You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025.PubMed/NCBI | |
|
Si J, Zou Y, Gao Y, Chen J, Jiang W, Shen X, Zhu C and Yao Q: tRF-3a-Pro: A transfer RNA-derived small RNA as a novel biomarker for diagnosis of Hepatitis B Virus-related hepatocellular carcinoma. Cell Prolif. 58:e700062025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang CH, Cheng Y, Zhang S, Fan J and Gao Q: Changing epidemiology of hepatocellular carcinoma in Asia. Liver Int. 42:2029–2041. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson B, Mariotto A, Lake AJ, Wilson R, Sherman RL, et al: Annual report to the nation on the status of cancer, 1975-2014, featuring survival. J Natl Cancer Inst. 109:djx0302017. View Article : Google Scholar : PubMed/NCBI | |
|
Ladd AD, Duarte S, Sahin I and Zarrinpar A: Mechanisms of drug resistance in HCC. Hepatology. 79:926–940. 2024. View Article : Google Scholar | |
|
Liu CX and Chen LL: Circular RNAs: Characterization, cellular roles, and applications. Cell. 185:2016–2034. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, Gorshkov K, Mao Q, Xia S, Cen D, et al: N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol Cancer. 19:1632020. View Article : Google Scholar | |
|
Zhang XY, Li SS, Gu YR, Xiao LX, Ma XY, Chen XR, Wang JL, Liao CH, Lin BL, Huang YH, et al: CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis. Mol Cancer. 23:1132024. View Article : Google Scholar : PubMed/NCBI | |
|
Fei D, Wang F, Wang Y, Chen J, Chen S, Fan L, Yang L, Ren Q, Duangmano S, Du F, et al: Circular RNA ACVR2A promotes the progression of hepatocellular carcinoma through mir-511-5p targeting PI3K-Akt signaling pathway. Mol Cancer. 23:1592024. View Article : Google Scholar : PubMed/NCBI | |
|
Ji Y, Ni C, Shen Y, Xu Z, Tang L, Yu F, Zhu L, Lu H, Zhang C, Yang S and Wang X: ESRP1-mediated biogenesis of circPTPN12 inhibits hepatocellular carcinoma progression by PDLIM2/NF-κB pathway. Mol Cancer. 23:1432024. View Article : Google Scholar | |
|
Liu Y, Song J, Zhang H, Liao Z, Liu F, Su C, Wang W, Han M, Zhang L, Zhu H, et al: EIF4A3-induced circTOLLIP promotes the progression of hepatocellular carcinoma via the miR-516a-5p/PBX3/EMT pathway. J Exp Clin Cancer Res. 41:1642022. View Article : Google Scholar : PubMed/NCBI | |
|
Peng R, Cao J, Su BB, Bai XS, Jin X, Wang AQ, Wang Q, Liu RJ, Jiang GQ, Jin SJ, et al: Down-regulation of circPTTG1IP induces hepatocellular carcinoma development via miR-16-5p/RNF125/JAK1 axis. Cancer Lett. 543:2157782022. View Article : Google Scholar : PubMed/NCBI | |
|
Meldolesi J: Exosomes and ectosomes in intercellular communication. Curr Biol. 28:R435–R444. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Jiang J, Qian H, Yan Y and Xu W: Exosomal circRNA: Emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 16:672023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dong FL, Xu ZZ, Wang YQ, Li T, Wang X and Li J: Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology. 22:2982024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, Gorshkov K, Sun Q, Lin H, Zheng X, et al: CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther. 5:2982020. View Article : Google Scholar : PubMed/NCBI | |
|
Gong J, Han G, Chen Z, Zhang Y, Xu B, Xu C, Gao W and Wu J: CircDCAF8 promotes the progression of hepatocellular carcinoma through miR-217/NAP1L1 Axis, and induces angiogenesis and regorafenib resistance via exosome-mediated transfer. J Transl Med. 22:5172024. View Article : Google Scholar : PubMed/NCBI | |
|
Harding C, Heuser J and Stahl P: Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 97:329–339. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Johnstone RM, Adam M, Hammond JR, Orr L and Turbide C: Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 262:9412–9420. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Camussi G, Deregibus MC, Bruno S, Cantaluppi V and Biancone L: Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78:838–848. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Panda SS, Sahoo RK, Patra SK, Biswal S and Biswal BK: Molecular insights to therapeutic in cancer: Role of exosomes in tumor microenvironment, metastatic progression and drug resistance. Drug Discov Today. 29:1040612024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Zhang Y, Jin P, Chen Y, Zhang C, Geng X, Mun KS and Phang KC: New insights into the potential of exosomal circular RNAs in mediating cancer chemotherapy resistance and their clinical applications. Biomed Pharmacother. 177:1170272024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T and Zhang H: Exploring the roles and molecular mechanisms of RNA binding proteins in the sorting of noncoding RNAs into exosomes during tumor progression. J Adv Res. 65:105–123. 2024. View Article : Google Scholar : | |
|
Jiang Z, Liu G and Li J: Recent progress on the isolation and detection methods of exosomes. Chem Asian J. 15:3973–3982. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yan H, Li Y, Cheng S and Zeng Y: Advances in analytical technologies for extracellular vesicles. Anal Chem. 93:4739–4774. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Meng X, Li X, Zhang P, Wang J, Zhou Y and Chen M: Circular RNA: An emerging key player in RNA world. Brief Bioinform. 18:547–557. 2017. | |
