Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular and Clinical Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9450 Online ISSN: 2049-9469
Journal Cover
November-December 2014 Volume 2 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-December 2014 Volume 2 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Utilising proteomic approaches to understand oncogenic human herpesviruses (Review)

  • Authors:
    • Christopher B. Owen
    • David J. Hughes
    • Belinda Baquero-Perez
    • Anja Berndt
    • Sophie Schumann
    • Brian R. Jackson
    • Adrian Whitehouse
  • View Affiliations / Copyright

    Affiliations: School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
  • Pages: 891-903
    |
    Published online on: July 9, 2014
       https://doi.org/10.3892/mco.2014.341
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The γ‑herpesviruses Epstein-Barr virus and Kaposi's sarcoma‑associated herpesvirus are successful pathogens, each infecting a large proportion of the human population. These viruses persist for the life of the host and may each contribute to a number of malignancies, for which there are currently no cures. Large‑scale proteomic-based approaches provide an excellent means of increasing the collective understanding of the proteomes of these complex viruses and elucidating their numerous interactions within the infected host cell. These large‑scale studies are important for the identification of the intricacies of viral infection and the development of novel therapeutics against these two important pathogens.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Epstein MA, Achong BG and Barr YM: Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1:702–703. 1964.

2 

Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM and Moore PS: Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 266:1865–1869. 1994.

3 

Henle G, Henle W, Clifford P, et al: Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst. 43:1147–1157. 1969.

4 

Kieff E and Rickinson AB: Fields’ Virology. Knipe DM and Howley PM: 2. 6th Edition. Lippincott Williams and Wilkins; Philadelphia: pp. 2655–2700. 2007

5 

Damania B and Pipas JM: DNA Tumour Viruses. 1st Edition. Springer; New York, NY: pp. 205–216. 2009

6 

Taylor GS and Blackbourn DJ: Infectious agents in human cancers: lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Lett. 305:263–278. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Preiser W, Szép NI, Lang D, Doerr HW and Rabenau HF: Kaposi’s sarcoma-associated herpesvirus seroprevalence in selected German patients: evaluation by different test systems. Med Microbiol Immun. 190:121–127. 2001.

8 

Simpson GR, Schulz TF, Whitby D, et al: Prevalence of Kaposi’s sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet. 348:1133–1138. 1996.

9 

Engels EA, Sinclair MD, Biggar RJ, Whitby D, Ebbesen P, Goedert JJ and Gastwirth JL: Latent class analysis of human herpesvirus 8 assay performance and infection prevalence in sub-saharan Africa and Malta. Int J Cancer. 88:1003–1008. 2000. View Article : Google Scholar

10 

Mesri EA, Cesarman E and Boshoff C: Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer. 10:707–719. 2010.

11 

Parkin DM, Sitas F, Chirenje M, Stein L, Abratt R and Wabinga H: Part I: Cancer in indigenous Africans - burden, distribution, and trends. Lancet Oncol. 9:683–692. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Ambroziak JA, Blackbourn DJ, Herndier BG, et al: Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science. 268:582–583. 1995.PubMed/NCBI

13 

Kurth J, Spieker T, Wustrow J, Strickler GJ, Hansmann LM, Rajewsky K and Küppers R: EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity. 13:485–495. 2000. View Article : Google Scholar : PubMed/NCBI

