|
1
|
Dores GM, Anderson WF, Curtis RE, Landgren
O, Ostroumova E, Bluhm EC, Rabkin CS, Devesa SS and Linet MS:
Chronic lymphocytic leukaemia and small lymphocytic lymphoma:
Overview of the descriptive epidemiology. Br J Haematol.
139:809–819. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nabhan C and Rosen ST: Chronic lymphocytic
leukemia: A clinical review. JAMA. 312:2265–2276. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Swerdlow SH, Campo E, Harris NL, Jaffe ES,
Pileri SA, Stein H, Thiele J and Vardiman JW: WHO Classification of
Tumours of Hematopoietic and Lymphoid Tissues (4th). IARC press.
Lyon: 2008.
|
|
4
|
Galton DA, Goldman JM, Wiltshaw E,
Catovsky D, Henry K and Goldenberg GJ: Prolymphocytic leukaemia. Br
J Haematol. 27:7–23. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kjeldsberg CR and Marty J: Prolymphocytic
transformation of chronic lymphocytic leukemia. Cancer.
48:2447–2457. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
DiGiuseppe JA and Borowitz MJ: Clinical
utility of flow cytometry in the chronic lymphoid leukemias. Semin
Oncol. 25:6–10. 1998.PubMed/NCBI
|
|
7
|
Armitage JO, Dick FR and Corder MP:
Diffuse histiocytic lymphoma complicating chronic lymphocytic
leukemia. Cancer. 41:422–427. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Parikh SA, Rabe KG, Call TG, Zent CS,
Habermann TM, Ding W, Leis JF, Schwager SM, Hanson CA, Macon WR, et
al: Diffuse large B-cell lymphoma (Richter syndrome) in patients
with chronic lymphocytic leukaemia (CLL): A cohort study of newly
diagnosed patients. Br J Haematol. 162:774–782. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rai KR, Sawitsky A, Cronkite EP, Chanana
AD, Levy RN and Pasternack BS: Clinical staging of chronic
lymphocytic leukemia. Blood. 46:219–234. 1975.PubMed/NCBI
|
|
10
|
Binet JL, Lepoprier M, Dighiero G, Charron
D, D'Athis P, Vaugier G, Beral HM, Natali JC, Raphael M, Nizet B,
et al: A clinical staging system for chronic lymphocytic leukemia:
Prognostic significance. Cancer. 40:855–864. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Van Bockstaele F, Verhasselt B and
Philippé J: Prognostic markers in chronic lymphocytic leukemia: A
comprehensive review. Blood Rev. 23:25–47. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Villamor N, Conde L, Martínez-Trillos A,
Cazorla M, Navarro A, Beà S, López C, Colomer D, Pinyol M, Aymerich
M, et al: NOTCH1 mutations identify a genetic subgroup of chronic
lymphocytic leukemia patients with high risk of transformation and
poor outcome. Leukemia. 27:1100–1106. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jeromin S, Weissmann S, Haferlach C,
Dicker F, Bayer K, Grossmann V, Alpermann T, Roller A, Kohlmann A,
Haferlach T, et al: SF3B1 mutations correlated to cytogenetics and
mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated
CLL patients. Leukemia. 28:108–117. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Puiggros A, Puigdecanet E, Salido M,
Ferrer A, Abella E, Gimeno E, Nonell L, Herranz MJ, Galván AB,
Rodríguez-Rivera M, et al: Genomic arrays in chronic lymphocytic
leukemia routine clinical practice: Are we ready to substitute
conventional cytogenetics and fluorescence in situ hybridization
techniques? Leuk Lymphoma. 54:986–995. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Matutes E, Owusu-Ankomah K, Morilla R,
Marco Garcia J, Houlihan A, Que TH and Catovsky D: The
immunological profile of B-cell disorders and proposal of a scoring
system for the diagnosis of CLL. Leukemia. 8:1640–1645.
1994.PubMed/NCBI
|
|
16
|
Cheson BD, Bennett JM, Grever M, Kay N,
Keating MJ, O'Brien S and Rai KR: National Cancer
Institute-sponsored Working Group guidelines for chronic
lymphocytic leukemia: Revised guidelines for diagnosis and
treatment. Blood. 87:4990–4997. 1996.PubMed/NCBI
|
|
17
|
Hallek M, Cheson BD, Catovsky D,
Caligaris-Cappio F, Dighiero G, Döhner H, Hillmen P, Keating MJ,
Montserrat E, Rai KR, et al: International Workshop on Chronic
Lymphocytic Leukemia: Guidelines for the diagnosis and treatment of
chronic lymphocytic leukemia: A report from the International
Workshop on Chronic Lymphocytic Leukemia updating the National
Cancer Institute-Working Group 1996 guidelines. Blood.
