|
1
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Khandia R and Munjal A: Interplay between
inflammation and cancer. Adv Protein Chem Struct Biol. 119:199–245.
2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Soler MF, Abaurrea A, Azcoaga P, Araujo AM
and Caffarel MM: New perspectives in cancer immunotherapy:
Targeting IL-6 cytokine family. J Immunother Cancer.
11(e007530)2023.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Habanjar O, Bingula R, Decombat C,
Diab-Assaf M, Caldefie-Chezet F and Delort L: Crosstalk of
inflammatory cytokines within the breast tumor microenvironment.
Int J Mol Sci. 24(4002)2023.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Geisler L, Hellberg T, Lambrecht J, Jann
H, Knorr J, Eschrich J, Loosen SH, Wree A, Hammerich L, Krieg A, et
al: Inflammatory cytokines associated with diagnosis, tumor grade
and prognosis in patients with neuroendocrine tumors. J Clin Med.
11(6191)2022.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Cigrovski Berkovic M, Cacev T, Catela
Ivkovic T, Zjacic-Rotkvic V and Kapitanovic S: New insights into
the role of chronic inflammation and cytokines in the
etiopathogenesis of gastroenteropancreatic neuroendocrine tumors.
Neuroendocrinology. 99:75–84. 2014.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Chang KT, Tsai CM, Chiou YC, Chiu CH, Jeng
KS and Huang CY: IL-6 induces neuroendocrine dedifferentiation and
cell proliferation in non-small cell lung cancer cells. Am J
Physiol Lung Cell Mol Physiol. 289:L446–L453. 2005.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Dvorak HF: Tumors: Wounds that do not
heal. Similarities between tumor stroma generation and wound
healing. N Engl J Med. 315:1650–1659. 1986.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Le Bitoux MA and Stamenkovic I: Tumor-host
interactions: The role of inflammation. Histochem Cell Biol.
130:1079–1090. 2008.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Marzagalli M, Ebelt ND and Manuel ER:
Unraveling the crosstalk between melanoma and immune cells in the
tumor microenvironment. Semin Cancer Biol. 59:236–250.
2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Yi M, Xu L, Jiao Y, Luo S, Li A and Wu K:
The role of cancer-derived microRNAs in cancer immune escape. J
Hematol Oncol. 13(25)2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Jia Z, Jia J, Yao L and Li Z: Crosstalk of
exosomal non-coding RNAs in the tumor microenvironment: Novel
frontiers. Front Immunol. 13(900155)2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lim LP, Lau NC, Garrett-Engele P, Grimson
A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM:
Microarray analysis shows that some microRNAs downregulate large
numbers of target mRNAs. Nature. 433:769–773. 2005.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Liang Y, Liu Y, Zhang Q, Zhang H and Du J:
Tumor-derived extracellular vesicles containing microRNA-1290
promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1
axis in gastric cancer. Transl Res. 231:102–112. 2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Solé C and Lawrie CH: MicroRNAs in
metastasis and the tumour microenvironment. Int J Mol Sci.
22(4859)2021.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Kousar K, Ahmad T, Abduh MS, Kanwal B,
Shah SS, Naseer F and Anjum S: miRNAs in regulation of tumor
microenvironment, chemotherapy resistance, immunotherapy modulation
and miRNA therapeutics in cancer. Int J Mol Sci.
23(13822)2022.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Yin Y, Liu B, Cao Y, Yao S, Liu Y, Jin G,
Qin Y, Chen Y, Cui K, Zhou L, et al: Colorectal cancer-derived
small extracellular vesicles promote tumor immune evasion by
upregulating PD-L1 expression in tumor-associated macrophages. Adv
Sci (Weinh). 9(2102620)2022.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Song TY, Long M, Zhao HX, Zou MW, Fan HJ,
Liu Y, Geng CL, Song MF, Liu YF, Chen JY, et al: Tumor evolution
selectively inactivates the core microRNA machinery for immune
evasion. Nat Commun. 12(7003)2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Muscogiuri G, Altieri B, Albertelli M,
Dotto A, Modica R, Barrea L, Fanciulli G, Feola T, Baldelli R,
Ruggeri RM, et al: Epidemiology of pancreatic neuroendocrine
neoplasms: A gender perspective. Endocrine. 69:441–450.