14 

Webster-Cyriaque J, Duus K, Cooper C and Duncan M: Oral EBV and KSHV infection in HIV. Adv Dent Res. 19:91–95. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Tugizov SM, Berline JW and Palefsky JM: Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med. 9:307–314. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Blackbourn DJ, Lennette ET, Ambroziak J, Mourich DV and Levy JA: Human herpesvirus 8 detection in nasal secretions and saliva. J Infect Dis. 177:213–216. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Pauk J, Huang ML, Brodie SJ, et al: Mucosal shedding of human herpesvirus 8 in men. New Engl J Med. 343:1369–1377. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Goodwin DJ, Walters MS, Smith PG, Thurau M, Fickenscher H and Whitehouse A: Herpesvirus Saimiri open reading frame 50 (Rta) protein reactivates the lytic replication cycle in a persistently infected A549 cell line. J Virol. 75:4008–4013. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Cesarman E: Gammaherpesvirus and lymphoproliferative disorders in immunocompromised patients. Cancer Lett. 305:163–174. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Klein E, Kis LL and Klein G: Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene. 26:1297–1305. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Speck SH and Ganem D: Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe. 8:100–115. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Babcock GJ, Decker LL, Volk M and Thorley-Lawson DA: EBV persistence in memory B cells in vivo. Immunity. 9:395–404. 1998. View Article : Google Scholar : PubMed/NCBI

23 

Babcock GJ, Hochberg D and Thorley-Lawson AD: The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity. 13:497–506. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Davis DA, Rinderknecht AS, Zoeteweij JP, et al: Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood. 97:3244–3250. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Blackbourn DJ, Fujimura S, Kutzkey T and Levy JA: Induction of human herpesvirus-8 gene expression by recombinant interferon gamma. AIDS. 14:98–99. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Vieira J, O’Hearn P, Kimball L, Chandran B and Corey L: Activation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol. 75:1378–1386. 2001.

27 

Zeng Y, Zhang X, Huang Z, et al: Intracellular Tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol. 81:2401–2417. 2007.PubMed/NCBI

28 

Wilson SJ, Tsao EH, Webb BL, et al: X box binding protein XBP-1s transactivates the Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency. J Virol. 81:13578–13586. 2007.PubMed/NCBI

29 

Roth WK, Brandstetter H and Sturzl M: Cellular and molecular features of HIV-associated Kaposi’s sarcoma. AIDS. 6:895–913. 1992.

30 

Staskus KA, Zhong W, Gebhard K, et al: Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol. 71:715–719. 1997.

31 

Orenstein JM, Alkan S, Blauvelt A, Jeang KT, Weinstein MD, Ganem D and Herndier B: Visualization of human herpesvirus type 8 in Kaposi’s sarcoma by light and transmission electron microscopy. AIDS. 11:F35–F45. 1997.PubMed/NCBI

32 

Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC and Cesarman E: Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature. 385:347–350. 1997. View Article : Google Scholar : PubMed/NCBI

33 

Bais C, Santomasso B, Coso O, et al: G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 391:86–89. 1998.

34 

Boshoff C, Endo Y, Collins PD, et al: Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science. 278:290–294. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Gao SJ, Boshoff C, Jayachandra S, Weiss RA, Chang Y and Moore PS: KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene. 15:1979–1985. 1997. View Article : Google Scholar : PubMed/NCBI

36 

Lee H, Guo J, Li M, Choi JK, DeMaria M, Rosenzweig M and Jung JU: Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi’s sarcoma-associated herpesvirus. Mol Cell Biol. 18:5219–5228. 1998.PubMed/NCBI

37 

Sarid R, Sato T, Bohenzky RA, Russo JJ and Chang Y: Kaposi’s sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med. 3:293–298. 1997.

38 

Moore PS, Boshoff C, Weiss RA and Chang Y: Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science. 274:1739–1744. 1996. View Article : Google Scholar : PubMed/NCBI

39 

Sun Q, Matta H, Lu G and Chaudhary PM: Induction of IL-8 expression by human herpesvirus 8 encoded vFLIP K13 via NF-kappaB activation. Oncogene. 25:2717–2726. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Osborne J, Moore PS and Chang Y: KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum Immunol. 60:921–927. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM and Chang Y: In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood. 86:2708–2714. 1995.PubMed/NCBI

42 

Hu J, Garber AC and Renne R: The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol. 76:11677–11687. 2002.

43 

Jenner RG, Alba MM, Boshoff C and Kellam P: Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol. 75:891–902. 2001.