111:5446–5456. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shaffer LG, McGowan-Jordan J and Schmid M:
An International System for Human Cytogenetic Nomenclature. Karger
AG, Basel: 2013.
|
|
19
|
Smoley SA, Van Dyke DL, Kay NE, Heerema
NA, Dell' Aquila ML, Dal Cin P, Koduru P, Aviram A, Rassenti L,
Byrd JC, et al: Standardization of fluorescence in situ
hybridization studies on chronic lymphocytic leukemia (CLL) blood
and marrow cells by the CLL Research Consortium. Cancer Genet
Cytogenet. 203:141–148. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
De Braekeleer M, Le Bris MJ, Basinko A,
Morel F and Douet-Guilbert N: Incidence of chromosomal anomalies
detected by interphase fluorescent in situ hybridization in chronic
lymphoid leukemia. Int J Hematol Oncol. 4:133–141. 2015. View Article : Google Scholar
|
|
21
|
De Braekeleer M, De Braekeleer E and
Douet-Guilbert N: Geographic/ethnic variability of chromosomal and
molecular abnormalities in leukemia. Expert Rev Anticancer Ther.
15:1093–1102. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
De Braekeleer E, Douet-Guilbert N, Morel
F, Le Bris MJ, Férec C and De Braekeleer M: RUNX1 translocations
and fusion genes in malignant hemopathies. Future Oncol. 7:77–91.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
De Braekeleer E, Douet-Guilbert N, Morel
F, Le Bris MJ, Basinko A and De Braekeleer M: ETV6 fusion genes in
hematological malignancies: A review. Leuk Res. 36:945–961. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Schmidt HH, Dyomin VG, Palanisamy N,
Itoyama T, Nanjangud G, Pirc-Danoewinata H, Haas OA and Chaganti
RS: Deregulation of the carbohydrate (chondroitin 4)
sulfotransferase 11 (CHST11) gene in a B-cell chronic lymphocytic
leukemia with a t(12;14)(q23;q32). Oncogene. 23:6991–6996. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Aamot HV, Bjørnslett M, Delabie J and Heim
S: t(14;22)(q32;q11) in non-Hodgkin lymphoma and myeloid leukaemia:
Molecular cytogenetic investigations. Br J Haematol. 130:845–851.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kominami R: Role of the transcription
factor Bcl11b in development and lymphomagenesis. Proc Jpn Acad Ser
B Phys Biol Sci. 88:72–87. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Obata M, Kominami R and Mishima Y: BCL11B
tumor suppressor inhibits HDM2 expression in a p53-dependent
manner. Cell Signal. 24:1047–1052. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dyer MJ, Zani VJ, Lu WZ, O'Byrne A, Mould
S, Chapman R, Heward JM, Kayano H, Jadayel D, Matutes E, et al:
BCL2 translocations in leukemias of mature B cells. Blood.
83:3682–3688. 1994.PubMed/NCBI
|
|
29
|
Lin P, Jetly R, Lennon PA, Abruzzo LV,
Prajapati S and Medeiros LJ: Translocation (18;22)(q21;q11) in
B-cell lymphomas: A report of 4 cases and review of the literature.
Hum Pathol. 39:1664–1672. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Baseggio L, Geay MO, Gazzo S, Berger F,
Traverse-Glehen A, Ffrench M, Hayette S, Callet-Bauchu E, Verney A,
Morel D, et al: In non-follicular lymphoproliferative disorders,
IGH/BCL2-fusion is not restricted to chronic lymphocytic leukaemia.
Br J Haematol. 158:489–498. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tang G, Banks HE, Sargent RL, Medeiros LJ
and Abruzzo LV: Chronic lymphocytic leukemia with
t(14;18)(q32;q21). Hum Pathol. 44:598–605. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Put N, Meeus P, Chatelain B, Rack K,
Boeckx N, Nollet F, Graux C, Van Den Neste E, Janssens A, Madoe V,
et al: Translocation t(14;18) is not associated with inferior
outcome in chronic lymphocytic leukemia. Leukemia. 23:1201–1204.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sen F, Lai R and Albitar M: Chronic
lymphocytic leukemia with t(14;18) and trisomy 12. Arch Pathol Lab
Med. 126:1543–1546. 2002.PubMed/NCBI
|
|
34
|
Matutes E, Oscier D, Garcia-Marco J, Ellis
J, Copplestone A, Gillingham R, Hamblin T, Lens D, Swansbury GJ and
Catovsky D: Trisomy 12 defines a group of CLL with atypical
morphology: Correlation between cytogenetic, clinical and
laboratory features in 544 patients. Br J Haematol. 92:382–388.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cleary ML, Smith SD and Sklar J: Cloning
and structural analysis of cDNAs for bcl-2 and a hybrid
bcl-2/immunoglobulin transcript resulting from the t(14;18)
translocation. Cell. 47:19–28. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hua C, Zorn S, Jensen JP, Coupland RW, Ko
HS, Wright JJ and Bakhshi A: Consequences of the t(14;18)
chromosomal translocation in follicular lymphoma: Deregulated
expression of a chimeric and mutated BCL-2 gene. Oncogene Res.
2:263–275. 1988.PubMed/NCBI
|
|
37
|
Tsujimoto Y and Croce CM: Analysis of the
structure, transcripts, and protein products of bcl-2, the gene
involved in human follicular lymphoma. Proc Natl Acad Sci USA.
