You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Regulatory networks of HIFs in tumor‑infiltrating immune cells: From molecular mechanisms to therapeutic implications (Review)
Hypoxic tumor microenvironment (TME) is a common occurrence in the development of solid tumors, which activates hypoxia‑inducible factors (HIFs) and their downstream signaling pathways in cancer cells to facilitate tumor progression and immune escape. However, among the various immune cells that constitute innate and adaptive immune systems, HIFs have a more intricate function; moreover, different isoforms of HIFs play different functions under spatial and temporal conditions. HIFs are conducive to the adaptation of various immune cells to the hypoxic TME. The stability of HIF‑α can regulate metabolism and directly regulate the expression of immune genes. Additionally, the activation of HIF signaling may also inhibit the development of immune cells in some tumor environments, affecting the antigen recognition and killing processes to assist cancer cells in immune escape. Therefore, understanding the relationship between HIF signaling and immune cells more comprehensively may yield substantial benefits for the immunotherapy of various types of cancer. The present study reviewed the role of HIFs in immunity, including their role in T cells, B cells, macrophages, neutrophils, dendritic cells and natural killer cells. It also discussed the effectiveness of HIF targeted therapy in clinical application, the challenges associated with it and the development of a precise targeting drug delivery system. The present review may help researchers comprehend the tumor immune process in a hypoxic microenvironment. It aimed to offer novel strategies for cancer immunotherapy and prolonging the overall survival of patients.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K and Adam V: Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J Hematol Oncol. 15:772022. View Article : Google Scholar : PubMed/NCBI | |
|
Liao C, Liu X, Zhang C and Zhang Q: Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol. 88:172–186. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C and Wu J: Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (2020). 4:e2032023. View Article : Google Scholar : PubMed/NCBI | |
|
Wicks EE and Semenza GL: Hypoxia-inducible factors: Cancer progression and clinical translation. J Clin Invest. 132:e1598392022. View Article : Google Scholar : PubMed/NCBI | |
|
Loboda A, Jozkowicz A and Dulak J: HIF-1 and HIF-2 transcription factors-similar but not identical. Mol Cells. 29:435–442. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q and Kuca K: The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 41:1622–1643. 2021. View Article : Google Scholar | |
|
Palazón A, Martínez-Forero I, Teijeira A, Morales-Kastresana A, Alfaro C, Sanmamed MF, Perez-Gracia JL, Peñuelas I, Hervás-Stubbs S, Rouzaut A, et al: The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov. 2:608–623. 2012. View Article : Google Scholar | |
|
Labiano S, Palazón A, Bolaños E, Azpilikueta A, Sánchez-Paulete AR, Morales-Kastresana A, Quetglas JI, Perez-Gracia JL, Gúrpide A, Rodriguez-Ruiz M, et al: Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism. Oncoimmunology. 5:e10629672016. View Article : Google Scholar : PubMed/NCBI | |
|
Li NA, Wang H, Zhang J and Zhao E: Knockdown of hypoxia inducible factor-2α inhibits cell invasion via the downregulation of MMP-2 expression in breast cancer cells. Oncol Lett. 11:3743–3748. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Iida H, Suzuki M, Goitsuka R and Ueno H: Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int J Oncol. 40:71–79. 2012. | |
|
Keith B, Johnson RS and Simon MC: HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 12:9–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong Y, Liu L, Xia Y, Qi Y, Chen Y, Chen L, Zhang P, Kong Y, Qu Y, Wang Z, et al: Tumor infiltrating mast cells determine oncogenic HIF-2α-conferred immune evasion in clear cell renal cell carcinoma. Cancer Immunol Immunother. 68:731–741. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
|
Wohlkoenig C, Leithner K, Deutsch A, Hrzenjak A, Olschewski A and Olschewski H: Hypoxia-induced cisplatin resistance is reversible and growth rate independent in lung cancer cells. Cancer Lett. 308:134–143. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zub KA, Sousa MM, Sarno A, Sharma A, Demirovic A, Rao S, Young C, Aas PA, Ericsson I, Sundan A, et al: Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One. 10:e01198572015. View Article : Google Scholar : PubMed/NCBI | |