44 

Pearce M, Matsumura S and Wilson AC: Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA cluster of Kaposi’s sarcoma-associated herpesvirus originate from a common promoter. J Virol. 79:14457–14464. 2005.PubMed/NCBI

45 

Alkharsah KR, Singh VV, Bosco R, et al: Deletion of Kaposi’s sarcoma-associated herpesvirus FLICE inhibitory protein, vFLIP, from the viral genome compromises the activation of STAT1-responsive cellular genes and spindle cell formation in endothelial cells. J Virol. 85:10375–10388. 2011.

46 

Grossmann C, Podgrabinska S, Skobe M and Ganem D: Activation of NF-κB by the latent vFLIP gene of Kaposi’s sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J Virol. 80:7179–7185. 2006.

47 

Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685. 1970. View Article : Google Scholar : PubMed/NCBI

48 

O’Farrell PH: High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 250:4007–4021. 1975.

49 

Klose J and Kobalz U: Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis. 16:1034–1059. 1995. View Article : Google Scholar : PubMed/NCBI

50 

Gorg A, Weiss W and Dunn MJ: Current two-dimensional electrophoresis technology for proteomics. Proteomics. 4:3665–3685. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Miller I, Crawford J and Gianazza E: Protein stains for proteomic applications: which, when, why? Proteomics. 6:5385–5408. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Neuhoff V, Arold N, Taube D and Ehrhardt W: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 9:255–262. 1988. View Article : Google Scholar

53 

Berggren K, Chernokalskaya E, Steinberg TH, et al: Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis. 21:2509–2521. 2000. View Article : Google Scholar

54 

Berggren KN, Schulenberg B, Lopez MF, et al: An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics. 2:486–498. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Patton WF: Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 771:3–31. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Chandramouli K and Qian PY: Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genom Proteomics. 1:pii: 239204. 2009.PubMed/NCBI

57 

Unlu M, Morgan ME and Minden JS: Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 18:2071–2077. 1997. View Article : Google Scholar : PubMed/NCBI

58 

May C, Brosseron F, Chartowski P, Schumbrutzki C, Schoenebeck B and Marcus K: Instruments and methods in proteomics. Methods Mol Biol. 696:3–26. 2011. View Article : Google Scholar

59 

Michalski A, Cox J and Mann M: More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 10:1785–1793. 2011. View Article : Google Scholar

60 

Washburn MP, Wolters D and Yates JR III: Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 19:242–247. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Yates JR III, Eng JK, McCormack AL and Schieltz D: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 67:1426–1436. 1995. View Article : Google Scholar : PubMed/NCBI

62 

Munday DC, Surtees R, Emmott E, et al: Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes. Proteomics. 12:666–672. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A and Mann M: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 1:376–386. 2002. View Article : Google Scholar : PubMed/NCBI

64 

Krijgsveld J, Ketting RF, Mahmoudi T, et al: Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol. 21:927–931. 2003.

65 

Kruger M, Moser M, Ussar S, et al: SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell. 134:353–364. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Ong SE, Kratchmarova I and Mann M: Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res. 2:173–181. 2003.

67 

Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH and Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 17:994–999. 1999. View Article : Google Scholar : PubMed/NCBI

68 

Schmidt A, Kellermann J and Lottspeich F: A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics. 5:4–15. 2005. View Article : Google Scholar : PubMed/NCBI

69 

DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ and Siu KW: Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 4:377–386. 2005. View Article : Google Scholar

70 

Liu H, Sadygov RG and Yates JR III: A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 76:4193–4201. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Bantscheff M, Schirle M, Sweetman G, Rick J and Kuster B: Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 389:1017–1031. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Zhang Y, Wen Z, Washburn MP and Florens L: Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem. 82:2272–2281. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL and Washburn MP: Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods. 40:303–311. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L and Washburn MP: Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. 5:2339–2347. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Lu P, Vogel C, Wang R, Yao X and Marcotte EM: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol. 25:117–124. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Bondarenko PV, Chelius D and Shaler TA: Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem. 74:4741–4749. 2002. View Article : Google Scholar

