|
1
|
Epstein MA, Achong BG and Barr YM: Virus
particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet.
1:702–703. 1964.
|
|
2
|
Chang Y, Cesarman E, Pessin MS, Lee F,
Culpepper J, Knowles DM and Moore PS: Identification of
herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma.
Science. 266:1865–1869. 1994.
|
|
3
|
Henle G, Henle W, Clifford P, et al:
Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control
groups. J Natl Cancer Inst. 43:1147–1157. 1969.
|
|
4
|
Kieff E and Rickinson AB: Fields’
Virology. Knipe DM and Howley PM: 2. 6th Edition. Lippincott
Williams and Wilkins; Philadelphia: pp. 2655–2700. 2007
|
|
5
|
Damania B and Pipas JM: DNA Tumour
Viruses. 1st Edition. Springer; New York, NY: pp. 205–216. 2009
|
|
6
|
Taylor GS and Blackbourn DJ: Infectious
agents in human cancers: lessons in immunity and immunomodulation
from gammaherpesviruses EBV and KSHV. Cancer Lett. 305:263–278.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Preiser W, Szép NI, Lang D, Doerr HW and
Rabenau HF: Kaposi’s sarcoma-associated herpesvirus seroprevalence
in selected German patients: evaluation by different test systems.
Med Microbiol Immun. 190:121–127. 2001.
|
|
8
|
Simpson GR, Schulz TF, Whitby D, et al:
Prevalence of Kaposi’s sarcoma associated herpesvirus infection
measured by antibodies to recombinant capsid protein and latent
immunofluorescence antigen. Lancet. 348:1133–1138. 1996.
|
|
9
|
Engels EA, Sinclair MD, Biggar RJ, Whitby
D, Ebbesen P, Goedert JJ and Gastwirth JL: Latent class analysis of
human herpesvirus 8 assay performance and infection prevalence in
sub-saharan Africa and Malta. Int J Cancer. 88:1003–1008. 2000.
View Article : Google Scholar
|
|
10
|
Mesri EA, Cesarman E and Boshoff C:
Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer.
10:707–719. 2010.
|
|
11
|
Parkin DM, Sitas F, Chirenje M, Stein L,
Abratt R and Wabinga H: Part I: Cancer in indigenous Africans -
burden, distribution, and trends. Lancet Oncol. 9:683–692. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ambroziak JA, Blackbourn DJ, Herndier BG,
et al: Herpes-like sequences in HIV-infected and uninfected
Kaposi’s sarcoma patients. Science. 268:582–583. 1995.PubMed/NCBI
|
|
13
|
Kurth J, Spieker T, Wustrow J, Strickler
GJ, Hansmann LM, Rajewsky K and Küppers R: EBV-infected B cells in
infectious mononucleosis: viral strategies for spreading in the B
cell compartment and establishing latency. Immunity. 13:485–495.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Webster-Cyriaque J, Duus K, Cooper C and
Duncan M: Oral EBV and KSHV infection in HIV. Adv Dent Res.
19:91–95. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tugizov SM, Berline JW and Palefsky JM:
Epstein-Barr virus infection of polarized tongue and nasopharyngeal
epithelial cells. Nat Med. 9:307–314. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Blackbourn DJ, Lennette ET, Ambroziak J,
Mourich DV and Levy JA: Human herpesvirus 8 detection in nasal
secretions and saliva. J Infect Dis. 177:213–216. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pauk J, Huang ML, Brodie SJ, et al:
Mucosal shedding of human herpesvirus 8 in men. New Engl J Med.
343:1369–1377. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Goodwin DJ, Walters MS, Smith PG, Thurau
M, Fickenscher H and Whitehouse A: Herpesvirus Saimiri open reading
frame 50 (Rta) protein reactivates the lytic replication cycle in a
persistently infected A549 cell line. J Virol. 75:4008–4013. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cesarman E: Gammaherpesvirus and
lymphoproliferative disorders in immunocompromised patients. Cancer
Lett. 305:163–174. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Klein E, Kis LL and Klein G: Epstein-Barr
virus infection in humans: from harmless to life endangering
virus-lymphocyte interactions. Oncogene. 26:1297–1305. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Speck SH and Ganem D: Viral latency and
its regulation: lessons from the gamma-herpesviruses. Cell Host
Microbe. 8:100–115. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Babcock GJ, Decker LL, Volk M and
Thorley-Lawson DA: EBV persistence in memory B cells in vivo.