|
Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C and Conn SJ: A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 3:170532017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X, Zhang J, Tian Y, Gao Y, Dong X, Chen W, Yuan X, Yin W, Xu J, Chen K, et al: CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 19:1282020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng J, He T, Chen J, Zhao J, Zhang S and Yang Z: Decoding the functional network of circular RNAs encoding proteins in hepatocellular carcinoma: From carcinogenesis to clinical transformation. J Adv Res. Sep 11–2025. View Article : Google Scholar : Epub ahead of print. | |
|
Liu Z, Wang Q, Wang X, Xu Z, Wei X and Li J: Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov. 6:722020. View Article : Google Scholar : PubMed/NCBI | |
|
Panda AC: Circular RNAs Act as miRNA sponges. Adv Exp Med Biol. 1087:67–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Su Y, Xu C, Liu Y, Hu Y and Wu H: Circular RNA hsa_circ_0001649 inhibits hepatocellular carcinoma progression via multiple miRNAs sponge. Aging (Albany NY). 11:3362–3375. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Du WW, Zhang C, Yang W, Yong T, Awan FM and Yang BB: Identifying and characterizing circRNA-Protein interaction. Theranostics. 7:4183–4191. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R, Thorne RF, Zhang XD, Hu W and Wu M: CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 30:157–173.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Margvelani G, Maquera KAA, Welden JR, Rodgers DW and Stamm S: Translation of circular RNAs. Nucleic Acids Res. 53:gkae11672025. View Article : Google Scholar : | |
|
Lan T, Gao F, Cai Y, Lv Y, Zhu J, Liu H, Xie S, Wan H, He H, Xie K, et al: The protein circPETH-147aa regulates metabolic reprogramming in hepatocellular carcinoma cells to remodel immunosuppressive microenvironment. Nat Commun. 16:3332025. View Article : Google Scholar : PubMed/NCBI | |
|
Song R, Ma S, Xu J, Ren X, Guo P, Liu H, Li P, Yin F, Liu M, Wang Q, et al: A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer. 22:162023. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Gao Y, Tang Y, Dong A, Hu S, Wang R, Gong X and Peng Z: Circular SNX25 encoded radioresistance augmenter facilitates DNA damage repair in hepatocellular carcinoma by targeting BAG6-GET4 interaction. Cell Death Dis. 16:7342025. View Article : Google Scholar : PubMed/NCBI | |
|
Conn VM, Chinnaiyan AM and Conn SJ: Circular RNA in cancer. Nat Rev Cancer. 24:597–613. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Zhou W, Wang H, Huang M and Deng H: Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (2020). 5:e700192024. View Article : Google Scholar : PubMed/NCBI | |
|
Seimiya T, Otsuka M, Iwata T, Shibata C, Tanaka E, Suzuki T and Koike K: Emerging roles of exosomal circular RNAs in cancer. Front Cell Dev Biol. 8:5683662020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Quan Y, Fan S, Wang H, Liang J, Huang L, Chen L, Liu Q, He P and Ye Y: Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett. 475:119–128. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Zhang J, Li P, Li T, Zhou Z and Wu H: Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3. Cell Death Dis. 13:322022. View Article : Google Scholar : PubMed/NCBI | |
|
Dai X, Chen C, Yang Q, Xue J, Chen X, Sun B, Luo F, Liu X, Xiao T, Xu H, et al: Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis. 9:4542018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Bian L, Liu R, Wang Y and Xiao X: Circular RNA hsa_circ_0061395 accelerates hepatocellular carcinoma progression via regulation of the miR-877-5p/PIK3R3 axis. Cancer Cell Int. 21:102021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan P, Song J, Wang F and Chen B: Exosome-transmitted circ_002136 promotes hepatocellular carcinoma progression by miR-19a-3p/RAB1A pathway. BMC Cancer. 22:12842022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Yu W, Wang Q, Huang T and Ding Y: CircANTXR1 contributes to the malignant progression of hepatocellular carcinoma by promoting proliferation and metastasis. J Hepatocell Carcinoma. 8:1339–1353. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Ren C, Guo L, Yang C and Yu Q: Exosome-mediated circTTLL5 transfer promotes hepatocellular carcinoma malignant progression through miR-136-5p/KIAA1522 axis. Pathol Res Pract. 241:1542762023. View Article : Google Scholar | |
|
Li Y, Zang H, Zhang X and Huang G: Exosomal Circ-ZNF652 promotes cell proliferation, migration, invasion and glycolysis in hepatocellular carcinoma via miR-29a-3p/GUCD1 axis. Cancer Manag Res. 12:7739–7751. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Li B, Yi X, Xiao X, Zheng Q and Ma L: Circ_0036412 affects the proliferation and cell cycle of hepatocellular carcinoma via hedgehog signaling pathway. J Transl Med. 20:1542022. View Article : Google Scholar : PubMed/NCBI | |
|