77 

Chelius D and Bondarenko PV: Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res. 1:317–323. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Wong JW and Cagney G: An overview of label-free quantitation methods in proteomics by mass spectrometry. Methods Mol Biol. 604:273–283. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Tate S, Larsen B, Bonner R and Gingras AC: Label-free quantitative proteomics trends for protein-protein interactions. J Proteomics. 81:91–101. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL and Pan C: Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res. 11:1582–1590. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Lippe R: Deciphering novel host-herpesvirus interactions by virion proteomics. Front Microbiol. 3:1812012. View Article : Google Scholar : PubMed/NCBI

82 

Johannsen E, Luftig M, Chase MR, et al: Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci USA. 101:16286–16291. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Zhu FX, Chong JM, Wu L and Yuan Y: Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J Virol. 79:800–811. 2005.

84 

Gould F, Harrison SM, Hewitt EW and Whitehouse A: Kaposi’s sarcoma-associated herpesvirus RTA promotes degradation of the Hey1 repressor protein through the ubiquitin proteasome pathway. J Virol. 83:6727–6738. 2009.

85 

Alsayed Y, Leleu X, Leontovich A, Oton AB, Malhem M, George D and Ghobrial IM: Proteomics analysis in post-transplant lymphoproliferative disorders. Eur J Haematol. 81:298–303. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Sun X, Barlow EA, Ma S, et al: Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. Proc Natl Acad Sci USA. 107:3146–3151. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Sun X and Kenney SC: Hsp90 inhibitors: a potential treatment for latent EBV infection? Cell Cycle. 9:1665–1666. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Meckes DG Jr and Raab-Traub N: Microvesicles and viral infection. J Virol. 85:12844–12854. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al: Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA. 107:6328–6333. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Raimondo F, Morosi L, Chinello C, Magni F and Pitto M: Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 11:709–720. 2011. View Article : Google Scholar

91 

Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH and Raab-Traub N: Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci USA. 107:20370–20375. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Meckes DG Jr, Gunawardena HP, Dekroon RM, et al: Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci USA. 110:E2925–E2933. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Schlee M, Krug T, Gires O, et al: Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol. 78:3941–3952. 2004. View Article : Google Scholar

94 

Thurau M, Marquardt G, Gonin-Laurent N, et al: Viral inhibitor of apoptosis vFLIP/K13 protects endothelial cells against superoxide-induced cell death. J Virol. 83:598–611. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Sakakibara S, Pise-Masison CA, Brady JN and Tosato G: Gene regulation and functional alterations induced by Kaposi’s sarcoma-associated herpesvirus-encoded ORFK13/vFLIP in endothelial cells. J Virol. 83:2140–2153. 2009.PubMed/NCBI

96 

Feng X, Zhang J, Chen WN and Ching CB: Proteome profiling of Epstein-Barr virus infected nasopharyngeal carcinoma cell line: identification of potential biomarkers by comparative iTRAQ-coupled 2D LC/MS-MS analysis. J Proteomics. 74:567–576. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Bartee E, McCormack A and Früh K: Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog. 2:e1072006. View Article : Google Scholar : PubMed/NCBI

98 

Si H, Verma SC and Robertson ES: Proteomic analysis of the Kaposi’s sarcoma-associated herpesvirus terminal repeat element binding proteins. J Virol. 80:9017–9030. 2006.

99 

Kaul R, Verma SC and Robertson ES: Protein complexes associated with the Kaposi’s sarcoma-associated herpesvirus-encoded LANA. Virology. 364:317–329. 2007.

100 

Boyne JR, Jackson BR, Taylor A, Macnab SA and Whitehouse A: Kaposi’s sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO J. 29:1851–1864. 2010.