Immunity. 9:395–404. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Babcock GJ, Hochberg D and Thorley-Lawson
AD: The expression pattern of Epstein-Barr virus latent genes in
vivo is dependent upon the differentiation stage of the infected B
cell. Immunity. 13:497–506. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Davis DA, Rinderknecht AS, Zoeteweij JP,
et al: Hypoxia induces lytic replication of Kaposi
sarcoma-associated herpesvirus. Blood. 97:3244–3250. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Blackbourn DJ, Fujimura S, Kutzkey T and
Levy JA: Induction of human herpesvirus-8 gene expression by
recombinant interferon gamma. AIDS. 14:98–99. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Vieira J, O’Hearn P, Kimball L, Chandran B
and Corey L: Activation of Kaposi’s sarcoma-associated herpesvirus
(human herpesvirus 8) lytic replication by human cytomegalovirus. J
Virol. 75:1378–1386. 2001.
|
|
27
|
Zeng Y, Zhang X, Huang Z, et al:
Intracellular Tat of human immunodeficiency virus type 1 activates
lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus:
role of JAK/STAT signaling. J Virol. 81:2401–2417. 2007.PubMed/NCBI
|
|
28
|
Wilson SJ, Tsao EH, Webb BL, et al: X box
binding protein XBP-1s transactivates the Kaposi’s
sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking
plasma cell differentiation to KSHV reactivation from latency. J
Virol. 81:13578–13586. 2007.PubMed/NCBI
|
|
29
|
Roth WK, Brandstetter H and Sturzl M:
Cellular and molecular features of HIV-associated Kaposi’s sarcoma.
AIDS. 6:895–913. 1992.
|
|
30
|
Staskus KA, Zhong W, Gebhard K, et al:
Kaposi’s sarcoma-associated herpesvirus gene expression in
endothelial (spindle) tumor cells. J Virol. 71:715–719. 1997.
|
|
31
|
Orenstein JM, Alkan S, Blauvelt A, Jeang
KT, Weinstein MD, Ganem D and Herndier B: Visualization of human
herpesvirus type 8 in Kaposi’s sarcoma by light and transmission
electron microscopy. AIDS. 11:F35–F45. 1997.PubMed/NCBI
|
|
32
|
Arvanitakis L, Geras-Raaka E, Varma A,
Gershengorn MC and Cesarman E: Human herpesvirus KSHV encodes a
constitutively active G-protein-coupled receptor linked to cell
proliferation. Nature. 385:347–350. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bais C, Santomasso B, Coso O, et al:
G-protein-coupled receptor of Kaposi’s sarcoma-associated
herpesvirus is a viral oncogene and angiogenesis activator. Nature.
391:86–89. 1998.
|
|
34
|
Boshoff C, Endo Y, Collins PD, et al:
Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines.
Science. 278:290–294. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gao SJ, Boshoff C, Jayachandra S, Weiss
RA, Chang Y and Moore PS: KSHV ORF K9 (vIRF) is an oncogene which
inhibits the interferon signaling pathway. Oncogene. 15:1979–1985.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lee H, Guo J, Li M, Choi JK, DeMaria M,
Rosenzweig M and Jung JU: Identification of an immunoreceptor
tyrosine-based activation motif of K1 transforming protein of
Kaposi’s sarcoma-associated herpesvirus. Mol Cell Biol.