2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Ruggeri RM, Benevento E, De Cicco F,
Fazzalari B, Guadagno E, Hasballa I, Tarsitano MG, Isidori AM,
Colao A and Faggiano A: NIKE Group. Neuroendocrine neoplasms in the
context of inherited tumor syndromes: A reappraisal focused on
targeted therapies. J Endocrinol Invest. 46:213–234.
2023.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Yao JC, Hassan M, Phan A, Dagohoy C, Leary
C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A and Evans
DB: One hundred years after ‘carcinoid’: Epidemiology of and
prognostic factors for neuroendocrine tumors in 35,825 cases in the
United States. J Clin Oncol. 26:3063–3072. 2008.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Vanoli A, La Rosa S, Luinetti O, Klersy C,
Manca R, Alvisi C, Rossi S, Trespi E, Zangrandi A, Sessa F, et al:
Histologic changes in type A chronic atrophic gastritis indicating
increased risk of neuroendocrine tumor development: The predictive
role of dysplastic and severely hyperplastic enterochromaffin-like
cell lesions. Hum Pathol. 44:1827–1837. 2013.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Modica R, La Salvia A, Liccardi A,
Cannavale G, Minotta R, Benevento E, Faggiano A and Colao A: Lipid
metabolism and homeostasis in patients with neuroendocrine
neoplasms: From risk factor to potential therapeutic target.
Metabolites. 12(1057)2022.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Oberg K: Genetics and molecular pathology
of neuroendocrine gastrointestinal and pancreatic tumors
(gastroenteropancreatic neuroendocrine tumors). Curr Opin
Endocrinol Diabetes Obes. 16:72–78. 2009.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Rindi G, Inzani F and Solcia E: Pathology
of gastrointestinal disorders. Endocrinol Metab Clin North Am.
39:713–727. 2010.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Banck MS, Kanwar R, Kulkarni AA, Boora GK,
Metge F, Kipp BR, Zhang L, Thorland EC, Minn KT, Tentu R, et al:
The genomic landscape of small intestine neuroendocrine tumors. J
Clin Invest. 123:2502–2508. 2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Cunningham JL, Díaz de Ståhl T, Sjöblom T,
Westin G, Dumanski JP and Janson ET: Common pathogenetic mechanism
involving human chromosome 18 in familial and sporadic ileal
carcinoid tumors. Genes Chromosomes Cancer. 50:82–94.
2011.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Missiaglia E, Dalai I, Barbi S, Beghelli
S, Falconi M, della Peruta M, Piemonti L, Capurso G, Di Florio A,
delle Fave G, et al: Pancreatic endocrine tumors: Expression
profiling evidences a role for AKT-mTOR pathway. J Clin Oncol.
28:245–255. 2010.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Ruebel K, Leontovich AA, Stilling GA,
Zhang S, Righi A, Jin L and Lloyd RV: MicroRNA expression in ileal
carcinoid tumors: Downregulation of microRNA-133a with tumor
progression. Mod Pathol. 23:367–375. 2010.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Huang M, Fanciulli G, Wu SQ, Zhang Z and
Zhang J: Analysis of the lower incidence of medullary thyroid
cancer in China. Chin Med J (Engl). 132:2516–2517. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Dey A, Varelas X and Guan KL: Targeting
the Hippo pathway in cancer, fibrosis, wound healing and
regenerative medicine. Nat Rev Drug Discov. 19:480–494.
2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Mohajan S, Jaiswal PK, Vatanmakarian M,
Yousefi H, Sankaralingam S, Alahari SK, Koul S and Koul HK: Hippo
pathway: Regulation, deregulation and potential therapeutic targets
in cancer. Cancer Lett. 507:112–123. 2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Meng Z, Moroishi T and Guan KL: Mechanisms
of Hippo pathway regulation. Genes Dev. 30:1–17. 2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Mia MM, Cibi DM, Abdul Ghani SAB, Song W,
Tee N, Ghosh S, Mao J, Olson EN and Singh MK: YAP/TAZ deficiency
reprograms macrophage phenotype and improves infarct healing and
cardiac function after myocardial infarction. PLoS Biol.
18(e3000941)2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Manfioletti G and Fedele M:
Epithelial-mesenchymal transition (EMT). Int J Mol Sci.