101 

Jackson BR, Boyne JR, Noerenberg M, et al: An interaction between KSHV ORF57 and UIF provides mRNA-adaptor redundancy in Herpesvirus intronless mRNA export. PLoS Pathog. 7:e10021382011. View Article : Google Scholar : PubMed/NCBI

102 

Hiscox JA, Whitehouse A and Matthews DA: Nucleolar proteomics and viral infection. Proteomics. 10:4077–4086. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Boyne JR and Whitehouse A: Nucleolar disruption impairs Kaposi’s sarcoma-associated herpesvirus ORF57-mediated nuclear export of intronless viral mRNAs. FEBS Lett. 583:3549–3556. 2009.PubMed/NCBI

104 

Taylor A, Jackson BR, Noerenberg M, et al: Mutation of a C-terminal motif affects Kaposi’s sarcoma-associated herpesvirus ORF57 RNA binding, nuclear trafficking, and multimerization. J Virol. 85:7881–7891. 2011.PubMed/NCBI

105 

Jackson BR, Noerenberg M and Whitehouse A: A novel mechanism inducing genome instability in Kaposi’s sarcoma-associated herpesvirus infected cells. PLoS Pathog. 10:e10040982014.PubMed/NCBI

106 

Malik-Soni N and Frappier L: Proteomic profiling of EBNA1-host protein interactions in latent and lytic Epstein-Barr virus infections. J Virol. 86:6999–7002. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Howe JG and Shu MD: Isolation and characterization of the genes for two small RNAs of herpesvirus papio and their comparison with Epstein-Barr virus-encoded EBER RNAs. J Virol. 62:2790–2798. 1988.PubMed/NCBI

108 

Szebeni A, Mehrotra B, Baumann A, Adam SA, Wingfield PT and Olson MO: Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry. 36:3941–3949. 1997. View Article : Google Scholar : PubMed/NCBI

109 

Sander G, Konrad A, Thurau M, et al: Intracellular localization map of human herpesvirus 8 proteins. J Virol. 82:1908–1922. 2008. View Article : Google Scholar : PubMed/NCBI

110 

Labo N, Miley W, Marshall V, et al: Heterogeneity and breadth of host antibody response to KSHV infection demonstrated by systematic analysis of the KSHV proteome. PLoS Pathog. 10:e10040462014. View Article : Google Scholar : PubMed/NCBI

111 

Evans VC, Barker G, Heesom KJ, Fan J, Bessant C and Matthews DA: De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nat Methods. 9:1207–1211. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Dresang LR, Teuton JR, Feng H, et al: Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes. BMC Genomics. 12:6252011. View Article : Google Scholar : PubMed/NCBI

113 

Couzin J: Breakthrough of the year. Small RNAs make big splash. Science. 298:2296–2297. 2002.PubMed/NCBI

114 

Dennis C: Small RNAs: the genome’s guiding hand? Nature. 420:7322002.

115 

Jopling CL: Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans. 36:1220–1223. 2008. View Article : Google Scholar : PubMed/NCBI

116 

Ou M, Zhang X, Dai Y, et al: Identification of potential microRNA-target pairs associated with osteopetrosis by deep sequencing, iTRAQ proteomics and bioinformatics. Eur J Hum Genet. 5:625–632. 2013.PubMed/NCBI

117 

Gallaher AM, Das S, Xiao Z, Andresson T, Kieffer-Kwon P, Happel C and Ziegelbauer J: Proteomic screening of human targets of viral microRNAs reveals functions associated with immune evasion and angiogenesis. PLoS Pathog. 9:e10035842013. View Article : Google Scholar : PubMed/NCBI

118 

Huang TC, Pinto SM and Pandey A: Proteomics for understanding miRNA biology. Proteomics. 13:558–567. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Wu S, Li N, Ma J, et al: First proteomic exploration of protein-encoding genes on chromosome 1 in human liver, stomach, and colon. J Proteome Res. 12:67–80. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Zhang C, Li N, Zhai L, et al: Systematic analysis of missing proteins provides clues to help define all of the protein-coding genes on human chromosome 1. J Proteome Res. 13:114–125. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Tang F, Barbacioru C, Wang Y, et al: mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 6:377–382. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P and Linnarsson S: Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat Protoc. 7:813–828. 2012.PubMed/NCBI