18:5219–5228. 1998.PubMed/NCBI
|
|
37
|
Sarid R, Sato T, Bohenzky RA, Russo JJ and
Chang Y: Kaposi’s sarcoma-associated herpesvirus encodes a
functional bcl-2 homologue. Nat Med. 3:293–298. 1997.
|
|
38
|
Moore PS, Boshoff C, Weiss RA and Chang Y:
Molecular mimicry of human cytokine and cytokine response pathway
genes by KSHV. Science. 274:1739–1744. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sun Q, Matta H, Lu G and Chaudhary PM:
Induction of IL-8 expression by human herpesvirus 8 encoded vFLIP
K13 via NF-kappaB activation. Oncogene. 25:2717–2726. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Osborne J, Moore PS and Chang Y:
KSHV-encoded viral IL-6 activates multiple human IL-6 signaling
pathways. Hum Immunol. 60:921–927. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cesarman E, Moore PS, Rao PH, Inghirami G,
Knowles DM and Chang Y: In vitro establishment and characterization
of two acquired immunodeficiency syndrome-related lymphoma cell
lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated
herpesvirus-like (KSHV) DNA sequences. Blood. 86:2708–2714.
1995.PubMed/NCBI
|
|
42
|
Hu J, Garber AC and Renne R: The
latency-associated nuclear antigen of Kaposi’s sarcoma-associated
herpesvirus supports latent DNA replication in dividing cells. J
Virol. 76:11677–11687. 2002.
|
|
43
|
Jenner RG, Alba MM, Boshoff C and Kellam
P: Kaposi’s sarcoma-associated herpesvirus latent and lytic gene
expression as revealed by DNA arrays. J Virol. 75:891–902.
2001.
|
|
44
|
Pearce M, Matsumura S and Wilson AC:
Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA
cluster of Kaposi’s sarcoma-associated herpesvirus originate from a
common promoter. J Virol. 79:14457–14464. 2005.PubMed/NCBI
|
|
45
|
Alkharsah KR, Singh VV, Bosco R, et al:
Deletion of Kaposi’s sarcoma-associated herpesvirus FLICE
inhibitory protein, vFLIP, from the viral genome compromises the
activation of STAT1-responsive cellular genes and spindle cell
formation in endothelial cells. J Virol. 85:10375–10388. 2011.
|
|
46
|
Grossmann C, Podgrabinska S, Skobe M and
Ganem D: Activation of NF-κB by the latent vFLIP gene of Kaposi’s
sarcoma-associated herpesvirus is required for the spindle shape of
virus-infected endothelial cells and contributes to their
proinflammatory phenotype. J Virol. 80:7179–7185. 2006.
|
|
47
|
Laemmli UK: Cleavage of structural
proteins during the assembly of the head of bacteriophage T4.
Nature. 227:680–685. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
O’Farrell PH: High resolution
two-dimensional electrophoresis of proteins. J Biol Chem.
250:4007–4021. 1975.
|
|
49
|
Klose J and Kobalz U: Two-dimensional
electrophoresis of proteins: an updated protocol and implications
for a functional analysis of the genome. Electrophoresis.
16:1034–1059. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gorg A, Weiss W and Dunn MJ: Current
two-dimensional electrophoresis technology for proteomics.
Proteomics. 4:3665–3685. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Miller I, Crawford J and Gianazza E:
Protein stains for proteomic applications: which, when, why?
Proteomics. 6:5385–5408. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Neuhoff V, Arold N, Taube D and Ehrhardt
W: Improved staining of proteins in polyacrylamide gels including
isoelectric focusing gels with clear background at nanogram
sensitivity using Coomassie Brilliant Blue G-250 and R-250.
Electrophoresis. 9:255–262. 1988. View Article : Google Scholar
|
|
53
|
Berggren K, Chernokalskaya E, Steinberg
TH, et al: Background-free, high sensitivity staining of proteins
in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide
gels using a luminescent ruthenium complex. Electrophoresis.
21:2509–2521. 2000. View Article : Google Scholar
|
|
54
|
Berggren KN, Schulenberg B, Lopez MF, et
al: An improved formulation of SYPRO Ruby protein gel stain:
comparison with the original formulation and with a ruthenium II
tris (bathophenanthroline disulfonate) formulation. Proteomics.
2:486–498. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Patton WF: Detection technologies in
proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci.
771:3–31. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chandramouli K and Qian PY: Proteomics:
challenges, techniques and possibilities to overcome biological
sample complexity. Hum Genom Proteomics. 1:pii: 239204.