83:5214–5218. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Oltvai ZN, Milliman CL and Korsmeyer SJ:
Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that
accelerates programmed cell death. Cell. 74:609–619. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Martín-Subero JI, Ibbotson R, Klapper W,
Michaux L, Callet-Bauchu E, Berger F, Calasanz MJ, De Wolf-Peeters
C, Dyer MJ, Felman P, et al: A comprehensive genetic and
histopathologic analysis identifies two subgroups of B-cell
malignancies carrying a t(14;19)(q32;q13) or variant
BCL3-translocation. Leukemia. 21:1532–1544. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Huh YO, Abruzzo LV, Rassidakis GZ,
Parry-Jones N, Schlette E, Brito-Bapabulle V, Matutes E,
Wotherspoon A, Keating MJ, Medeiros LJ, et al: The
t(14;19)(q32;q13)-positive small B-cell leukaemia: A
clinicopathologic and cytogenetic study of seven cases. Br J
Haematol. 136:220–228. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huh YO, Schweighofer CD, Ketterling RP,
Knudson RA, Vega F, Kim JE, Luthra R, Keating MJ, Medeiros LJ and
Abruzzo LV: Chronic lymphocytic leukemia with t(14;19)(q32;q13) is
characterized by atypical morphologic and immunophenotypic features
and distinctive genetic features. Am J Clin Pathol. 135:686–696.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Michaux L, Mecucci C, Stul M, Wlodarska I,
Hernandez JM, Meeus P, Michaux JL, Scheiff JM, Noël H, Louwagie A,
et al: BCL3 rearrangement and t(14;19)(q32;q13) in
lymphoproliferative disorders. Genes Chromosomes Cancer. 15:38–47.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Michaux L, Dierlamm J, Wlodarska I, Bours
V, Van den Berghe H and Hagemeijer A: t(14;19)/BCL3 rearrangements
in lymphoproliferative disorders: A review of 23 cases. Cancer
Genet Cytogenet. 94:36–43. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
McKeithan TW, Takimoto GS, Ohno H,
Bjorling VS, Morgan R, Hecht BK, Dubé I, Sandberg AA and Rowley JD:
BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia
and other B-cell malignancies: A molecular and cytogenetic study.
Genes Chromosomes Cancer. 20:64–72. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chapiro E, Radford-Weiss I, Bastard C,
Luquet I, Lefebvre C, Callet-Bauchu E, Leroux D, Talmant P,
Mozziconacci MJ, Mugneret F, et al: The most frequent
t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an
aggressive subgroup of atypical chronic lymphocytic leukemia.
Leukemia. 22:2123–2127. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Schweighofer CD, Huh YO, Luthra R, Sargent
RL, Ketterling RP, Knudson RA, Barron LL, Medeiros LJ, Keating MJ
and Abruzzo LV: The B cell antigen receptor in atypical chronic
lymphocytic leukemia with t(14;19)(q32;q13) demonstrates remarkable
stereotypy. Int J Cancer. 128:2759–2764. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shin SY, Park CJ, Lee KH, Huh J, Chi HS
and Seo EJ: An illustrative case of t(14;19)/BCL3 rearrangement as
a karyotypic evolution of chronic lymphocytic leukemia. Ann
Hematol. 92:1717–1719. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Murray F, Darzentas N, Hadzidimitriou A,
Tobin G, Boudjogra M, Scielzo C, Laoutaris N, Karlsson K,
Baran-Marzsak F, Tsaftaris A, et al: Stereotyped patterns of
somatic hypermutation in subsets of patients with chronic
lymphocytic leukemia: Implications for the role of antigen
selection in leukemogenesis. Blood. 111:1524–1533. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
McKeithan TW, Ohno H and Diaz MO:
Identification of a transcriptional unit adjacent to the breakpoint
in the 14;19 translocation of chronic lymphocytic leukemia. Genes
Chromosomes Cancer. 1:247–255. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ohno H, Takimoto G and McKeithan TW: The
candidate proto-oncogene bcl-3 is related to genes implicated in
cell lineage determination and cell cycle control. Cell.
60:991–997. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bours V, Franzoso G, Azarenko V, Park S,
Kanno T, Brown K and Siebenlist U: The oncoprotein Bcl-3 directly
transactivates through kappa B motifs via association with
DNA-binding p50B homodimers. Cell. 72:729–739. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Dechend R, Hirano F, Lehmann K, Heissmeyer
V, Ansieau S, Wulczyn FG, Scheidereit C and Leutz A: The Bcl-3
oncoprotein acts as a bridging factor between NF-kappaB/Rel and
nuclear co-regulators. Oncogene. 18:3316–3323. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Orlowski RZ and Baldwin AS Jr: NF-kappaB
as a therapeutic target in cancer. Trends Mol Med. 8:385–389. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Baldwin AS: Control of oncogenesis and
cancer therapy resistance by the transcription factor NF-kappaB. J
Clin Invest. 107:241–246. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kashatus D, Cogswell P and Baldwin AS:
Expression of the Bcl-3 proto-oncogene suppresses p53 activation.