Du A, Li S, Zhou Y, Disoma C, Liao Y, Zhang Y, Chen Z, Yang Q, Liu P, Liu S, et al: M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer. 21:1092022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Zheng L, Zhan Y and Zhang Y: A novel taspine derivative suppresses human liver tumor growth and invasion in vitro and in vivo. Oncol Lett. 6:855–859. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hunter KW: Host genetics and tumour metastasis. Br J Cancer. 90:752–755. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Mu W, Gu P, Li H, Zhou J, Jian Y, Jia W and Ge Y: Exposure of benzo[a]pyrene induces HCC exosome-circular RNA to activate lung fibroblasts and trigger organotropic metastasis. Cancer Commun (Lond). 44:718–738. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo J, Zhang Y, Li H, Zhang Q, Yang Y and Chen G: Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway. EBioMedicine. 40:432–445. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Allgayer H, Mahapatra S, Mishra B, Swain B, Saha S, Khanra S, Kumari K, Panda VK, Malhotra D, Patil NS, et al: Epithelial-to-mesenchymal transition (EMT) and cancer metastasis: The status quo of methods and experimental models 2025. Mol Cancer. 24:1672025. View Article : Google Scholar : PubMed/NCBI | |
|
Amicone L, Marchetti A and Cicchini C: Exosome-associated circRNAs as key regulators of EMT in cancer. Cells. 11:17162022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu M, Li X, Jiang Z, Xia Q, Hu Y, Guo J and Fu L: Exosomes and circular RNAs: Promising partners in hepatocellular carcinoma from bench to bedside. Discov Oncol. 14:602023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang JL, Fu YP, Gan W, Liu G, Zhou PY, Zhou C, Sun BY, Guan RY, Zhou J, Fan J, et al: Hepatic stellate cells promote the progression of hepatocellular carcinoma through microRNA-1246-RORα-Wnt/β-catenin axis. Cancer Lett. 476:140–151. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Fu Y, Huang R, Gao M, Liu F, Gui R and Nie X: CircRNA_101505 sensitizes hepatocellular carcinoma cells to cisplatin by sponging miR-103 and promotes oxidored-nitro domain-containing protein 1 expression. Cell Death Discov. 5:1212019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu C, Su Y, Liu L, Wang S, Liu Y and Wu J: Circular RNA hsa_circ_0004277 stimulates malignant phenotype of hepatocellular carcinoma and Epithelial-mesenchymal transition of peripheral cells. Front Cell Dev Biol. 8:5855652020. View Article : Google Scholar | |
|
Wang Y, Gao R, Li J, Tang S and Li S, Tong Q and Li S: Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization. Int J Nanomedicine. 16:2803–2818. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Liao R, Wu Z, Du C, You Y, Que K, Duan Y, Yin K and Ye W: Hepatic stellate cell exosome-derived circWDR25 promotes the progression of hepatocellular carcinoma via the miRNA-4474-3P-ALOX-15 and EMT axes. Biosci Trends. 16:267–281. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Sun Q, Shen C and Qian Y: Circular RNA circ_0003028 regulates cell development through modulating miR-498/ornithine decarboxylase 1 axis in hepatocellular carcinoma. Anticancer Drugs. 34:507–518. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu D, Kang H, Gao M, Jin L, Zhang F, Chen D, Li M and Xiao L: Exosome-transmitted circ_MMP2 promotes hepatocellular carcinoma metastasis by upregulating MMP2. Mol Oncol. 14:1365–1380. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Su Y, Lv X, Yin W, Zhou L, Hu Y, Zhou A and Qi F: CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging Albany (NY). 11:8183–8203. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Zheng ZH, Wang JX, Zhao Z and Peng TY: Tumor Cell-derived exosomal Circ-0072088 suppresses migration and invasion of hepatic carcinoma cells through regulating MMP-16. Front Cell Dev Biol. 9:7263232021. View Article : Google Scholar : PubMed/NCBI | |
|
Prager GW, Poettler M, Unseld M and Zielinski CC: Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res. 1:14–25. 2012.PubMed/NCBI | |
|
Zhu Y, He Q and Qi M: Exosomal circPTPRK promotes angiogenesis after radiofrequency ablation in hepatocellular carcinoma. Exp Biol Med (Maywood). 249:100842024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, Zhou J and Tang ZY: Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 39:202020. View Article : Google Scholar : PubMed/NCBI | |
|
Hao X, Zhang Y, Shi X, Liu H, Zheng Z, Han G, Rong D, Zhang C, Tang W and Wang X: CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3ζ. J Exp Clin Cancer Res. 41:2812022. View Article : Google Scholar | |
|
Hu K, Li NF, Li JR, Chen ZG, Wang JH and Sheng LQ: Exosome circCMTM3 promotes angiogenesis and tumorigenesis of hepatocellular carcinoma through miR-3619-5p/SOX9. Hepatol Res. 51:1139–1152. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu B, Jia W, Feng Y, Wang J, Wang J, Zhu D, Xu C, Liang L, Ding W, Zhou Y and Kong L: Exosome-transported circHDAC1_004 promotes proliferation, migration, and angiogenesis of hepatocellular carcinoma by the miR-361-3p/NACC1 axis. J Clin Transl Hepatol. 11:1079–1093. 2023.PubMed/NCBI | |
|