2009.PubMed/NCBI
|
|
57
|
Unlu M, Morgan ME and Minden JS:
Difference gel electrophoresis: a single gel method for detecting
changes in protein extracts. Electrophoresis. 18:2071–2077. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
May C, Brosseron F, Chartowski P,
Schumbrutzki C, Schoenebeck B and Marcus K: Instruments and methods
in proteomics. Methods Mol Biol. 696:3–26. 2011. View Article : Google Scholar
|
|
59
|
Michalski A, Cox J and Mann M: More than
100,000 detectable peptide species elute in single shotgun
proteomics runs but the majority is inaccessible to data-dependent
LC-MS/MS. J Proteome Res. 10:1785–1793. 2011. View Article : Google Scholar
|
|
60
|
Washburn MP, Wolters D and Yates JR III:
Large-scale analysis of the yeast proteome by multidimensional
protein identification technology. Nat Biotechnol. 19:242–247.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yates JR III, Eng JK, McCormack AL and
Schieltz D: Method to correlate tandem mass spectra of modified
peptides to amino acid sequences in the protein database. Anal
Chem. 67:1426–1436. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Munday DC, Surtees R, Emmott E, et al:
Using SILAC and quantitative proteomics to investigate the
interactions between viral and host proteomes. Proteomics.
12:666–672. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ong SE, Blagoev B, Kratchmarova I,
Kristensen DB, Steen H, Pandey A and Mann M: Stable isotope
labeling by amino acids in cell culture, SILAC, as a simple and
accurate approach to expression proteomics. Mol Cell Proteomics.
1:376–386. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Krijgsveld J, Ketting RF, Mahmoudi T, et
al: Metabolic labeling of C. elegans and D.
melanogaster for quantitative proteomics. Nat Biotechnol.
21:927–931. 2003.
|
|
65
|
Kruger M, Moser M, Ussar S, et al: SILAC
mouse for quantitative proteomics uncovers kindlin-3 as an
essential factor for red blood cell function. Cell. 134:353–364.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ong SE, Kratchmarova I and Mann M:
Properties of 13C-substituted arginine in stable isotope
labeling by amino acids in cell culture (SILAC). J Proteome Res.
2:173–181. 2003.
|
|
67
|
Gygi SP, Rist B, Gerber SA, Turecek F,
Gelb MH and Aebersold R: Quantitative analysis of complex protein
mixtures using isotope-coded affinity tags. Nat Biotechnol.
17:994–999. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
68
|
Schmidt A, Kellermann J and Lottspeich F:
A novel strategy for quantitative proteomics using isotope-coded
protein labels. Proteomics. 5:4–15. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
DeSouza L, Diehl G, Rodrigues MJ, Guo J,
Romaschin AD, Colgan TJ and Siu KW: Search for cancer markers from
endometrial tissues using differentially labeled tags iTRAQ and
cICAT with multidimensional liquid chromatography and tandem mass
spectrometry. J Proteome Res. 4:377–386. 2005. View Article : Google Scholar
|
|
70
|
Liu H, Sadygov RG and Yates JR III: A
model for random sampling and estimation of relative protein
abundance in shotgun proteomics. Anal Chem. 76:4193–4201. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bantscheff M, Schirle M, Sweetman G, Rick
J and Kuster B: Quantitative mass spectrometry in proteomics: a
critical review. Anal Bioanal Chem. 389:1017–1031. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang Y, Wen Z, Washburn MP and Florens L:
Refinements to label free proteome quantitation: how to deal with
peptides shared by multiple proteins. Anal Chem. 82:2272–2281.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Florens L, Carozza MJ, Swanson SK,
Fournier M, Coleman MK, Workman JL and Washburn MP: Analyzing
chromatin remodeling complexes using shotgun proteomics and
normalized spectral abundance factors. Methods. 40:303–311. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zybailov B, Mosley AL, Sardiu ME, Coleman
MK, Florens L and Washburn MP: Statistical analysis of membrane
proteome expression changes in Saccharomyces cerevisiae. J
Proteome Res. 5:2339–2347. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lu P, Vogel C, Wang R, Yao X and Marcotte
EM: Absolute protein expression profiling estimates the relative
contributions of transcriptional and translational regulation. Nat
Biotechnol. 25:117–124. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bondarenko PV, Chelius D and Shaler TA:
Identification and relative quantitation of protein mixtures by
enzymatic digestion followed by capillary reversed-phase liquid
chromatography-tandem mass spectrometry. Anal Chem. 74:4741–4749.