Genes Dev. 20:225–235. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Huret JL: t(11;14)(q13;q32). Atlas Genet
Cytogenet Oncol Haematol. 2:129–131. 1998.
|
|
57
|
Cuneo A, de Angeli C, Roberti MG, Piva N,
Bigoni R, Gandini D, Rigolin GM, Moretti S, Cavazzini P, del Senno
L, et al: Richter's syndrome in a case of atypical chronic
lymphocytic leukaemia with the t(11;14)(q13;q32): Role for a p53
exon 7 gene mutation. Br J Haematol. 92:375–381. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Späth-Schwalbe E, Flath B, Kaufmann O,
Thiel G, Brinckmann R, Dietel M and Possinger K: An unusual case of
leukemic non-Hodgkin's lymphoma with blastic transformation. Ann
Hematol. 79:217–221. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cuneo A, Balboni M, Piva N, Rigolin GM,
Roberti MG, Mejak C, Moretti S, Bigoni R, Balsamo R, Cavazzini P,
et al: Atypical chronic lymphocytic leukaemia with
t(11;14)(q13;q32): Karyotype evolution and prolymphocytic
transformation. Br J Haematol. 90:409–416. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
De Angeli C, Gandini D, Cuneo A, Moretti
S, Bigoni R, Roberti MG, Bardi A, Castoldi GL and del Senno L:
BCL-1 rearrangements and p53 mutations in atypical chronic
lymphocytic leukemia with t(11;14)(q13;q32). Haematologica.
85:913–921. 2000.PubMed/NCBI
|
|
61
|
Cuneo A, Bigoni R, Negrini M, Bullrich F,
Veronese ML, Roberti MG, Bardi A, Rigolin GM, Cavazzini P, Croce
CM, et al: Cytogenetic and interphase cytogenetic characterization
of atypical chronic lymphocytic leukemia carrying BCL1
translocation. Cancer Res. 57:1144–1150. 1997.PubMed/NCBI
|
|
62
|
Komatsu H, Yoshida K, Seto M, Iida S,
Aikawa T, Ueda R and Mikuni C: Overexpression of PRAD1 in a mantle
zone lymphoma patient with a t(11;22)(q13;q11) translocation. Br J
Haematol. 85:427–429. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nishida Y, Takeuchi K, Tsuda K, Ugai T,
Sugihara H, Yamakura M, Takeuchi M and Matsue K: Acquisition of
t(11;14) in a patient with chronic lymphocytic leukemia carrying
both t(14;19)(q32;q13.1) and +12. Eur J Haematol. 91:179–182. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Matutes E, Carrara P, Coignet L,
Brito-Babapulle V, Villamor N, Wotherspoon A and Catovsky D: FISH
analysis for BCL-1 rearrangements and trisomy 12 helps the
diagnosis of atypical B cell leukaemias. Leukemia. 13:1721–1726.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rimokh R, Berger F, Bastard C, Klein B,
French M, Archimbaud E, Rouault JP, Lucia Santa B, Duret L,
Vuillaume M, et al: Rearrangement of CCND1 (BCL1/PRAD1) 3′
untranslated region in mantle-cell lymphomas and
t(11q13)-associated leukemias. Blood. 83:3689–3696. 1994.PubMed/NCBI
|
|
66
|
Sherr CJ: The Pezcoller lecture: Cancer
cell cycles revisited. Cancer Res. 60:3689–3695. 2000.PubMed/NCBI
|
|
67
|
Bates S, Bonetta L, MacAllan D, Parry D,
Holder A, Dickson C and Peters G: CDK6 (PLSTIRE) and CDK4 (PSK-J3)
are a distinct subset of the cyclin-dependent kinases that
associate with cyclin D1. Oncogene. 9:71–79. 1994.PubMed/NCBI
|
|
68
|
Reddy K, Satyadev R, Bouman D, Hibbard MK,
Lu G and Paolo R: Burkitt t(8;14)(q24;q32) and cryptic deletion in
a CLL patient: Report of a case and review of literature. Cancer
Genet Cytogenet. 166:12–21. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Huh YO, Lin KI, Vega F, Schlette E, Yin
CC, Keating MJ, Luthra R, Medeiros LJ and Abruzzo LV: MYC
translocation in chronic lymphocytic leukaemia is associated with
increased prolymphocytes and a poor prognosis. Br J Haematol.
142:36–44. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Put N, Van Roosbroeck K, Konings P, Meeus
P, Brusselmans C, Rack K, Gervais C, Nguyen-Khac F, Chapiro E,
Radford-Weiss I, et al: BCGHo and the GFCH: Chronic lymphocytic
leukemia and prolymphocytic leukemia with MYC translocations: A
subgroup with an aggressive disease course. Ann Hematol.
91:863–873. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Asirvatham JR, Brody J, Vora R, Kolitz JE,
Fields SZ, Sreekantaiah C and Zhang X: Prognostic significance of
isolated t(8:14) in chronic lymphocytic leukemia. Leuk Lymphoma.
55:685–688. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Taub R, Kirsch I, Morton C, Lenoir G, Swan
D, Tronick S, Aaronson S and Leder P: Translocation of the c-myc
gene into the immunoglobulin heavy chain locus in human Burkitt
lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA.
79:7837–7841. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kelly K and Siebenlist U: The role of
c-myc in the proliferation of normal and neoplastic cells. J Clin
Immunol. 5:65–77. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li Z, Van Calcar S, Qu C, Cavenee WK,
Zhang MQ and Ren B: A global transcriptional regulatory role for
c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA.