Deng M, Sun S, Zhao R, Guan R, Zhang Z, Li S, Wei W and Guo R: The pyroptosis-related gene signature predicts prognosis and indicates immune activity in hepatocellular carcinoma. Mol Med. 28:162022. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lai Z, Wei T, Li Q, Wang X, Zhang Y and Zhang S: Exosomal circFBLIM1 promotes hepatocellular carcinoma progression and glycolysis by regulating the miR-338/LRP6 axis. Cancer Biother Radiopharm. 38:674–683. 2023. | |
|
Yu S, Su S, Wang P, Li J, Chen C, Xin H, Gong Y, Wang H, Ye X, Mao L, et al: Tumor-associated macrophage-induced circMRCKα encodes a peptide to promote glycolysis and progression in hepatocellular carcinoma. Cancer Lett. 591:2168722024. View Article : Google Scholar | |
|
Li J, Wang X, Shi L, Liu B, Sheng Z, Chang S, Cai X and Shan G: A mammalian conserved circular RNA CircLARP1B regulates hepatocellular carcinoma metastasis and lipid metabolism. Adv Sci (Weinh). 11:e23059022024. View Article : Google Scholar | |
|
Liu C, Huang R, Yu H, Gong Y, Wu P, Feng Q and Li X: Fuzheng Xiaozheng prescription exerts anti-hepatocellular carcinoma effects by improving lipid and glucose metabolisms via regulating circRNA-miRNA-mRNA networks. Phytomedicine. 103:1542262022. View Article : Google Scholar : PubMed/NCBI | |
|
Han T, Chen L and Li K, Hu Q, Zhang Y, You X, Han L, Chen T and Li K: Significant CircRNAs in liver cancer stem cell exosomes: Mediator of malignant propagation in liver cancer? Mol Cancer. 22:1972023. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Y, Wang Y, He L, Zhang J, Zhu X, Liu N, Wang J, Lu T, He L, Tian Y and Fan Z: Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer. 20:1322021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu YJ, Zheng B, Luo GJ, Ma XK, Lu XY, Lin XM, Yang S, Zhao Q, Wu T, Li ZX, et al: Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics. 9:3526–3540. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sarkar FH, Li Y, Wang Z and Kong D: The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer. Cancer Metastasis Rev. 29:383–394. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Takebe N, Harris PJ, Warren RQ and Ivy SP: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 8:97–106. 2011. View Article : Google Scholar | |
|
Chatterjee S and Sil PC: Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol Res. 142:251–261. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lei YR, He XL, Li J and Mo CF: Drug resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Front Biosci (Landmark Ed). 29:522024. View Article : Google Scholar : PubMed/NCBI | |
|
Guo X, Gao CY, Yang DH and Li SL: Exosomal circular RNAs: A chief culprit in cancer chemotherapy resistance. Drug Resist Updat. 67:1009372023. View Article : Google Scholar : PubMed/NCBI | |
|
Qin L, Zhan Z, Wei C, Li X, Zhang T and Li J: Hsa-circRNA-G004213 promotes cisplatin sensitivity by regulating miR-513b-5p/PRPF39 in liver cancer. Mol Med Rep. 23:4212021. View Article : Google Scholar : | |
|
Zhou Y, Tang W, Zhuo H, Zhu D, Rong D, Sun J and Song J: Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/nuclear factor-kappa B (NF-κB) pathway. Bioengineered. 13:4786–4797. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
He G and Karin M: NF-κB and STAT3-key players in liver inflammation and cancer. Cell Res. 21:159–168. 2011. View Article : Google Scholar | |
|
Li Y, Zhang Y, Zhang S, Huang D, Li B, Liang G, Wu Y, Jiang Q, Li L, Lin C, et al: circRNA circARNT2 suppressed the sensitivity of hepatocellular carcinoma cells to cisplatin by targeting the miR-155-5p/PDK1 axis. Mol Ther Nucleic Acids. 23:244–254. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Liu S, Li M, Huang P and Li X: circ_0003418 inhibits tumorigenesis and cisplatin chemoresistance through Wnt/β-catenin pathway in hepatocellular carcinoma. Onco Targets Ther. 12:9539–9549. 2019. View Article : Google Scholar : | |
|
Xie H, Yao J, Wang Y and Ni B: Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 29:1257–1271. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shao N, Song L and Sun X: Exosomal circ_PIP5K1A regulates the progression of non-small cell lung cancer and cisplatin sensitivity by miR-101/ABCC1 axis. Mol Cell Biochem. 476:2253–2267. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hanssen KM, Wheatley MS, Yu DMT, Conseil G, Norris MD, Haber M, Cole SPC and Fletcher JI: GSH facilitates the binding and inhibitory activity of novel multidrug resistance protein 1 (MRP1) modulators. FEBS J. 289:3854–3875. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zang R, Qiu X, Song Y and Wang Y: Exosomes mediated transfer of Circ_0000337 contributes to cisplatin (CDDP) resistance of esophageal cancer by regulating JAK2 via miR-377-3p. Front Cell Dev Biol. 9:6732372021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Wu A, Chen L, Cai A, Hu Y, Zhou Z, Qi Q, Wu Y, Xia D, Dong P, et al: Hsa_circ_0000098 is a novel therapeutic target that promotes hepatocellular carcinoma development and resistance to doxorubicin. J Exp Clin Cancer Res. 41:2672022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Wang L, Yin G, Li H, Zhang R, Feng Y and Chang W: Hsa_circ_0088036 promotes tumorigenesis and chemotherapy resistance in hepatocellular carcinoma via the miR-140-3p/KIF2A axis. Histol Histopathol. 40:1239–1251. 2025. | |