24(11386)2023.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Zheng D, Jin L, Chen B, Qi Y, Bhandari A,
Wen J, Lin B, Zhang X and Zhang W: The ETNK2 gene promotes
progression of papillary thyroid carcinoma through the HIPPO
pathway. J Cancer. 13:508–516. 2022.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ciarletto AM, Narick C, Malchoff CD,
Massoll NA, Labourier E, Haugh K, Mireskandari A, Finkelstein SD
and Kumar G: Analytical and clinical validation of pairwise
microRNA expression analysis to identify medullary thyroid cancer
in thyroid fine-needle aspiration samples. Cancer Cytopathol.
129:239–249. 2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Dingemans AC, Früh M, Ardizzoni A, Besse
B, Faivre-Finn C, Hendriks LE, Lantuejoul S, Peters S, Reguart N,
Rudin CM, et al: Small-cell lung cancer: ESMO clinical practice
guidelines for diagnosis, treatment and follow-up☆. Ann
Oncol. 32:839–853. 2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Soomro Z, Youssef M, Yust-Katz S, Jalali
A, Patel AJ and Mandel J: Paraneoplastic syndromes in small cell
lung cancer. J Thorac Dis. 12:6253–6263. 2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Pfeiffer M, Hartmann TN, Leick M, Catusse
J, Schmitt-Graeff A and Burger M: Alternative implication of CXCR4
in JAK2/STAT3 activation in small cell lung cancer. Br J Cancer.
100:1949–1956. 2009.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Iriki T, Ohnishi K, Fujiwara Y, Horlad H,
Saito Y, Pan C, Ikeda K, Mori T, Suzuki M, Ichiyasu H, et al: The
cell-cell interaction between tumor-associated macrophages and
small cell lung cancer cells is involved in tumor progression via
STAT3 activation. Lung Cancer. 106:22–32. 2017.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Lu Y, Li H, Zhao P, Tian L, Liu Y, Sun X
and Cheng Y: Dynamic phenotypic reprogramming and chemoresistance
induced by lung fibroblasts in small cell lung cancer. Sci Rep.
14(2884)2024.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Lim JS, Ibaseta A, Fischer MM, Cancilla B,
O'Young G, Cristea S, Luca VC, Yang D, Jahchan NS, Hamard C, et al:
Intratumoural heterogeneity generated by Notch signalling promotes
small-cell lung cancer. Nature. 545:360–364. 2017.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Hua J, Wang X, Ma L, Li J, Cao G, Zhang S
and Lin W: CircVAPA promotes small cell lung cancer progression by
modulating the miR-377-3p and miR-494-3p/IGF1R/AKT axis. Mol
Cancer. 21(123)2022.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Delle Fave G, O'Toole D, Sundin A, Taal B,
Ferolla P, Ramage JK, Ferone D, Ito T, Weber W, Zheng-Pei Z, et al:
ENETS consensus guidelines update for gastroduodenal neuroendocrine
neoplasms. Neuroendocrinology. 103:119–124. 2016.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Gluckman CR and Metz DC: Gastric
neuroendocrine tumors (carcinoids). Curr Gastroenterol Rep.
21(13)2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Tsolakis AV, Ragkousi A, Vujasinovic M,
Kaltsas G and Daskalakis K: Gastric neuroendocrine neoplasms type
1: A systematic review and meta-analysis. World J Gastroenterol.
25:5376–5387. 2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Wang J, Li D, Cang H and Guo B: Crosstalk
between cancer and immune cells: Role of tumor-associated
macrophages in the tumor microenvironment. Cancer Med. 8:4709–4721.
2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu
Y, Gong Z, Zhang S, Zhou J, Cao K, et al: Role of tumor
microenvironment in tumorigenesis. J Cancer. 8:761–773.
2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Girardi DM, Silva ACB, Rêgo JFM, Coudry RA
and Riechelmann RP: Unraveling molecular pathways of poorly
differentiated neuroendocrine carcinomas of the
gastroenteropancreatic system: A systematic review. Cancer Treat
Rev. 56:28–35. 2017.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Duerr EM, Mizukami Y, Ng A, Xavier RJ,
Kikuchi H, Deshpande V, Warshaw AL, Glickman J, Kulke MH and Chung
DC: Defining molecular classifications and targets in
gastroenteropancreatic neuroendocrine tumors through DNA microarray
analysis. Endocr Relat Cancer. 15:243–256. 2008.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Korotaeva A, Mansorunov D, Apanovich N,
Kuzevanova A and Karpukhin A: MiRNA expression in neuroendocrine
neoplasms of frequent localizations. Noncoding RNA.