|
Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, et al: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 107:43–54. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Bruick RK and McKnight SL: A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 294:1337–1340. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science. 292:464–468. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS and Kung AL: Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA. 106:4260–4265. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ and Mole DR: High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 117:e207–217. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J and Ratcliffe PJ: Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 284:16767–16775. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M and Eckardt KU: Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: Erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J. 18:1462–1464. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Fujiwara S, Nakagawa K, Harada H, Nagato S, Furukawa K, Teraoka M, Seno T, Oka K, Iwata S and Ohnishi T: Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas. Int J Oncol. 30:793–802. 2007.PubMed/NCBI | |
|
Tian H, McKnight SL and Russell DW: Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11:72–82. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Wiesener MS, Jürgensen JS, Rosenberger C, Scholze CK, Hörstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, et al: Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 17:271–273. 2003. View Article : Google Scholar | |
|
Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, Pugh CW, Maxwell PH, Harris AL and Ratcliffe PJ: Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 25:5675–5686. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Parkin J and Cohen B: An overview of the immune system. Lancet. 357:1777–1789. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Palazon A, Goldrath AW, Nizet V and Johnson RS: HIF transcription factors, inflammation, and immunity. Immunity. 41:518–528. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, Hurtado-Ziola N, Nizet V and Johnson RS: HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 115:1806–1815. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Cowman SJ and Koh MY: Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer. 8:28–42. 2022. View Article : Google Scholar | |
|
Taylor CT and Scholz CC: The effect of HIF on metabolism and immunity. Nat Rev Nephrol. 18:573–587. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Vito A, El-Sayes N and Mossman K: Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells. 9:9922020. View Article : Google Scholar : PubMed/NCBI | |
|
Liikanen I, Lauhan C, Quon S, Omilusik K, Phan AT, Bartrolí LB, Ferry A, Goulding J, Chen J, Scott-Browne JP, et al: Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells. J Clin Invest. 131:e1437292021. View Article : Google Scholar : PubMed/NCBI | |
|
Dhalla NS, Camargo RO, Elimban V, Dhadial RS and Xu YJ: Role of Skeletal Muscle Angiogenesis in Peripheral Artery Disease. Biochemical Basis and Therapeutic Implications of Angiogenesis. 517–532. 2017. View Article : Google Scholar | |
|
de Heer EC, Jalving M and Harris AL: HIFs, angiogenesis, and metabolism: Elusive enemies in breast cancer. J Clin Invest. 130:5074–5087. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ozga AJ, Chow MT and Luster AD: Chemokines and the immune response to cancer. Immunity. 54:859–874. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Palmer CS, Ostrowski M, Balderson B, Christian N and Crowe SM: Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 6:12015. View Article : Google Scholar : PubMed/NCBI | |
|
Menk AV, Scharping NE, Moreci RS, Zeng X, Guy C, Salvatore S, Bae H, Xie J, Young HA, Wendell SG, et al: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22:1509–1521. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, et al: Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 153:1239–1251. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Leone RD and Powell JD: Metabolism of immune cells in cancer. Nat Rev Cancer. 20:516–531. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J and Green DR: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 35:871–882. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, Panteleyev AA, Okkenhaug K and Cantrell DA: PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med. 209:2441–2453. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ohta A, Diwanji R, Kini R, Subramanian M, Ohta A and Sitkovsky M: In vivo T cell activation in lymphoid tissues is inhibited in the oxygen-poor microenvironment. Front Immunol. 2:272011. View Article : Google Scholar : PubMed/NCBI | |