|
Li J, Qin X, Wu R, Wan L, Zhang L and Liu R: Circular RNA circFBXO11 modulates hepatocellular carcinoma progress and oxaliplatin resistance through miR-605/FOXO3/ABCB1 axis. J Cell Mol Med. 24:5152–5161. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ren Y, Dong X, Chen L, Sun T, Alwalid O, Kan X, Su Y, Xiong B, Liang H, Zheng C and Han P: Combined ultrasound and CT-Guided Iodine-125 seeds implantation for treatment of residual hepatocellular carcinoma located at complex sites after transcatheter arterial chemoembolization. Front Oncol. 11:5825442021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan L, Wang Y, Cheng J, Lin S, Ma A, Li K, Zheng Y, Zeng Z, Ke A, Gao C and Du S: Cancer-derived exosomal circTMEM56 enhances the efficacy of HCC radiotherapy through the miR-136-5p/STING axis. Cancer Biol Med. 22:396–411. 2025.PubMed/NCBI | |
|
Li T and Chen ZJ: The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med. 215:1287–1299. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin L, Hu P, Luo M, Chen X, Xiao M, Zhong Z, Peng S, Chen G, Yang G, Zhang F and Zhang Y: CircNOP14 increases the radiosensitivity of hepatocellular carcinoma via inhibition of Ku70-dependent DNA damage repair. Int J Biol Macromol. 264:1305412024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Rothenberg E, Ramsden DA and Lieber MR: The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 21:765–781. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Liu Y, Gao R, Xiu Z and Sun T: Knockdown of cZNF292 suppressed hypoxic human hepatoma SMMC7721 cell proliferation, vasculogenic mimicry, and radioresistance. Cell Signal. 60:122–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Chen Y, Ye H, Wang B, Lan X, Wang H, Ding S and He X: Circ-LARP1B knockdown restrains the tumorigenicity and enhances radiosensitivity by regulating miR-578/IGF1R axis in hepatocellular carcinoma. Ann Hepatol. 27:1006782022. View Article : Google Scholar : PubMed/NCBI | |
|
Chang Z, Song Y, Luo F, Yang X, Cai Y and Guo H: Circular RNA SMARCA5 promotes a poor prognosis and radiotherapy resistance for patients with hepatocellular carcinoma. Ann Clin Lab Sci. 53:573–577. 2023.PubMed/NCBI | |
|
Wang X, Zhang J, Luo F and Shen Y: Application of circular RNA Circ_0071662 in the diagnosis and prognosis of hepatocellular carcinoma and its response to radiotherapy. Dig Dis. 41:431–438. 2023. View Article : Google Scholar | |
|
Yang K, Ding Y, Han J and He R: CircROBO1 knockdown improves the radiosensitivity of hepatocellular carcinoma by regulating RAD21. Ann Hepatol. 29:1015362024. View Article : Google Scholar : PubMed/NCBI | |
|
Gu X, Shi Y, Dong M, Jiang L, Yang J and Liu Z: Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis. 12:8182021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, Kan Q, Fan R, Liu Z and Zhang M: Identification of Low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance. Int J Biol Sci. 17:1061–1078. 2021. View Article : Google Scholar : | |
|
Gusani NJ, Jiang Y, Kimchi ET, Staveley-O'Carroll KF, Cheng H and Ajani JA: New pharmacological developments in the treatment of hepatocellular cancer. Drugs. 69:2533–2540. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Wang X, Chen K, Zhang M and Wang J: The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment. Biochem Pharmacol. 205:1152412022. View Article : Google Scholar : PubMed/NCBI | |
|
Koppula P, Zhang Y, Zhuang L and Gan B: Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). 38:122018.PubMed/NCBI | |
|
Lin W, Wang C, Liu G, Bi C, Wang X, Zhou Q and Jin H: SLC7A11/xCT in cancer: Biological functions and therapeutic implications. Am J Cancer Res. 10:3106–3126. 2020.PubMed/NCBI | |
|
Bassi MT, Gasol E, Manzoni M, Pineda M, Riboni M, Martín R, Zorzano A, Borsani G and Palacín M: Identification and characterisation of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc. Pflugers Arch. 442:286–296. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yao R, Li M, Fang C, Feng K, Chen X, Wang J, Luo R, Shi H, Chen X, et al: CircTTC13 promotes sorafenib resistance in hepatocellular carcinoma through the inhibition of ferroptosis by targeting the miR-513a-5p/SLC7A11 axis. Mol Cancer. 24:322025. View Article : Google Scholar : PubMed/NCBI | |
|
Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi T, Iwamoto Y, Toi M, Fujii T, Yamana H, Kinoshita H, et al: The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther. 3:1485–1492. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kwabiah D, Nagati V and Tripathi MK: Transcription factor YBX1 orchestrates drug resistance and tumor progression in HCC. Drug Discov Today. 30:1044392025. View Article : Google Scholar : PubMed/NCBI | |
|
Prabhu L, Hartley AV, Martin M, Warsame F, Sun E and Lu T: Role of post-translational modification of the Y box binding protein 1 in human cancers. Genes Dis. 2:240–246. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Z, Gao Y, Cai C, Tan J, Liu P, Chen Y, Deng G, Ouyang Y, Liu X, Cao K, et al: CSF3R-AS promotes hepatocellular carcinoma progression and sorafenib resistance through the CSF3R/JAK2/STAT3 positive feedback loop. Cell Death Dis. 16:2172025. View Article : Google Scholar : PubMed/NCBI | |