7(38)2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ahmed M: Gastrointestinal neuroendocrine
tumors in 2020. World J Gastrointest Oncol. 12:791–807.
2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Stålberg P, Westin G and Thirlwell C:
Genetics and epigenetics in small intestinal neuroendocrine
tumours. J Intern Med. 280:584–594. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ito T, Lee L and Jensen RT:
Carcinoid-syndrome: Recent advances, current status and
controversies. Curr Opin Endocrinol Diabetes Obes. 25:22–35.
2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Di Domenico A, Wiedmer T, Marinoni I and
Perren A: Genetic and epigenetic drivers of neuroendocrine tumours
(NET). Endocr Relat Cancer. 24:R315–R334. 2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wei ZZ, Yu SP, Lee JH, Chen D, Taylor TM,
Deveau TC, Yu AC and Wei L: Regulatory role of the JNK-STAT1/3
signaling in neuronal differentiation of cultured mouse embryonic
stem cells. Cell Mol Neurobiol. 34:881–893. 2014.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Walker CD, Long H, Williams S and Richard
D: Long-lasting effects of elevated neonatal leptin on rat
hippocampal function, synaptic proteins and NMDA receptor subunits.
J Neurosci Res. 85:816–828. 2007.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Tang QP, Shen Q, Wu LX, Feng XL, Liu H, Wu
B, Huang XS, Wang GQ, Li ZH and Liu ZJ: STAT3 signal that mediates
the neural plasticity is involved in willed-movement training in
focal ischemic rats. J Zhejiang Univ Sci B. 17:493–502.
2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
De Simone V, Franzè E, Ronchetti G,
Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald
TT, Pallone F, et al: Th17-type cytokines, IL-6 and TNF-α
synergistically activate STAT3 and NF-kB to promote colorectal
cancer cell growth. Oncogene. 34:3493–3503. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Wang XY, Chai NL, Linghu EQ, Li HK, Zhai
YQ, Feng XX, Zhang WG, Zou JL, Li LS and Xiang JY: Efficacy and
safety of hybrid endoscopic submucosal dissection compared with
endoscopic submucosal dissection for rectal neuroendocrine tumors
and risk factors associated with incomplete endoscopic resection.
Ann Transl Med. 8(368)2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Osagiede O, Habermann E, Day C, Gabriel E,
Merchea A, Lemini R, Jabbal IS and Colibaseanu DT: Factors
associated with worse outcomes for colorectal neuroendocrine tumors
in radical versus local resections. J Gastrointest Oncol.
11:836–846. 2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Dasari A, Shen C, Halperin D, Zhao B, Zhou
S, Xu Y, Shih T and Yao JC: Trends in the incidence, prevalence,
and survival outcomes in patients with neuroendocrine tumors in the
United States. JAMA Oncol. 3:1335–1342. 2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Zou J, Chen S, Lian G, Li R, Li Y, Huang K
and Chen Y: Prognostic and metastasis-related factors in colorectal
neuroendocrine tumors: A cross-sectional study based on the
surveillance, epidemiology and end results. Oncol Lett.
18:5129–5138. 2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Tran MT: Identification of TIMP1-induced
dysregulation of epithelial-mesenchymal transition as a key pathway
in inflammatory bowel disease and small intestinal neuroendocrine
tumors shared pathogenesis. Front Genet. 15(1376123)2024.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Robert C, Long GV, Brady B, Dutriaux C,
Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C,
Kalinka-Warzocha E, et al: Nivolumab in previously untreated
melanoma without BRAF mutation. N Engl J Med. 372:320–330.
2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Inzani F, Petrone G and Rindi G: The new
World Health Organization classification for pancreatic
neuroendocrine neoplasia. Endocrinol Metab Clin North Am.
47:463–470. 2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Yachida S, Vakiani E, White CM, Zhong Y,
Saunders T, Morgan R, de Wilde RF, Maitra A, Hicks J, Demarzo AM,
et al: Small cell and large cell neuroendocrine carcinomas of the
pancreas are genetically similar and distinct from
well-differentiated pancreatic neuroendocrine tumors. Am J Surg
Pathol. 36:173–184. 2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Cives M, Partelli S, Palmirotta R, Lovero
D, Mandriani B, Quaresmini D, Pelle E, Andreasi V, Castelli P,
Strosberg J, et al: DAXX mutations as potential genomic markers of
malignant evolution in small nonfunctioning pancreatic
neuroendocrine tumors. Sci Rep. 9(18614)2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Mafficini A and Scarpa A: Genetics and
epigenetics of gastroenteropancreatic neuroendocrine neoplasms.