2002. View Article : Google Scholar
|
|
77
|
Chelius D and Bondarenko PV: Quantitative
profiling of proteins in complex mixtures using liquid
chromatography and mass spectrometry. J Proteome Res. 1:317–323.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wong JW and Cagney G: An overview of
label-free quantitation methods in proteomics by mass spectrometry.
Methods Mol Biol. 604:273–283. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tate S, Larsen B, Bonner R and Gingras AC:
Label-free quantitative proteomics trends for protein-protein
interactions. J Proteomics. 81:91–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li Z, Adams RM, Chourey K, Hurst GB,
Hettich RL and Pan C: Systematic comparison of label-free,
metabolic labeling, and isobaric chemical labeling for quantitative
proteomics on LTQ Orbitrap Velos. J Proteome Res. 11:1582–1590.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lippe R: Deciphering novel
host-herpesvirus interactions by virion proteomics. Front
Microbiol. 3:1812012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Johannsen E, Luftig M, Chase MR, et al:
Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci USA.
101:16286–16291. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhu FX, Chong JM, Wu L and Yuan Y: Virion
proteins of Kaposi’s sarcoma-associated herpesvirus. J Virol.
79:800–811. 2005.
|
|
84
|
Gould F, Harrison SM, Hewitt EW and
Whitehouse A: Kaposi’s sarcoma-associated herpesvirus RTA promotes
degradation of the Hey1 repressor protein through the ubiquitin
proteasome pathway. J Virol. 83:6727–6738. 2009.
|
|
85
|
Alsayed Y, Leleu X, Leontovich A, Oton AB,
Malhem M, George D and Ghobrial IM: Proteomics analysis in
post-transplant lymphoproliferative disorders. Eur J Haematol.
81:298–303. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sun X, Barlow EA, Ma S, et al: Hsp90
inhibitors block outgrowth of EBV-infected malignant cells in vitro
and in vivo through an EBNA1-dependent mechanism. Proc Natl Acad
Sci USA. 107:3146–3151. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sun X and Kenney SC: Hsp90 inhibitors: a
potential treatment for latent EBV infection? Cell Cycle.
9:1665–1666. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Meckes DG Jr and Raab-Traub N:
Microvesicles and viral infection. J Virol. 85:12844–12854. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Pegtel DM, Cosmopoulos K, Thorley-Lawson
DA, et al: Functional delivery of viral miRNAs via exosomes. Proc
Natl Acad Sci USA. 107:6328–6333. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Raimondo F, Morosi L, Chinello C, Magni F
and Pitto M: Advances in membranous vesicle and exosome proteomics
improving biological understanding and biomarker discovery.
Proteomics. 11:709–720. 2011. View Article : Google Scholar
|
|
91
|
Meckes DG Jr, Shair KH, Marquitz AR, Kung
CP, Edwards RH and Raab-Traub N: Human tumor virus utilizes
exosomes for intercellular communication. Proc Natl Acad Sci USA.
107:20370–20375. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Meckes DG Jr, Gunawardena HP, Dekroon RM,
et al: Modulation of B-cell exosome proteins by gamma herpesvirus
infection. Proc Natl Acad Sci USA. 110:E2925–E2933. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Schlee M, Krug T, Gires O, et al:
Identification of Epstein-Barr virus (EBV) nuclear antigen 2
(EBNA2) target proteins by proteome analysis: activation of EBNA2
in conditionally immortalized B cells reflects early events after
infection of primary B cells by EBV. J Virol. 78:3941–3952. 2004.