|
Byrnes JR, Weeks AM, Shifrut E, Carnevale J, Kirkemo L, Ashworth A, Marson A and Wells JA: Hypoxia is a dominant remodeler of the effector T cell surface proteome relative to activation and regulatory T cell suppression. Mol Cell Proteomics. 21:1002172022. View Article : Google Scholar | |
|
Cunha PP, Minogue E, Krause LCM, Hess RM, Bargiela D, Wadsworth BJ, Barbieri L, Brombach C, Foskolou IP, Bogeski I, et al: Oxygen levels at the time of activation determine T cell persistence and immunotherapeutic efficacy. Elife. 12:e842802023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Chen J, Li W, Xu Y, Shan J, Hong J, Zhao Y, Xu H, Ma J, Shen J and Qian C: Hypoxia-responsive CAR-T cells exhibit reduced exhaustion and enhanced efficacy in solid tumors. Cancer Res. 84:84–100. 2024. View Article : Google Scholar | |
|
Wang R and Solt LA: Metabolism of murine TH 17 cells: Impact on cell fate and function. Eur J Immunol. 46:807–816. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR and Chi H: HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 208:1367–1376. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, et al: Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 146:772–784. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126:1121–1133. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Altınönder İ, Kaya M, Yentür SP, Çakar A, Durmuş H, Yegen G, Özkan B, Parman Y, Sawalha AH and Saruhan-Direskeneli G: Thymic gene expression analysis reveals a potential link between HIF-1A and Th17/Treg imbalance in thymoma associated myasthenia gravis. J Neuroinflammation. 21:1262024. View Article : Google Scholar | |
|
Böttcher M, Renner K, Berger R, Mentz K, Thomas S, Cardenas-Conejo ZE, Dettmer K, Oefner PJ, Mackensen A, Kreutz M and Mougiakakos D: D-2-hydroxyglutarate interferes with HIF-1α stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization. Oncoimmunology. 7:e14454542018. View Article : Google Scholar | |
|
Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA, Eil RL, Hickman HD, Yu Z, Pan JH, et al: Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell. 166:1117–1131.e14. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, Horne W, Moskovitz JM, Kolls JK, Sander C, et al: Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell. 169:1130–1141.e11. 2017. View Article : Google Scholar | |
|
Neildez-Nguyen TMA, Bigot J, Da Rocha S, Corre G, Boisgerault F, Paldi A and Galy A: Hypoxic culture conditions enhance the generation of regulatory T cells. Immunology. 144:431–443. 2015. View Article : Google Scholar : | |
|
Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, de Zoeten EF, Cambier JC, Stenmark KR, Colgan SP and Eltzschig HK: Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA. 109:E2784–E2793. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Cui H, Zhu Z, Wang L, Li H and Wang D: Effect of HIF1α on Foxp3 expression in CD4+ CD25-T lymphocytes. Microbiol Immunol. 58:409–415. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu TS, Lin YL, Wang YA, Mo ST, Chi PY, Lai AC, Pan HY, Chang YJ and Lai MZ: HIF-2α is indispensable for regulatory T cell function. Nat Commun. 11:50052020. View Article : Google Scholar | |
|
Koh MY and Powis G: Passing the baton: The HIF switch. Trends Biochem Sci. 37:364–372. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Palazon A, Tyrakis PA, Macias D, Veliça P, Rundqvist H, Fitzpatrick S, Vojnovic N, Phan AT, Loman N, Hedenfalk I, et al: An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell. 32:669–683.e5. 2017. View Article : Google Scholar | |
|
Bisilliat Donnet C, Acolty V, Azouz A, Taquin A, Henin C, Trusso Cafarello S, Denanglaire S, Mazzone M, Oldenhove G, Leo O, et al: PHD2 constrains antitumor CD8+ T-cell activity. Cancer Immunol Res. 11:339–350. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dvorakova T, Finisguerra V, Formenti M, Loriot A, Boudhan L, Zhu J and Van den Eynde BJ: Enhanced tumor response to adoptive T cell therapy with PHD2/3-deficient CD8 T cells. Nat Commun. 15:77892024. View Article : Google Scholar : PubMed/NCBI | |
|
Bargiela D, Cunha PP, Veliça P, Krause LCM, Brice M, Barbieri L, Gojkovic M, Foskolou IP, Rundqvist H and Johnson RS: The factor inhibiting HIF regulates T cell differentiation and anti-tumour efficacy. Front Immunol. 15:12937232024. View Article : Google Scholar : PubMed/NCBI | |
|