100:8164–8169. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Dang CV, Resar LM, Emison E, Kim S, Li Q,
Prescott JE, Wonsey D and Zeller K: Function of the c-Myc oncogenic
transcription factor. Exp Cell Res. 253:63–77. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hoffman B and Liebermann DA: Apoptotic
signaling by c-MYC. Oncogene. 27:6462–6472. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Satterwhite E, Sonoki T, Willis TG, Harder
L, Nowak R, Arriola EL, Liu H, Price HP, Gesk S, Steinemann D, et
al: The BCL11 gene family: Involvement of BCL11A in lymphoid
malignancies. Blood. 98:3413–3420. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yin CC, Lin KI, Ketterling RP, Knudson RA,
Medeiros LJ, Barron LL, Huh YO, Luthra R, Keating MJ and Abruzzo
LV: Chronic lymphocytic leukemia with t(2;14)(p16;q32) involves the
BCL11A and IgH genes and is associated with atypical morphologic
features and unmutated IgVH genes. Am J Clin Pathol. 131:663–670.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Küppers R, Sonoki T, Satterwhite E, Gesk
S, Harder L, Oscier DG, Tucker PW, Dyer MJS and Siebert R: Lack of
somatic hypermutation of IG V(H) genes in lymphoid malignancies
with t(2;14)(p13;q32) translocation involving the BCL11A gene.
Leukemia. 16:937–939. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu P, Keller JR, Ortiz M, Tessarollo L,
Rachel RA, Nakamura T, Jenkins NA and Copeland NG: Bcl11a is
essential for normal lymphoid development. Nat Immunol. 4:525–532.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pulford K, Banham AH, Lyne L, Jones M,
Ippolito GC, Liu H, Tucker PW, Roncador G, Lucas E, Ashe S, et al:
The BCL11AXL transcription factor: Its distribution in normal and
malignant tissues and use as a marker for plasmacytoid dendritic
cells. Leukemia. 20:1439–1441. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rouhigharabaei L, Ferreiro JF, Put N,
Michaux L, Tousseyn T, Lefebvre C, Gardiner A, De Kelver W,
Demuynck H, Verschuere J, et al: BMI1, the polycomb-group gene, is
recurrently targeted by genomic rearrangements in progressive
B-cell leukemia/lymphoma. Genes Chromosomes Cancer. 52:928–944.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li Z, Cao R, Wang M, Myers MP, Zhang Y and
Xu RM: Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase
complex. J Biol Chem. 281:20643–20649. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Raaphorst FM, Otte AP and Meijer CJ:
Polycomb-group genes as regulators of mammalian lymphopoiesis.
Trends Immunol. 22:682–690. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ringrose L and Paro R: Polycomb/Trithorax
response elements and epigenetic memory of cell identity.
Development. 134:223–232. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sauvageau M and Sauvageau G: Polycomb
group proteins: Multi-faceted regulators of somatic stem cells and
cancer. Cell Stem Cell. 7:299–313. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Siddique HR and Saleem M: Role of BMI1, a
stem cell factor, in cancer recurrence and chemoresistance:
Preclinical and clinical evidences. Stem Cells. 30:372–378. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Silva J, García JM, Peña C, García V,
Domínguez G, Suárez D, Camacho FI, Espinosa R, Provencio M, España
P, et al: Implication of polycomb members Bmi-1, Mel-18, and Hpc-2
in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression
in primary breast carcinomas. Clin Cancer Res. 12:6929–6936. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jacobs JJ, Scheijen B, Voncken JW, Kieboom
K, Berns A and van Lohuizen M: Bmi-1 collaborates with c-Myc in
tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF.
Genes Dev. 13:2678–2690. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bacher U, Haferlach T, Schnittger S, Weiss
T, Burkhard O, Bechtel B, Kern W and Haferlach C: Detection of a
t(4;14)(p16;q32) in two cases of lymphoma showing both the
immunophenotype of chronic lymphocytic leukemia. Cancer Genet
Cytogenet. 200:170–174. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Cerny J, Yu H and Miron PM: Novel FGFR3
rearrangement t(4;22)(p16;q11.2) in a patient with chronic
lymphocytic leukemia/small lymphocytic lymphoma. Ann Hematol.
92:1433–1435. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Geller MD, Pei Y, Spurgeon SE, Durum C and
Leeborg NJ: Chronic lymphocytic leukemia with a FGFR3
translocation: case report and literature review of an uncommon
cytogenetic event. Cancer Genet. 207:340–343. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kalff A and Spencer A: The t(4;14)
translocation and FGFR3 overexpression in multiple myeloma:
Prognostic implications and current clinical strategies. Blood
Cancer J. 2:e892012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chesi M, Nardini E, Lim RSC, Smith KD,
Kuehl WM and Bergsagel PL: The t(4;14) translocation in myeloma
dysregulates both FGFR3 and a novel gene, MMSET, resulting in
IgH/MMSET hybrid transcripts. Blood. 92:3025–3034. 1998.PubMed/NCBI
|
|
95
|
Chesi M, Nardini E, Brents LA, Schröck E,
Ried T, Kuehl WM and Bergsagel PL: Frequent translocation
t(4;14)(p16.3;q32.3) in multiple myeloma is associated with
increased expression and activating mutations of fibroblast growth
factor receptor 3. Nat Genet. 16:260–264. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lauring J, Abukhdeir AM, Konishi H, Garay
JP, Gustin JP, Wang Q, Arceci RJ, Matsui W and Park BH: The
multiple myeloma associated MMSET gene contributes to cellular
adhesion, clonogenic growth, and tumorigenicity. Blood.