|
Lan Y, Banks KM, Pan H, Verma N, Dixon GR, Zhou T, Ding B, Elemento O, Chen S, Huangfu D and Evans T: Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Rep. 37:1100952021. View Article : Google Scholar : PubMed/NCBI | |
|
Dong ZR, Ke AW, Li T, Cai JB, Yang YF, Zhou W, Shi GM and Fan J: CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer. 20:752021. View Article : Google Scholar : PubMed/NCBI | |
|
Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G, Jassem J, et al: Lenvatinib versus sorafenib in first-line treatment of patients with unresec\ hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet. 391:1163–1173. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Magyar CTJ, Perera S, Rajendran L, Li Z, Almugbel FA, Feng S, Choi WJ, Aceituno L, Vogel A, Grant RC, et al: Comparative outcome analysis of lenvatinib versus sorafenib for recurrence of hepatocellular carcinoma after liver transplantation. Transplantation. 109:681–690. 2025. View Article : Google Scholar | |
|
Hu B, Zou T, Qin W, Shen X, Su Y, Li J, Chen Y, Zhang Z, Sun H, Zheng Y, et al: Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3-ABCB1 signaling in hepatocellular carcinoma. Cancer Res. 82:3845–3857. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P, Sun H, Wen P, Wang Y, Cui Y and Wu J: circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma. Mol Ther Nucleic Acids. 27:293–303. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Y, Yuan F, Cao M, Ren Y, Li Y, Yang G, Zhong Z, Liang H, Xiong Z, He Z, et al: CircRNA-mTOR promotes hepatocellular carcinoma progression and lenvatinib resistance through the PSIP1/c-Myc axis. Adv Sci (Weinh). 12:e24105912025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Tan W, Wang M, Wei Y, Xie Z, Wang Q, Zhang Z, Zhuang H, Ma X, Wang B, et al: circCCNY enhances lenvatinib sensitivity and suppresses immune evasion in hepatocellular carcinoma by serving as a scaffold for SMURF1 mediated HSP60 degradation. Cancer Lett. 612:2174702025. View Article : Google Scholar : PubMed/NCBI | |
|
Hou YR, Diao LT, Hu YX, Zhang QQ, Lv G, Tao S, Xu WY, Xie SJ, Zhang Q and Xiao ZD: The conserved LncRNA DIO3OS restricts hepatocellular carcinoma stemness by interfering with NONO-mediated nuclear export of ZEB1 mRNA. Adv Sci (Weinh). 10:e23019832023. View Article : Google Scholar : PubMed/NCBI | |
|
Orellana-Serradell O, Herrera D, Castellón EA and Contreras HR: The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J Androl. 21:460–467. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cao M, Li Y, Su X, Tang Y, Yuan F, Ren Y, Deng M and Yao Z: Exosome-derived hsa_circ_0007132 promotes lenvatinib resistance by inhibiting the ubiquitin-mediated degradation of NONO. Noncoding RNA Res. 14:1–13. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan F, Tang Y, Liang H, Cao M, Ren Y, Li Y, Yang G, Zhong Z, Xiong Z, He Z, et al: CircPIK3C3 inhibits hepatocellular carcinoma progression and lenvatinib resistance by suppressing the Wnt/β-catenin pathway via the miR-452-5p/SOX15 axis. Genomics. 117:1109992025. View Article : Google Scholar | |
|
Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, et al: Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 389:56–66. 2017. View Article : Google Scholar | |
|
Ueshima K, Nishida N and Kudo M: Sorafenib-regorafenib sequential therapy in advanced hepatocellular carcinoma: A Single-institute experience. Dig Dis. 35:611–617. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Yu G, Lin J, Wang Z, Lu Q, Gu C, Yang T, Liu S and Yang H: Berberine sensitizes human hepatoma cells to regorafenib via modulating expression of circular RNAs. Front Pharmacol. 12:6322012021. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Bhoori S, Mehta N and Mazzaferro V: Immunotherapy for hepatocellular carcinoma: The next evolution in expanding access to liver transplantation. J Hepatol. 81:743–755. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P and Raska M: NSCLC: From tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol. 15:13420862024. View Article : Google Scholar : PubMed/NCBI | |
|
Klobuch S, Seijkens TTP, Schumacher TN and Haanen J: Tumour-infiltrating lymphocyte therapy for patients with advanced-stage melanoma. Nat Rev Clin Oncol. 21:173–184. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, et al: Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 19:723–732. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang W, Pan S, Chen X, Wang ZW and Zhu X: The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol Cancer. 20:1162021. View Article : Google Scholar : PubMed/NCBI | |
|
Fu J, Liu F, Bai S, Jiang X, Song H, Zhang M, Zhao R, Ouyang T, Yu M, Qian H, et al: Circular RNA CDYL facilitates hepatocellular carcinoma stemness and PD-L1+ exosomes-mediated immunotherapy resistance via stabilizing hornerin protein by blocking synoviolin 1-mediated ubiquitination. Int J Biol Macromol. 310:1432462025. View Article : Google Scholar | |