Walter Jackson I, Yang Y, Salman S, Dordai D, Lyu Y, Datan E, Drehmer D, Huang TY, Hwang Y and Semenza GL: Pharmacologic HIF stabilization activates costimulatory receptor expression to increase antitumor efficacy of adoptive T cell therapy. Sci Adv. 10:eadq23662024. View Article : Google Scholar | |
|
Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT, Veliça P, You J, Chia GS, Sim J, Doedens A, et al: S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature. 540:236–241. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lv Q, Su T, Liu W, Wang L, Hu J, Cheng Y, Ning C, Shan W, Luo X and Chen X: Low serum apolipoprotein A1 levels impair antitumor immunity of CD8+ T cells via the HIF-1α-glycolysis pathway. Cancer Immunol Res. 12:1058–1073. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Veliça P, Cunha PP, Vojnovic N, Foskolou IP, Bargiela D, Gojkovic M, Rundqvist H and Johnson RS: Modified Hypoxia-inducible factor expression in CD8+ T cells increases antitumor efficacy. Cancer Immunol Res. 9:401–414. 2021. View Article : Google Scholar | |
|
Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, Filisio F, Giles-Davis W, Xu X, Karakousis GC, et al: Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 32:377–391.e9. 2017. View Article : Google Scholar | |
|
Loisel-Meyer S, Swainson L, Craveiro M, Oburoglu L, Mongellaz C, Costa C, Martinez M, Cosset FL, Battini JL, Herzenberg LA, et al: Glut1-mediated glucose transport regulates HIV infection. Proc Natl Acad Sci USA. 109:2549–2554. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rawlings DJ, Metzler G, Wray-Dutra M and Jackson SW: Altered B cell signalling in autoimmunity. Nat Rev Immunol. 17:421–436. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Franchina DG, Grusdat M and Brenner D: B-cell metabolic remodeling and cancer. Trends Cancer. 4:138–150. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Herzog S, Reth M and Jumaa H: Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol. 9:195–205. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Burrows N, Bashford-Rogers RJM, Bhute VJ, Peñalver A, Ferdinand JR, Stewart BJ, Smith JEG, Deobagkar-Lele M, Giudice G, Connor TM, et al: Dynamic regulation of hypoxia-inducible factor-1α activity is essential for normal B cell development. Nat Immunol. 21:1408–1420. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Huang C, Hu G, Ma J, Chen Y, Zhang J, Huang Y, Zheng J, Xue W, Xu Y and Zhai W: Tumor-educated B cells promote renal cancer metastasis via inducing the IL-1β/HIF-2α/Notch1 signals. Cell Death Dis. 11:1632020. View Article : Google Scholar | |
|
Zhang F, Li R, Yang Y, Shi C, Shen Y, Lu C, Chen Y, Zhou W, Lin A, Yu L, et al: Specific decrease in B-cell-derived extracellular vesicles enhances post-chemotherapeutic CD8+ T cell responses. Immunity. 50:738–750.e7. 2019. View Article : Google Scholar | |
|
Ghosh AK, Shanafelt TD, Cimmino A, Taccioli C, Volinia S, Liu CG, Calin GA, Croce CM, Chan DA, Giaccia AJ, et al: Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood. 113:5568–5574. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, Xiang R, Dai J, Wang Y and Xu Z: HIF-1α mediates CXCR4 transcription to activate the AKT/mTOR signaling pathway and augment the viability and migration of activated B cell-like diffuse large B-cell lymphoma cells. Mol Carcinog. 62:676–684. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Liang Y and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI | |
|
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Anderson NR, Minutolo NG, Gill S and Klichinsky M: Macrophage-based approaches for cancer immunotherapy. Cancer Res. 81:1201–1208. 2021. View Article : Google Scholar | |
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L and Duo Y: Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 8:2072023. View Article : Google Scholar : PubMed/NCBI | |
|
Takeda N, O'Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, Asagiri M, Simon MC, Hoffmann A and Johnson RS: Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24:491–501. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Liu H, Lian G, Zhang SY, Wang X and Jiang C: HIF1α-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediators Inflamm. 2017:90293272017. View Article : Google Scholar | |
|
Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ and Harris AL: The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 157:411–421. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, Bicknell R, Taylor M, Gatter KC and Harris AL: Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res. 62:1326–1329. 2002.PubMed/NCBI | |
|
