinoma tumor initiating cells via enhanced MYC transcriptional activity. Nat Commun. 14:59172023. View Article : Google Scholar : PubMed/NCBI | |
|
Hance KW, Rogers CJ, Zaharoff DA, Canter D, Schlom J and Greiner JW: The antitumor and immunoadjuvant effects of IFN-alpha in combination with recombinant poxvirus vaccines. Clin Cancer Res. 15:2387–2396. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Duggan MC, Jochems C, Donahue RN, Richards J, Karpa V, Foust E, Paul B, Brooks T, Tridandapani S, Olencki T, et al: A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-α-2b in patients with CEA-expressing carcinomas. Cancer Immunol Immunother. 65:1353–1364. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qi C, Liu C, Peng Z, Zhang Y, Wei J, Qiu W, Zhang X, Pan H, Niu Z, Qiu M, et al: Claudin-18 isoform 2-specific CAR T-cell therapy (satri-cel) versus treatment of physician's choice for previously treated advanced gastric or gastro-oesophageal junction cancer (CT041-ST-01): A randomised, open-label, phase 2 trial. Lancet. 405:2049–2060. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Li F, Deng L, Ma Q, Lu W, Zhao Z, Liu H, Zhou Y, Hu M, Wang H, et al: Claudin18.2 bispecific T cell engager armed oncolytic virus enhances antitumor effects against pancreatic cancer. Mol Ther Oncolytics. 30:275–285. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon AR, Hong J, Kim M and Yun CO: Hepatocellular carcinoma-targeting oncolytic adenovirus overcomes hypoxic tumor microenvironment and effectively disperses through both central and peripheral tumor regions. Sci Rep. 8:22332018. View Article : Google Scholar : PubMed/NCBI | |
|
Cordeiro R, Oliveira D, Santo D, Coelho J and Faneca H: Mesoporous silica-glycopolymer hybrid nanoparticles for dual targeted chemotherapy and gene therapy to liver cancer cells. Int J Pharm. 675:1255532025. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Y, Yang B, Yang Z, Xiao H, Zou Y, Zou C, Yang S, Sun X, Wang Y, Bai J, et al: Engineered E. coli OMVs carrying the membrane-binding hGC33 fragment precisely target liver cancer and effectively treat tumor. Int J Nanomedicine. 20:6573–6590. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
West CE, Mirshahi UL, Ruth KS, Sharp LN, Arni AM, Turnbull C, Wright CF, Vaidya B, Owens MM, Carey DJ and Patel KA: Medullary thyroid cancer risk and mortality in carriers of incidentally identified MEN2A RET variants. JAMA Netw Open. 8:e25179372025. View Article : Google Scholar : PubMed/NCBI | |
|
Cañizo CG, Guerrero-Ramos F, Perez Escavy M, Lodewijk I, Suárez-Cabrera C, Morales L, Nunes SP, Munera-Maravilla E, Rubio C, Sánchez R, et al: Characterisation of the tumour microenvironment and PD-L1 granularity reveals the prognostic value of cancer-associated myofibroblasts in non-invasive bladder cancer. Oncoimmunology. 14:24382912025. View Article : Google Scholar | |
|
Okato A, Utsumi T, Ranieri M, Zheng X, Zhou M, Pereira LD, Chen T, Kita Y, Wu D, Hyun H, et al: FGFR inhibition augments anti-PD-1 efficacy in murine FGFR3-mutant bladder cancer by abrogating immunosuppression. J Clin Invest. 134:e1692412024. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng L, Lopez-Beltran A, Massari F, MacLennan GT and Montironi R: Molecular testing for BRAF mutations to inform melanoma treatment decisions: A move toward precision medicine. Mod Pathol. 31:24–38. 2018. View Article : Google Scholar : | |
|
Rosenkrans ZT, Erbe AK, Clemons NB, Feils AS, Medina-Guevara Y, Jeffery JJ, Barnhart TE, Engle JW, Sondel PM and Hernandez R: ImmunoPET demonstrates that Co-Targeting GD2 and B7-H3 with bispecific antibodies enhances tumor selectivity in preclinical melanoma models. Bioconjug Chem. 36:1595–1603. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Krug C, Birkholz K, Paulus A, Schwenkert M, Schmidt P, Hoffmann N, Hombach A, Fey G, Abken H, Schuler G, et al: Stability and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the scFv antigen-binding domain and the protein backbone. Cancer Immunol Immunother. 64:1623–1635. 2015. View Article : Google Scholar : PubMed/NCBI |