|
Hu Z, Chen G, Zhao Y, Gao H, Li L, Yin Y, Jiang J, Wang L, Mang Y and Gao Y: Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 22:552023. View Article : Google Scholar | |
|
Lu JC, Zhang PF, Huang XY, Guo XJ, Gao C, Zeng HY, Zheng YM, Wang SW, Cai JB, Sun QM, et al: Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol. 14:2002021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 19:1102020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang XY, Zhang PF, Wei CY, Peng R, Lu JC, Gao C, Cai JB, Yang X, Fan J and Ke AW: Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer. 19:922020. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, Chen Z, Zhang Y, Wang J, Zhang Z, Wu J, Mao J and Zuo X: CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m6A modification in hepatocellular carcinoma. Mol Ther Oncolytics. 24:755–771. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ye R, Lu X, Liu J, Duan Q, Xiao J, Duan X, Yue Z and Liu F: CircSOD2 contributes to tumor progression, immune evasion and Anti-PD-1 resistance in hepatocellular carcinoma by targeting miR-497-5p/ANXA11 axis. Biochem Genet. 61:597–614. 2023. View Article : Google Scholar | |
|
Hao L, Li S, Ye F, Wang H, Zhong Y, Zhang X, Hu X and Huang X: The current status and future of targeted-immune combination for hepatocellular carcinoma. Front Immunol. 15:14189652024. View Article : Google Scholar : PubMed/NCBI | |
|
Mizukoshi E and Kaneko S: Immune cell therapy for hepatocellular carcinoma. J Hematol Oncol. 12:522019. View Article : Google Scholar : PubMed/NCBI | |
|
Lu F, Ma XJ, Jin WL, Luo Y and Li X: Neoantigen specific T cells derived from T Cell-derived induced pluripotent stem cells for the treatment of hepatocellular carcinoma: Potential and challenges. Front Immunol. 12:6905652021. View Article : Google Scholar : PubMed/NCBI | |
|
Gutwillig A, Santana-Magal N, Farhat-Younis L, Rasoulouniriana D, Madi A, Luxenburg C, Cohen J, Padmanabhan K, Shomron N, Shapira G, et al: Transient cell-in-cell formation underlies tumor relapse and resistance to immunotherapy. Elife. 11:e803152022. View Article : Google Scholar : PubMed/NCBI | |
|
O'Donnell JS, Teng MWL and Smyth MJ: Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 16:151–167. 2019. View Article : Google Scholar | |
|
Huang M, Huang X and Huang N: Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells. Cancer Sci. 113:1968–1983. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen SW, Zhu SQ, Pei X, Qiu BQ, Xiong D, Long X, Lin K, Lu F, Xu JJ and Wu YB: Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 20:1442021. View Article : Google Scholar : | |
|
Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y, Chen X, Chen Y, Xu C, Hu Y, et al: Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther. 30:1054–1070. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Peng H, Wisse E and Tian Z: Liver natural killer cells: Aubsets and roles in liver immunity. Cell Mol Immunol. 13:328–336. 2016. View Article : Google Scholar | |
|
Balkhi S, Zuccolotto G, Di Spirito A, Rosato A and Mortara L: CAR-NK cell therapy: Promise and challenges in solid tumors. Front Immunol. 16:15747422025. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Jing J, Chen Y, Chi E, Wang B, Xie Z, Yang W, Shen H and Pan J: Precision sniper for solid tumors: CAR-NK cell therapy. Cancer Immunol Immunother. 74:2752025. View Article : Google Scholar : PubMed/NCBI | |
|
Shi M, Li ZY, Zhang LM, Wu XY, Xiang SH, Wang YG and Zhang YQ: Hsa_circ_0007456 regulates the natural killer cell-mediated cytotoxicity toward hepatocellular carcinoma via the miR-6852-3p/ICAM-1 axis. Cell Death Dis. 12:942021. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong JU, Uong TNT, Chung WK, Nam TK, Ahn SJ, Song JY, Kim SK, Shin DJ, Cho E, Kim KW, et al: Effect of irradiation-induced intercellular adhesion molecule-1 expression on natural killer cell-mediated cytotoxicity toward human cancer cells. Cytotherapy. 20:715–727. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu G, Liu Q, Jia L, Chai Z, Jing L, Xu F and Fan Y: Exosomal circRNAs: Key modulators in breast cancer progression. Cell Death Discov. 11:1962025. View Article : Google Scholar : PubMed/NCBI | |
|
Shen H, Liu B, Xu J, Zhang B, Wang Y, Shi L and Cai X: Circular RNAs: Characteristics, biogenesis, mechanisms and functions in liver cancer. J Hematol Oncol. 14:1342021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu HZ, Lin XY, Xu YX, Xue HB, Lin S and Xu TW: An emerging research: The role of hepatocellular carcinoma-derived exosomal circRNAs in the immune microenvironment. Front Immunol. 14:12271502023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Li H, Liu Y, Li J, Wu C and Tang H: Exosomal Non-coding RNAs: New insights into the biology of hepatocellular carcinoma. Curr Oncol. 29:5383–5406. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tonon F, Grassi C, Tierno D, Biasin A, Grassi M, Grassi G and Dapas B: Non-coding RNAs as potential diagnostic/prognostic markers for hepatocellular carcinoma. Int J Mol Sci. 25:122352024. View Article : Google Scholar : PubMed/NCBI | |