Kawanaka T, Kubo A, Ikushima H, Sano T, Takegawa Y and Nishitani H: Prognostic significance of HIF-2alpha expression on tumor infiltrating macrophages in patients with uterine cervical cancer undergoing radiotherapy. J Med Invest. 55:78–86. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan LJ, Hammond R, Gimotty PA, Keith B and Simon MC: Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest. 120:2699–2714. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, Wei Z, Xie X, Yin B, Chen F, et al: Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 129:631–646. 2019. View Article : Google Scholar : | |
|
Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, Yeh CC, Peng YJ, Kuo YY, Wen HT, et al: Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol Cell. 77:213–227.e5. 2020. View Article : Google Scholar | |
|
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al: Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 496:238–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM, et al: Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 7:85–90. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W, Carvo I, Signoretti S, Bruick RK, Josey JA, et al: On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature. 539:107–111. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ricketts CJ, Crooks DR and Linehan WM: Targeting HIF2α in Clear-cell renal cell carcinoma. Cancer Cell. 30:515–517. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, et al: Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 539:112–117. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S and Kaelin WG Jr: Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov. 1:222–235. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cowman SJ, Fuja DG, Liu XD, Tidwell RSS, Kandula N, Sirohi D, Agarwal AM, Emerson LL, Tripp SR, Mohlman JS, et al: Macrophage HIF-1α is an independent prognostic indicator in kidney cancer. Clin Cancer Res. 26:4970–4982. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, Cao Y, Wang Y, Jia A, Bi Y and Liu G: Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation. Front Cell Infect Microbiol. 10:2872020. View Article : Google Scholar : PubMed/NCBI | |
|
Pouysségur J, Marchiq I, Parks SK, Durivault J, Ždralević M and Vucetic M: 'Warburg effect' controls tumor growth, bacterial, viral infections and immunity-Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol. 86:334–346. 2022. View Article : Google Scholar | |
|
Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, Kim JK, Heo Y, Lee HS, Lee MY, et al: A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 31:267–283.e12. 2020. View Article : Google Scholar | |
|
Green NH, Galvan DL, Badal SS, Chang BH, LeBleu VS, Long J, Jonasch E and Danesh FR: MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene. 38:6211–6225. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Steinberger KJ, Forget MA, Bobko AA, Mihalik NE, Gencheva M, Roda JM, Cole SL, Mo X, Hoblitzell EH, Evans R, et al: Hypoxia-inducible factor α subunits regulate Tie2-expressing macrophages that influence tumor oxygen and perfusion in murine breast cancer. J Immunol. 205:2301–2311. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Eubank TD, Roda JM, Liu H, O'Neil T and Marsh CB: Opposing roles for HIF-1α and HIF-2α in the regulation of angiogenesis by mononuclear phagocytes. Blood. 117:323–332. 2011. View Article : Google Scholar : | |
|
Deochand DK, Dacic M, Bale MJ, Daman AW, Chaudhary V, Josefowicz SZ, Oliver D, Chinenov Y and Rogatsky I: Mechanisms of epigenomic and functional convergence between glucocorticoid- and IL4-driven macrophage programming. Nat Commun. 15:90002024. View Article : Google Scholar : PubMed/NCBI | |
|
Hara S, Hamada J, Kobayashi C, Kondo Y and Imura N: Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: Suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun. 287:808–813. 2001. View Article : Google Scholar | |
|
Wu G, Pan B, Shi H, Yi Y, Zheng X, Ma H, Zhao M, Zhang Z, Cheng L, Huang Y and Guo W: Neutrophils' dual role in cancer: From tumor progression to immunotherapeutic potential. Int Immunopharmacol. 140:1127882024. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu B, Yuan P, Du X, Jin H, Du J and Huang Y: Hypoxia inducible factor-1α is an important regulator of macrophage biology. Heliyon. 9:e171672023. View Article : Google Scholar | |
|
Masucci MT, Minopoli M and Carriero MV: Tumor associated neutrophils. their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol. 9:11462019. View Article : Google Scholar : PubMed/NCBI | |
|