111:856–864. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Martinez-Garcia E, Popovic R, Min DJ,
Sweet SM, Thomas PM, Zamdborg L, Heffner A, Will C, Lamy L, Staudt
LM, et al: The MMSET histone methyl transferase switches global
histone methylation and alters gene expression in t(4;14) multiple
myeloma cells. Blood. 117:211–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hart KC, Robertson SC and Donoghue DJ:
Identification of tyrosine residues in constitutively activated
fibroblast growth factor receptor 3 involved in mitogenesis, Stat
activation, and phosphatidylinositol 3-kinase activation. Mol Biol
Cell. 12:931–942. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
L'Hôte CG and Knowles MA: Cell responses
to FGFR3 signalling: Growth, differentiation and apoptosis. Exp
Cell Res. 304:417–431. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Vahdati M, Graafland H and Emberger JM:
Karyotype analysis of B-lymphocytes transformed by Epstein-Barr
virus in 21 patients with B cell chronic lymphocytic leukemia. Hum
Genet. 63:327–331. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Oscier DG, Gardiner A and Mould S:
Structural abnormalities of chromosome 7q in chronic
lymphoproliferative disorders. Cancer Genet Cytogenet. 92:24–27.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fink SR, Smoley SA, Stockero KJ,
Paternoster SF, Thorland EC, Van Dyke DL, Shanafelt TD, Zent CS,
Call TG, Kay NE, et al: Loss of TP53 is due to rearrangements
involving chromosome region 17p10 approximately p12 in chronic
lymphocytic leukemia. Cancer Genet Cytogenet. 167:177–181. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hayette S, Tigaud I, Callet-Bauchu E,
Ffrench M, Gazzo S, Wahbi K, Callanan M, Felman P, Dumontet C,
Magaud JP, et al: In B-cell chronic lymphocytic leukemias, 7q21
translocations lead to overexpression of the CDK6 gene. Blood.
102:1549–1550. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Douet-Guilbert N, Tous C, Le Flahec G,
Bovo C, Le Bris MJ, Basinko A, Morel F and De Braekeleer M:
Translocation t(2;7)(p11;q21) associated with the CDK6/IGK
rearrangement is a rare but recurrent abnormality in B-cell
lymphoproliferative malignancies. Cancer Genet. 207:83–86. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Corcoran MM, Mould SJ, Orchard JA,
Ibbotson RE, Chapman RM, Boright AP, Platt C, Tsui LC, Scherer SW
and Oscier DG: Dysregulation of cyclin dependent kinase 6
expression in splenic marginal zone lymphoma through chromosome 7q
translocations. Oncogene. 18:6271–6277. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Brito-Babapulle V, Gruszka-Westwood AM,
Platt G, Andersen CL, Elnenaei MO, Matutes E, Wotherspoon AC,
Weston-Smith SG and Catovsky D: Translocation t(2;7)(p12;q21-22)
with dysregulation of the CDK6 gene mapping to 7q21-22 in a
non-Hodgkin's lymphoma with leukemia. Haematologica. 87:357–362.
2002.PubMed/NCBI
|
|
107
|
Ruas M, Gregory F, Jones R, Poolman R,
Starborg M, Rowe J, Brookes S and Peters G: CDK4 and CDK6 delay
senescence by kinase-dependent and p16INK4a-independent mechanisms.
Mol Cell Biol. 27:4273–4282. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Handschick K, Beuerlein K, Jurida L,
Bartkuhn M, Müller H, Soelch J, Weber A, Dittrich-Breiholz O,
Schneider H, Scharfe M, et al: Cyclin-dependent kinase 6 is a
chromatin-bound cofactor for NF-κB-dependent gene expression. Mol
Cell. 53:193–208. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Grossel MJ and Hinds PW: From cell cycle
to differentiation: An expanding role for cdk6. Cell Cycle.
5:266–270. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Matushansky I, Radparvar F and Skoultchi
AI: CDK6 blocks differentiation: Coupling cell proliferation to the
block to differentiation in leukemic cells. Oncogene. 22:4143–4149.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Offit K, Parsa NZ, Filippa D, Jhanwar SC
and Chaganti RS: t(9;14)(p13;q32) denotes a subset of low-grade
non-Hodgkin's lymphoma with plasmacytoid differentiation. Blood.