|
Plebani M, Scott S, Simundic AM, Cornes M, Padoan A, Cadamuro J, Vermeersch P, Çubukçu HC, González Á, Nybo M, et al: New insights in preanalytical quality. Clin Chem Lab Med. 63:1682–1692. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun XH, Wang YT, Li GF, Zhang N and Fan L: Serum-derived three-circRNA signature as a diagnostic biomarker for hepatocellular carcinoma. Cancer Cell Int. 20:2262020. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Liu F and Gui R: High expression of circulating exosomal circAKT3 is associated with higher recurrence in HCC patients undergoing surgical treatment. Surg Oncol. 33:276–281. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gong Y, Li X and Wang M: Elevated CircYthdc2 expression is correlated with aggressive features and poor progression-free survival in hepatocellular carcinoma. BMC Gastroenterol. 25:6582025. View Article : Google Scholar : PubMed/NCBI | |
|
Awed MS, Ibrahim A, Ezzat O, Fawzy A, Sabir DK and Radwan AF: Preliminary evaluation of plasma circ_0009910, circ_0027478, and miR-1236-3p as diagnostic and prognostic biomarkers in hepatocellular carcinoma. Int J Mol Sci. 26:48422025. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Zhou Y, Yang G, He S, Qiu X, Zhang L, Deng Q and Zheng F: Using circular RNA SMARCA5 as a potential novel biomarker for hepatocellular carcinoma. Clin Chim Acta. 492:37–44. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Wei Y, Li X, Jiang P, Dong X, Guo Q, Xu Q, Cao X, Xia J and Wang Z: An Ultrasensitive and robust CircRNA nanobiosensor via magnetic control depuration and catalytic hairpin assembly cascade amplification for clinically accessible liquid biopsy. Anal Chem. 97:23939–23949. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Weng Q, Chen M, Li M, Zheng YF, Shao G, Fan W, Xu XM and Ji J: Global microarray profiling identified hsa_circ_0064428 as a potential immune-associated prognosis biomarker for hepatocellular carcinoma. J Med Genet. 56:32–38. 2019. View Article : Google Scholar | |
|
Zhang L, Xu T, Li Y, Pang Q and Ding X: Serum hsa_circ_0000615 is a prognostic biomarker of sorafenib resistance in hepatocellular carcinoma. J Clin Lab Anal. 36:e247412022. View Article : Google Scholar : PubMed/NCBI | |
|
Qiao GL, Chen L, Jiang WH, Yang C, Yang CM, Song LN, Chen Y, Yan HL and Ma LJ: Hsa_circ_0003998 may be used as a new biomarker for the diagnosis and prognosis of hepatocellular carcinoma. Onco Targets Ther. 12:5849–5860. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu L, Yang W, Yao J, Wang H, Zhu J, Jin A, Liu T, Wang B, Zhou J, Fan J, et al: The diagnostic value of plasma exosomal hsa_circ_0070396 for hepatocellular carcinoma. Biomark Med. 15:359–371. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Pei L, Yue Z, Jia M, Wang H and Cao LL: The potential of serum exosomal hsa_circ_0028861 as the novel diagnostic biomarker of HBV-derived hepatocellular cancer. Front Genet. 12:7032052021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Qin H, Dai B, Liu M and Shen J: Establishment and evaluation of a circAdpgk-0001 knockdown method using CRISPR-Cas13d RNA-targeting technology. PeerJ. 13:e201232025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Wang L, Dong C, Liu J, Cui G, Gao S and Liu Z: Exploring the potential and advancements of circular RNA therapeutics. Exploration (Beijing). 5:e202400442025. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, Qiu Z, Chi-Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C and Qiu M: Synthetic circRNA therapeutics: Innovations, strategies, and future horizons. MedComm (2020). 5:e7202024. View Article : Google Scholar : PubMed/NCBI | |
|
Ruan YL, Chen TY, Zheng LB, Cai JW, Zhao H, Wang YL, Tao LY, Xu JJ, Ji L and Cai XJ: cDCBLD2 mediates sorafenib resistance in hepatocellular carcinoma by sponging miR-345-5p binding to the TOP2A coding sequence. Int J Biol Sci. 19:4608–4626. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Q and Wu G: CircRNA-001241 mediates sorafenib resistance of hepatocellular carcinoma cells by sponging miR-21-5p and regulating TIMP3 expression. Gastroenterol Hepatol. 45:742–752. 2022. View Article : Google Scholar | |
|
Qiu R and Zeng Z: Hsa_circ_0006988 promotes sorafenib resistance of hepatocellular carcinoma by modulating IGF1 using miR-15a-5p. Can J Gastroenterol Hepatol. 2022:12061342022. | |
|
Li X, Yin X, Bao H and Liu C: Circular RNA ITCH increases sorafenib-sensitivity in hepatocellular carcinoma via sequestering miR-20b-5p and modulating the downstream PTEN-PI3K/Akt pathway. Mol Cell Probes. 67:1018772023. View Article : Google Scholar | |
|
Zhang X, Wang W, Mo S and Sun X: DEAD-box helicase 17 circRNA (circDDX17) reduces sorafenib resistance and tumorigenesis in hepatocellular carcinoma. Dig Dis Sci. 69:2096–2108. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Liu D, Wei H, Hua Y, Shi G and Qiao J: The hsa_circRNA_102049 mediates the sorafenib sensitivity of hepatocellular carcinoma cells by regulating Reelin gene expression. Bioengineered. 13:2272–2284. 2022. View Article : Google Scholar : PubMed/NCBI |