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Singhal R, Kotla NK, Solanki S, Huang W, Bell HN, El-Derany MO, Castillo C and Shah YM: Disruption of hypoxia-inducible factor-2α in neutrophils decreases colitis-associated colon cancer. Am J Physiol Gastrointest Liver Physiol. 326:G53–G66. 2024. View Article : Google Scholar | |
|
LaGory EL and Giaccia AJ: The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol. 18:356–365. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Santagata S, Ieranò C, Trotta AM, Capiluongo A, Auletta F, Guardascione G and Scala S: CXCR4 and CXCR7 signaling pathways: A focus on the Cross-talk between cancer cells and tumor microenvironment. Front Oncol. 11:5913862021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin N and Simon MC: Hypoxia-inducible factors: Key regulators of myeloid cells during inflammation. J Clin Invest. 126:3661–3671. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Wang C, Chen Y, Zhong L, Liu X, Xue L, Zhang Y, Li Y, Li X, Tang C, et al: Targeted downregulation of HIF-1α for restraining circulating tumor microemboli mediated metastasis. J Control Release. 343:457–468. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ding XC, Wang LL, Zhang XD, Xu JL, Li PF, Liang H, Zhang XB, Xie L, Zhou ZH, Yang J, et al: The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J Hematol Oncol. 14:922021. View Article : Google Scholar | |
|
Li J, Xia Y, Sun B, Zheng N, Li Y, Pang X, Yang F, Zhao X, Ji Z, Yu H, et al: Neutrophil extracellular traps induced by the hypoxic microenvironment in gastric cancer augment tumour growth. Cell Commun Signal. 21:862023. View Article : Google Scholar : PubMed/NCBI | |
|
Steinman RM: Decisions about dendritic cells: Past, present, and future. Annu Rev Immunol. 30:1–22. 2012. View Article : Google Scholar | |
|
Liu J, Zhang X, Cheng Y and Cao X: Dendritic cell migration in inflammation and immunity. Cell Mol Immunol. 18:2461–2471. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
McGettrick AF and O'Neill LAJ: The role of HIF in immunity and inflammation. Cell Metab. 32:524–536. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ricciardi A, Elia AR, Cappello P, Puppo M, Vanni C, Fardin P, Eva A, Munroe D, Wu X, Giovarelli M and Varesio L: Transcriptome of hypoxic immature dendritic cells: Modulation of chemokine/receptor expression. Mol Cancer Res. 6:175–185. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Köhler T, Reizis B, Johnson RS, Weighardt H and Förster I: Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol. 42:1226–1236. 2012. View Article : Google Scholar | |
|
Liu J, Zhang X, Chen K, Cheng Y, Liu S, Xia M, Chen Y, Zhu H, Li Z and Cao X: CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity. 50:600–615.e15. 2019. View Article : Google Scholar | |
|
Kim MK and Kim J: Properties of immature and mature dendritic cells: Phenotype, morphology, phagocytosis, and migration. RSC Adv. 9:11230–11238. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly B and O'Neill LA: Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25:771–784. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X and Xu Y: Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 11:1452020. View Article : Google Scholar | |
|
Hu Z, Yu X, Ding R, Liu B, Gu C, Pan XW, Han Q, Zhang Y, Wan J, Cui XG, et al: Glycolysis drives STING signaling to facilitate dendritic cell antitumor function. J Clin Invest. 133:e1660312023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu K, Yin N, Peng M, Stamatiades EG, Chhangawala S, Shyu A, Li P, Zhang X, Do MH, Capistrano KJ, et al: Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity. 54:976–987.e7. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu K, Yin N, Peng M, Stamatiades EG, Shyu A, Li P, Zhang X, Do MH, Wang Z, Capistrano KJ, et al: Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 371:405–410. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi R, Tang YQ and Miao H: Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm (2020). 1:47–68. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
O'Neill LA, Kishton RJ and Rathmell J: A guide to immunometabolism for immunologists. Nat Rev Immunol. 16:553–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sanmarco LM, Rone JM, Polonio CM, Fernandez Lahore G, Giovannoni F, Ferrara K, Gutierrez-Vazquez C, Li N, Sokolovska A, Plasencia A, et al: Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells. Nature. 620:881–889. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S and Carbone DP: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 92:4150–4166. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D and Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 2:1096–1103. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, et al: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 9:562–567. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B and Chouaib S: Hypoxia: A key player in antitumor immune response. A review in the theme: Cellular responses to hypoxia. Am J Physiol Cell Physiol. 309:C569–C579. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Baginska J, Viry E, Paggetti J, Medves S, Berchem G, Moussay E and Janji B: The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol. 4:4902013. View Article : Google Scholar | |