80:2594–2599. 1992.PubMed/NCBI
|
|
112
|
Finn WG, Kay NE, Kroft SH, Church S and
Peterson LC: Secondary abnormalities of chromosome 6q in B-cell
chronic lymphocytic leukemia: A sequential study of karyotypic
instability in 51 patients. Am J Hematol. 59:223–229. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Dicker F, Schnittger S, Haferlach T, Kern
W and Schoch C: Immunostimulatory oligonucleotide-induced metaphase
cytogenetics detect chromosomal aberrations in 80% of CLL patients:
A study of 132 CLL cases with correlation to FISH, IgVH status, and
CD38 expression. Blood. 108:3152–3160. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Dascalescu CM, Péoc'h M, Callanan M, Jacob
MC, Sotto MF, Gressin R, Sotto JJ and Leroux D: Deletion 7q in
B-cell low-grade lymphoid malignancies: A cytogenetic/fluorescence
in situ hybridization and immunopathologic study. Cancer Genet
Cytogenet. 109:21–28. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Busslinger M, Klix N, Pfeffer P, Graninger
PG and Kozmik Z: Deregulation of PAX-5 by translocation of the Emu
enhancer of the IgH locus adjacent to two alternative PAX-5
promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA.
93:6129–6134. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Iida S, Rao PH, Nallasivam P, Hibshoosh H,
Butler M, Louie DC, Dyomin V, Ohno H, Chaganti RSK and Dalla-Favera
R: The t(9;14)(p13;q32) chromosomal translocation associated with
lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood.
88:4110–4117. 1996.PubMed/NCBI
|
|
117
|
Ohno H, Ueda C and Akasaka T: The
t(9;14)(p13;q32) translocation in B-cell non-Hodgkin's lymphoma.
Leuk Lymphoma. 36:435–445. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Barberis A, Widenhorn K, Vitelli L and
Busslinger M: A novel B-cell lineage-specific transcription factor
present at early but not late stages of differentiation. Genes Dev.
4:849–859. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Eberhard D, Jiménez G, Heavey B and
Busslinger M: Transcriptional repression by Pax5 (BSAP) through
interaction with corepressors of the Groucho family. EMBO J.
19:2292–2303. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Sonoki T, Harder L, Horsman DE, Karran L,
Taniguchi I, Willis TG, Gesk S, Steinemann D, Zucca E,
Schlegelberger B, et al: Cyclin D3 is a target gene of
t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood.
98:2837–2844. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wlodarska I, Dierickx D, Vanhentenrijk V,
Van Roosbroeck K, Pospísilová H, Minnei F, Verhoef G, Thomas J,
Vandenberghe P and De Wolf-Peeters C: Translocations targeting
CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell
lymphomas. Blood. 111:5683–5690. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Cavazzini F, Hernandez JA, Gozzetti A,
Rossi Russo A, De Angeli C, Tiseo R, Bardi A, Tammiso E, Crupi R,
Lenoci MP, et al: Chromosome 14q32 translocations involving the
immunoglobulin heavy chain locus in chronic lymphocytic leukaemia
identify a disease subset with poor prognosis. Br J Haematol.
142:529–537. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Shaughnessy J Jr, Gabrea A, Qi Y, Brents
L, Zhan F, Tian E, Sawyer J, Barlogie B, Bergsagel PL and Kuehl M:
Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal
translocations to immunoglobulin loci in multiple myeloma. Blood.
98:217–223. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Motokura T, Keyomarsi K, Kronenberg HM and
Arnold A: Cloning and characterization of human cyclin D3, a cDNA
closely related in sequence to the PRAD1/cyclin D1 proto-oncogene.
J Biol Chem. 267:20412–20415. 1992.PubMed/NCBI
|
|
125
|
Gumina MR, Xu C and Chiles TC: Cyclin D3
is dispensable for human diffuse large B-cell lymphoma survival and
growth: Evidence for redundancy with cyclin E. Cell Cycle.
9:820–828. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Decker T, Schneller F, Hipp S, Miething C,
Jahn T, Duyster J and Peschel C: Cell cycle progression of chronic
lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3,
cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27.
Leukemia. 16:327–334. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Willis TG and Dyer MJS: The role of
immunoglobulin translocations in the pathogenesis of B-cell
malignancies. Blood. 96:808–822. 2000.PubMed/NCBI
|
|
128
|
Küppers R and Dalla-Favera R: Mechanisms
of chromosomal translocations in B cell lymphomas. Oncogene.
20:5580–5594. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Nowakowski GS, Dewald GW, Hoyer JD,
Paternoster SF, Stockero KJ, Fink SR, Smoley SA, Remstein ED,
Phyliky RL, Call TG, et al: Interphase fluorescence in situ
hybridization with an IGH probe is important in the evaluation of
patients with a clinical diagnosis of chronic lymphocytic
leukaemia. Br J Haematol. 130:36–42. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Cavazzini F, Rizzotto L, Sofritti O,
Daghia G, Cibien F, Martinelli S, Ciccone M, Saccenti E, Dabusti M,
Elkareem AA, et al: Clonal evolution including 14q32/IGH
translocations in chronic lymphocytic leukemia: Analysis of
clinicobiologic correlations in 105 patients. Leuk Lymphoma.
53:83–88. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Davids MS, Vartanov A, Werner L, Neuberg
D, Dal Cin P and Brown JR: Controversial fluorescence in situ
hybridization cytogenetic abnormalities in chronic lymphocytic
leukaemia: New insights from a large cohort. Br J Haematol.