123 

Salehi-Reyhani A, Kaplinsky J, Burgin E, et al: A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. Lab Chip. 11:1256–1261. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Lamond A: http://www.peptracker.com/dm/. Accessed June 1, 2014

125 

Boisvert FM, Ahmad Y, Gierliński M, et al: A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics. 11:M111.011429. 2012. View Article : Google Scholar : PubMed/NCBI

126 

von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P and Snel B: STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31:258–261. 2003.PubMed/NCBI

127 

Mann M, Aebersold R, Robinson CV, et al: http://www.propsects-fp7.eu/resources/index.html. Accessed June 1, 2014

128 

Krupp M, Marquardt JU, Sahin U, Galle PR, Castle J and Teufel A: RNA-Seq Atlas - a reference database for gene expression profiling in normal tissue by next-generation sequencing. Bioinformatics. 28:1184–1185. 2012. View Article : Google Scholar : PubMed/NCBI

129 

Vizcaino JA, Deutsch EW, Wang R, et al: ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 32:223–226. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Vinayagam A, Zirin J, Roesel C, et al: Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat Methods. 11:94–99. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Jones JF, Shurin S, Abramowsky C, et al: T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. New Engl J Med. 318:733–741. 1988. View Article : Google Scholar : PubMed/NCBI

132 

Old LJ, Boyse EA, Oettgen HF, De Harven E, Geering G, Williamson B and Clifford P: Precipitating antibody in human serum to an antigen present in cultured Burkitt’s lymphoma cells. Proc Natl Acad Sci USA. 56:1699–1704. 1966.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Owen CB, Hughes DJ, Baquero-Perez B, Berndt A, Schumann S, Jackson BR and Whitehouse A: Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Mol Clin Oncol 2: 891-903, 2014.
APA
Owen, C.B., Hughes, D.J., Baquero-Perez, B., Berndt, A., Schumann, S., Jackson, B.R., & Whitehouse, A. (2014). Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Molecular and Clinical Oncology, 2, 891-903. https://doi.org/10.3892/mco.2014.341
MLA
Owen, C. B., Hughes, D. J., Baquero-Perez, B., Berndt, A., Schumann, S., Jackson, B. R., Whitehouse, A."Utilising proteomic approaches to understand oncogenic human herpesviruses (Review)". Molecular and Clinical Oncology 2.6 (2014): 891-903.
Chicago
Owen, C. B., Hughes, D. J., Baquero-Perez, B., Berndt, A., Schumann, S., Jackson, B. R., Whitehouse, A."Utilising proteomic approaches to understand oncogenic human herpesviruses (Review)". Molecular and Clinical Oncology 2, no. 6 (2014): 891-903. https://doi.org/10.3892/mco.2014.341
Copy and paste a formatted citation
x
Spandidos Publications style
Owen CB, Hughes DJ, Baquero-Perez B, Berndt A, Schumann S, Jackson BR and Whitehouse A: Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Mol Clin Oncol 2: 891-903, 2014.
APA
Owen, C.B., Hughes, D.J., Baquero-Perez, B., Berndt, A., Schumann, S., Jackson, B.R., & Whitehouse, A. (2014). Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Molecular and Clinical Oncology, 2, 891-903. https://doi.org/10.3892/mco.2014.341
MLA
Owen, C. B., Hughes, D. J., Baquero-Perez, B., Berndt, A., Schumann, S., Jackson, B. R., Whitehouse, A."Utilising proteomic approaches to understand oncogenic human herpesviruses (Review)". Molecular and Clinical Oncology 2.6 (2014): 891-903.
Chicago
Owen, C. B., Hughes, D. J., Baquero-Perez, B., Berndt, A., Schumann, S., Jackson, B. R., Whitehouse, A."Utilising proteomic approaches to understand oncogenic human herpesviruses (Review)". Molecular and Clinical Oncology 2, no. 6 (2014): 891-903. https://doi.org/10.3892/mco.2014.341
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team