View Article : Google Scholar
|
|
94
|
Thurau M, Marquardt G, Gonin-Laurent N, et
al: Viral inhibitor of apoptosis vFLIP/K13 protects endothelial
cells against superoxide-induced cell death. J Virol. 83:598–611.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sakakibara S, Pise-Masison CA, Brady JN
and Tosato G: Gene regulation and functional alterations induced by
Kaposi’s sarcoma-associated herpesvirus-encoded ORFK13/vFLIP in
endothelial cells. J Virol. 83:2140–2153. 2009.PubMed/NCBI
|
|
96
|
Feng X, Zhang J, Chen WN and Ching CB:
Proteome profiling of Epstein-Barr virus infected nasopharyngeal
carcinoma cell line: identification of potential biomarkers by
comparative iTRAQ-coupled 2D LC/MS-MS analysis. J Proteomics.
74:567–576. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bartee E, McCormack A and Früh K:
Quantitative membrane proteomics reveals new cellular targets of
viral immune modulators. PLoS Pathog. 2:e1072006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Si H, Verma SC and Robertson ES: Proteomic
analysis of the Kaposi’s sarcoma-associated herpesvirus terminal
repeat element binding proteins. J Virol. 80:9017–9030. 2006.
|
|
99
|
Kaul R, Verma SC and Robertson ES: Protein
complexes associated with the Kaposi’s sarcoma-associated
herpesvirus-encoded LANA. Virology. 364:317–329. 2007.
|
|
100
|
Boyne JR, Jackson BR, Taylor A, Macnab SA
and Whitehouse A: Kaposi’s sarcoma-associated herpesvirus ORF57
protein interacts with PYM to enhance translation of viral
intronless mRNAs. EMBO J. 29:1851–1864. 2010.
|
|
101
|
Jackson BR, Boyne JR, Noerenberg M, et al:
An interaction between KSHV ORF57 and UIF provides mRNA-adaptor
redundancy in Herpesvirus intronless mRNA export. PLoS Pathog.
7:e10021382011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hiscox JA, Whitehouse A and Matthews DA:
Nucleolar proteomics and viral infection. Proteomics. 10:4077–4086.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Boyne JR and Whitehouse A: Nucleolar
disruption impairs Kaposi’s sarcoma-associated herpesvirus
ORF57-mediated nuclear export of intronless viral mRNAs. FEBS Lett.
583:3549–3556. 2009.PubMed/NCBI
|
|
104
|
Taylor A, Jackson BR, Noerenberg M, et al:
Mutation of a C-terminal motif affects Kaposi’s sarcoma-associated
herpesvirus ORF57 RNA binding, nuclear trafficking, and
multimerization. J Virol. 85:7881–7891. 2011.PubMed/NCBI
|
|
105
|
Jackson BR, Noerenberg M and Whitehouse A:
A novel mechanism inducing genome instability in Kaposi’s
sarcoma-associated herpesvirus infected cells. PLoS Pathog.
10:e10040982014.PubMed/NCBI
|
|
106
|
Malik-Soni N and Frappier L: Proteomic
profiling of EBNA1-host protein interactions in latent and lytic
Epstein-Barr virus infections. J Virol. 86:6999–7002. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Howe JG and Shu MD: Isolation and
characterization of the genes for two small RNAs of herpesvirus
papio and their comparison with Epstein-Barr virus-encoded EBER
RNAs. J Virol. 62:2790–2798. 1988.PubMed/NCBI
|
|
108
|
Szebeni A, Mehrotra B, Baumann A, Adam SA,
Wingfield PT and Olson MO: Nucleolar protein B23 stimulates nuclear
import of the HIV-1 Rev protein and NLS-conjugated albumin.
Biochemistry. 36:3941–3949. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sander G, Konrad A, Thurau M, et al:
Intracellular localization map of human herpesvirus 8 proteins. J
Virol. 82:1908–1922. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Labo N, Miley W, Marshall V, et al:
Heterogeneity and breadth of host antibody response to KSHV
infection demonstrated by systematic analysis of the KSHV proteome.