170:694–703. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Gerrie AS, Bruyere H, Chan MJ, Dalal CB,
Ramadan KM, Huang SJ, Toze CL and Gillan TL: Immunoglobulin heavy
chain (IGH@) translocations negatively impact treatment-free
survival for chronic lymphocytic leukemia patients who have an
isolated deletion 13q abnormality. Cancer Genet. 205:523–527. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Gerrie AS, Huang SJ, Bruyere H, Dalal C,
Hrynchak M, Karsan A, Ramadan KM, Smith AC, Tyson C, Toze CL, et
al: Population-based characterization of the genetic landscape of
chronic lymphocytic leukemia patients referred for cytogenetic
testing in British Columbia, Canada: The role of provincial
laboratory standardization. Cancer Genet. 207:316–325. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Lu G, Kong Y and Yue C: Genetic and
immunophenotypic profile of IGH@ rearrangement detected by
fluorescence in situ hybridization in 149 cases of B-cell chronic
lymphocytic leukemia. Cancer Genet Cytogenet. 196:56–63. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Shanafelt TD, Witzig TE, Fink SR, Jenkins
RB, Paternoster SF, Smoley SA, Stockero KJ, Nast DM, Flynn HC,
Tschumper RC, et al: Prospective evaluation of clonal evolution
during long-term follow-up of patients with untreated early-stage
chronic lymphocytic leukemia. J Clin Oncol. 24:4634–4641. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Aoun P, Blair HE, Smith LM, Dave BJ, Lynch
J, Weisenburger DD, Pavletic SZ and Sanger WG: Fluorescence in situ
hybridization detection of cytogenetic abnormalities in B-cell
chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk
Lymphoma. 45:1595–1603. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Nelson BP, Gupta R, Dewald GW, Paternoster
SF, Rosen ST and Peterson LC: Chronic lymphocytic leukemia FISH
panel: Impact on diagnosis. Am J Clin Pathol. 128:323–332. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Flanagan MB, Sathanoori M, Surti U, Soma L
and Swerdlow SH: Cytogenetic abnormalities detected by fluorescence
in situ hybridization on paraffin-embedded chronic lymphocytic
leukemia/small lymphocytic lymphoma lymphoid tissue biopsy
specimens. Am J Clin Pathol. 130:620–627. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Jenderny J, Goldmann C, Thede R, Ebrecht M
and Korioth F: Detection of clonal aberrations by cytogenetic
analysis after different culture methods and by FISH in 129
patients with chronic lymphocytic leukemia. Cytogenet Genome Res.
144:163–168. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Haferlach C, Dicker F, Schnittger S, Kern
W and Haferlach T: Comprehensive genetic characterization of CLL: A
study on 506 cases analysed with chromosome banding analysis,
interphase FISH, IgV(H) status and immunophenotyping. Leukemia.
21:2442–2451. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Alhourani E, Rincic M, Othman MA, Pohle B,
Schlie C, Glaser A and Liehr T: Comprehensive chronic lymphocytic
leukemia diagnostics by combined multiplex ligation dependent probe
amplification (MLPA) and interphase fluorescence in situ
hybridization (iFISH). Mol Cytogenet. 7:792014. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Döhner H, Stilgenbauer S, Benner A,
Leupolt E, Kröber A, Bullinger L, Döhner K, Bentz M and Lichter P:
Genomic aberrations and survival in chronic lymphocytic leukemia. N
Engl J Med. 343:1910–1916. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Berkova A, Pavlistova L, Babicka L,
Houskova L, Tajtlova J, Balazi P, Cmunt E, Schwarz J, Karban J,
Trneny M, et al: Combined molecular biological and molecular
cytogenetic analysis of genomic changes in 146 patients with B-cell
chronic lymphocytic leukemia. Neoplasma. 55:400–408.
2008.PubMed/NCBI
|
|
144
|
Amare PS, Gadage V, Jain H, Nikalje S,
Manju S, Mittal N, Gujral S and Nair R: Clinico-pathological impact
of cytogenetic subgroups in B-cell chronic lymphocytic leukemia:
Experience from India. Indian J Cancer. 50:261–267. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Yoon JH, Kim Y, Yahng SA, Shin SH, Lee SE,
Cho BS, Eom KS, Kim YJ, Lee S, Kim HJ, et al: Validation of Western
common recurrent chromosomal aberrations in Korean chronic
lymphocytic leukaemia patients with very low incidence. Hematol
Oncol. 32:169–177. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Xu W, Li JY, Pan JL, Qiu HR, Shen YF, Li
L, Wu YF and Xue YQ: Interphase fluorescence in situ hybridization
detection of cytogenetic abnormalities in B-cell chronic
lymphocytic leukemia. Int J Hematol. 85:430–436. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Qiu HX, Xu W, Cao XS, Zhou M, Shen YF, Xu
YL, Sun XM, Liu Q, Wang R, Qiu HR, et al: Cytogenetic
characterisation in Chinese patients with chronic lymphocytic
leukemia: A prospective, multicenter study on 143 cases analysed
with interphase fluorescence in situ hybridisation. Leuk Lymphoma.
49:1887–1892. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Wang DM, Miao KR, Fan L, Qiu HR, Fang C,
Zhu DX, Qiu HX, Xu W and Li JY: Intermediate prognosis of 6q
deletion in chronic lymphocytic leukemia. Leuk Lymphoma.
52:230–237. 2011. View Article : Google Scholar : PubMed/NCBI
|