|
Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR and Graham CH: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: Role of nitric oxide. Cancer Res. 71:7433–7441. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ni J, Wang X, Stojanovic A, Zhang Q, Wincher M, Bühler L, Arnold A, Correia MP, Winkler M, Koch PS, et al: Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK cell activity. Immunity. 52:1075–1087.e8. 2020. View Article : Google Scholar | |
|
Nakazawa T, Morimoto T, Maeoka R, Yamada K, Matsuda R, Nakamura M, Nishimura F, Yamada S, Park YS, Tsujimura T and Nakagawa I: Characterization of HIF-1α knockout primary human natural killer cells including populations in allogeneic glioblastoma. Int J Mol Sci. 25:58962024. View Article : Google Scholar | |
|
Cluff E, Magdaleno CC, Fernandez E, House T, Swaminathan S, Varadaraj A and Rajasekaran N: Hypoxia-inducible factor-1 alpha expression is induced by IL-2 via the PI3K/mTOR pathway in hypoxic NK cells and supports effector functions in NKL cells and ex vivo expanded NK cells. Cancer Immunol Immunother. 71:1989–2005. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Heikkilä M, Pasanen A, Kivirikko KI and Myllyharju J: Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci. 68:3885–3901. 2011. View Article : Google Scholar | |
|
Kummar S, Chen A, Ji J, Zhang Y, Reid JM, Ames M, Jia L, Weil M, Speranza G, Murgo AJ, et al: Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res. 71:5626–5634. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jonasch E, Donskov F, Iliopoulos O, Rathmell WK, Narayan VK, Maughan BL, Oudard S, Else T, Maranchie JK, Welsh SJ, et al: Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N Engl J Med. 385:2036–2046. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng B, Ma X, Zhou Y, Liu J, Fei X, Pan W, Peng X, Wang W and Chen J: Recent progress in the development of hypoxia-inducible factor 2α (HIF-2α) modulators: Inhibitors, agonists, and degraders (2009-2024). Eur J Med Chem. 275:1166452024. View Article : Google Scholar | |
|
Wu H, Zhao X, Hochrein SM, Eckstein M, Gubert GF, Knöpper K, Mansilla AM, Öner A, Doucet-Ladevèze R, Schmitz W, et al: Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat Commun. 14:68582023. View Article : Google Scholar | |
|
Jiao X, Zhang Y, Li W, Zhou X, Chu W, Li Y, Wang Z, Sun X, Xu C and Gan Y: HIF-1α inhibition attenuates severity of Achilles tendinopathy by blocking NF-κB and MAPK pathways. Int Immunopharmacol. 106:1085432022. View Article : Google Scholar | |
|
Taylor CT, Doherty G, Fallon PG and Cummins EP: Hypoxia-dependent regulation of inflammatory pathways in immune cells. J Clin Invest. 126:3716–3724. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Cheng G, Zhang Q, Wu W, Zhang Y, Wu B, Liu Z, Tong X, Xiao B, Cheng L and Dai F: PX478-loaded silk fibroin nanoparticles reverse multidrug resistance by inhibiting the hypoxia-inducible factor. Int J Biol Macromol. 222:2309–2317. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tiwari H, Rai N, Singh S, Gupta P, Verma A, Singh AK, Kajal, Salvi P, Singh SK, Gautam V, et al: Recent advances in Nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering (Basel). 10:7602023. View Article : Google Scholar : PubMed/NCBI | |
|
Park K, Lee HE, Lee SH, Lee D, Lee T and Lee YM: Molecular and functional evaluation of a novel HIF inhibitor, benzopyranyl 1,2,3-triazole compound. Oncotarget. 8:7801–7813. 2017. View Article : Google Scholar : | |
|