PLoS Pathog. 10:e10040462014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Evans VC, Barker G, Heesom KJ, Fan J,
Bessant C and Matthews DA: De novo derivation of proteomes from
transcriptomes for transcript and protein identification. Nat
Methods. 9:1207–1211. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Dresang LR, Teuton JR, Feng H, et al:
Coupled transcriptome and proteome analysis of human lymphotropic
tumor viruses: insights on the detection and discovery of viral
genes. BMC Genomics. 12:6252011. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Couzin J: Breakthrough of the year. Small
RNAs make big splash. Science. 298:2296–2297. 2002.PubMed/NCBI
|
|
114
|
Dennis C: Small RNAs: the genome’s guiding
hand? Nature. 420:7322002.
|
|
115
|
Jopling CL: Regulation of hepatitis C
virus by microRNA-122. Biochem Soc Trans. 36:1220–1223. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ou M, Zhang X, Dai Y, et al:
Identification of potential microRNA-target pairs associated with
osteopetrosis by deep sequencing, iTRAQ proteomics and
bioinformatics. Eur J Hum Genet. 5:625–632. 2013.PubMed/NCBI
|
|
117
|
Gallaher AM, Das S, Xiao Z, Andresson T,
Kieffer-Kwon P, Happel C and Ziegelbauer J: Proteomic screening of
human targets of viral microRNAs reveals functions associated with
immune evasion and angiogenesis. PLoS Pathog. 9:e10035842013.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Huang TC, Pinto SM and Pandey A:
Proteomics for understanding miRNA biology. Proteomics. 13:558–567.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wu S, Li N, Ma J, et al: First proteomic
exploration of protein-encoding genes on chromosome 1 in human
liver, stomach, and colon. J Proteome Res. 12:67–80. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang C, Li N, Zhai L, et al: Systematic
analysis of missing proteins provides clues to help define all of
the protein-coding genes on human chromosome 1. J Proteome Res.
13:114–125. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Tang F, Barbacioru C, Wang Y, et al:
mRNA-Seq whole-transcriptome analysis of a single cell. Nat
Methods. 6:377–382. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Islam S, Kjallquist U, Moliner A, Zajac P,
Fan JB, Lönnerberg P and Linnarsson S: Highly multiplexed and
strand-specific single-cell RNA 5′ end sequencing. Nat Protoc.
7:813–828. 2012.PubMed/NCBI
|
|
123
|
Salehi-Reyhani A, Kaplinsky J, Burgin E,
et al: A first step towards practical single cell proteomics: a
microfluidic antibody capture chip with TIRF detection. Lab Chip.
11:1256–1261. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lamond A: http://www.peptracker.com/dm/.
Accessed June 1, 2014
|
|
125
|
Boisvert FM, Ahmad Y, Gierliński M, et al:
A quantitative spatial proteomics analysis of proteome turnover in
human cells. Mol Cell Proteomics. 11:M111.011429. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
von Mering C, Huynen M, Jaeggi D, Schmidt
S, Bork P and Snel B: STRING: a database of predicted functional
associations between proteins. Nucleic Acids Res. 31:258–261.
2003.PubMed/NCBI
|
|
127
|
Mann M, Aebersold R, Robinson CV, et al:
http://www.propsects-fp7.eu/resources/index.html.
Accessed June 1, 2014
|
|
128
|
Krupp M, Marquardt JU, Sahin U, Galle PR,
Castle J and Teufel A: RNA-Seq Atlas - a reference database for
gene expression profiling in normal tissue by next-generation
sequencing. Bioinformatics. 28:1184–1185. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Vizcaino JA, Deutsch EW, Wang R, et al:
ProteomeXchange provides globally coordinated proteomics data
submission and dissemination. Nat Biotechnol. 32:223–226. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Vinayagam A, Zirin J, Roesel C, et al:
Integrating protein-protein interaction networks with phenotypes
reveals signs of interactions. Nat Methods. 11:94–99. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Jones JF, Shurin S, Abramowsky C, et al:
T-cell lymphomas containing Epstein-Barr viral DNA in patients with
chronic Epstein-Barr virus infections. New Engl J Med. 318:733–741.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Old LJ, Boyse EA, Oettgen HF, De Harven E,
Geering G, Williamson B and Clifford P: Precipitating antibody in
human serum to an antigen present in cultured Burkitt’s lymphoma
cells. Proc Natl Acad Sci USA. 56:1699–1704. 1966.PubMed/NCBI
|