Wang Z, Wu J, Humphries B, Kondo K, Jiang Y, Shi X and Yang C: Upregulation of Histone-lysine methyltransferases plays a causal role in hexavalent chromium-induced cancer stem Cell-like property and cell transformation. Toxicol Appl Pharmacol. 342:22–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Spera D, Siciliano T, De Tommasi N, Braca A and Vessières A: Antiproliferative cardenolides from Periploca graeca. Planta Med. 73:384–387. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sapra P, Kraft P, Mehlig M, Malaby J, Zhao H, Greenberger LM and Horak ID: Marked therapeutic efficacy of a novel polyethylene glycol-SN38 conjugate, EZN-2208, in xenograft models of B-cell non-Hodgkin's lymphoma. Haematologica. 94:1456–1459. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sapra P, Zhao H, Mehlig M, Malaby J, Kraft P, Longley C, Greenberger LM and Horak ID: Novel delivery of SN38 markedly inhibits tumor growth in xenografts, including a camptothecin-11-refractory model. Clin Cancer Res. 14:1888–1896. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ban HS, Kim BK, Lee H, Kim HM, Harmalkar D, Nam M, Park SK, Lee K, Park JT, Kim I, et al: The novel hypoxia-inducible factor-1α inhibitor IDF-11774 regulates cancer metabolism, thereby suppressing tumor growth. Cell Death Dis. 8:e28432017. View Article : Google Scholar | |
|
Wang L, Syn NL, Subhash VV, Any Y, Thuya WL, Cheow ESH, Kong L, Yu F, Peethala PC, Wong AL, et al: Pan-HDAC inhibition by panobinostat mediates chemosensitization to carboplatin in non-small cell lung cancer via attenuation of EGFR signaling. Cancer Lett. 417:152–160. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee WY, Chen PC, Wu WS, Wu HC, Lan CH, Huang YH, Cheng CH, Chen KC and Lin CW: Panobinostat sensitizes KRAS-mutant non-small-cell lung cancer to gefitinib by targeting TAZ. Int J Cancer. 141:1921–1931. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bali P, Pranpat M, Swaby R, Fiskus W, Yamaguchi H, Balasis M, Rocha K, Wang HG, Richon V and Bhalla K: Activity of suberoylanilide hydroxamic Acid against human breast cancer cells with amplification of her-2. Clin Cancer Res. 11:6382–6389. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kim KH, Kim D, Park JY, Jung HJ, Cho YH, Kim HK, Han J, Choi KY and Kwon HJ: NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. J Mol Med (Berl). 93:499–509. 2015. View Article : Google Scholar | |
|
Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, Zojwalla NJ, Lowe AM, Wang K, Wallace EM, et al: Phase I Dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol. 36:867–874. 2018. View Article : Google Scholar | |
|
Courtney KD, Ma Y, Diaz de Leon A, Christie A, Xie Z, Woolford L, Singla N, Joyce A, Hill H, Madhuranthakam AJ, et al: HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a First-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin Cancer Res. 26:793–803. 2020. View Article : Google Scholar | |
|
Ma Y, Joyce A, Brandenburg O, Saatchi F, Stevens C, Toffessi Tcheuyap V, Christie A, Do QN, Fatunde O, Macchiaroli A, et al: HIF2 inactivation and tumor suppression with a Tumor-Directed RNA-silencing drug in mice and humans. Clin Cancer Res. 28:5405–5418. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Keefe SM, Hoffman-Censits J, Cohen RB, Mamtani R, Heitjan D, Eliasof S, Nixon A, Turnbull B, Garmey EG, Gunnarsson O, et al: Efficacy of the nanoparticle-drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: Results of an investigator-initiated phase I-IIa clinical trial. Ann Oncol. 27:1579–1585. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Huang YC, Huang FI, Mehndiratta S, Lai SC, Liou JP and Yang CR: Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget. 6:18590–18601. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lee S, Kwon OS, Lee CS, Won M, Ban HS and Ra CS: Synthesis and biological evaluation of kresoxim-methyl analogues as novel inhibitors of hypoxia-inducible factor (HIF)-1 accumulation in cancer cells. Bioorg Med Chem Lett. 27:3026–3029. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lecomte S, Chalmel F, Ferriere F, Percevault F, Plu N, Saligaut C, Surel C, Lelong M, Efstathiou T and Pakdel F: Glyceollins trigger anti-proliferative effects through estradiol-dependent and independent pathways in breast cancer cells. Cell Commun Signal. 15:262017. View Article : Google Scholar : PubMed/NCBI | |
|
Palayoor ST, Mitchell JB, Cerna D, Degraff W, John-Aryankalayil M and Coleman CN: PX-478, an inhibitor of hypoxia-inducible factor-1alpha, enhances radiosensitivity of prostate carcinoma cells. Int J Cancer. 123:2430–2437. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Piorecka K, Kurjata J and Stanczyk WA: Acriflavine, an acridine derivative for biomedical application: Current state of the art. J Med Chem. 65:11415–11432. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Baker LC, Boult JK, Walker-Samuel S, Chung YL, Jamin Y, Ashcroft M and Robinson SP: The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer. 106:1638–1647. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, Willard MT, Zhong H, Simons JW and Giannakakou P: 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 3:363–375. 2003. View Article : Google Scholar : PubMed/NCBI |