Endocr Rev. 40:506–536. 2019.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Conemans EB, Lodewijk L, Moelans CB,
Offerhaus GJA, Pieterman CRC, Morsink FH, Dekkers OM, de Herder WW,
Hermus AR, van der Horst-Schrivers AN, et al: DNA methylation
profiling in MEN1-related pancreatic neuroendocrine tumors reveals
a potential epigenetic target for treatment. Eur J Endocrinol.
179:153–160. 2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Scarpa A, Chang DK, Nones K, Corbo V,
Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, et
al: Whole-genome landscape of pancreatic neuroendocrine tumours.
Nature. 543:65–71. 2017.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Liu GY and Sabatini DM: mTOR at the nexus
of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol.
21:183–203. 2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kim J and Guan KL: mTOR as a central hub
of nutrient signalling and cell growth. Nat Cell Biol. 21:63–71.
2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Elsässer SJ, Allis CD and Lewis PW:
Cancer. New epigenetic drivers of cancers. Science. 331:1145–1146.
2011.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Hackeng WM, Brosens LAA, Kim JY,
O'Sullivan R, Sung YN, Liu TC, Cao D, Heayn M, Brosnan-Cashman J,
An S, et al: Non-functional pancreatic neuroendocrine tumours:
ATRX/DAXX and alternative lengthening of telomeres (ALT) are
prognostically independent from ARX/PDX1 expression and tumour
size. Gut. 71:961–973. 2022.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Kidd M, Modlin I and Öberg K: Towards a
new classification of gastroenteropancreatic neuroendocrine
neoplasms. Nat Rev Clin Oncol. 13:691–705. 2016.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Jiao Y, Shi C, Edil BH, de Wilde RF,
Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA,
et al: DAXX/ATRX, MEN1, and mTOR pathway genes are frequently
altered in pancreatic neuroendocrine tumors. Science.
331:1199–1203. 2011.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Li H, Wang X, Hu C, Cui J, Li H, Luo X and
Hao Y: IL-6 enhances the activation of PI3K-AKT/mTOR-GSK-3β by
upregulating GRPR in hippocampal neurons of autistic mice. J
Neuroimmune Pharmacol. 19(12)2024.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Karakaxas D, Sioziou A, Aravantinos G,
Coker A, Papanikolaou IS, Liakakos T, Dervenis C and Gazouli M:
Genetic polymorphisms of interleukin 1β gene and sporadic
pancreatic neuroendocrine tumors susceptibility. World J
Gastrointest Oncol. 8:520–525. 2016.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Berković MC, Jokić M, Marout J, Radosević
S, Zjacić-Rotkvić V and Kapitanović S: IL-6-174 C/G polymorphism in
the gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Exp
Mol Pathol. 83:474–479. 2007.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Imam R, Chang Q, Black M, Yu C and Cao W:
CD47 expression and CD163+ macrophages correlated with
prognosis of pancreatic neuroendocrine tumor. BMC Cancer.
21(320)2021.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zhong Y, Tian Y, Wang Y, Bai J, Long Q,
Yan L, Gong Z, Gao W and Tang Q: Small extracellular vesicle
piR-hsa-30937 derived from pancreatic neuroendocrine neoplasms
upregulates CD276 in macrophages to promote immune evasion. Cancer
Immunol Res. 12:840–853. 2024.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Lu F, Ye M, Shen Y, Xu Y, Hu C, Chen J, Yu
P, Xue B, Gu D, Xu L, et al: Hypoxic tumor-derived exosomal
miR-4488 induces macrophage M2 polarization to promote liver
metastasis of pancreatic neuroendocrine neoplasm through RTN3/FABP5
mediated fatty acid oxidation. Int J Biol Sci. 20:3201–3218.
2024.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Enguita JM, Díaz I, García D, Cubiella T,
Chiara MD and Valdés N: Visual analytics identifies key miRNAs for
differentiating peripancreatic paraganglioma and pancreatic
neuroendocrine tumors. Front Endocrinol (Lausanne).
14(1162725)2023.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Molitch ME: Diagnosis and treatment of
pituitary adenomas: A review. JAMA. 317:516–524. 2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Mohme M, Riethdorf S and Pantel K:
Circulating and disseminated tumour cells-mechanisms of immune
surveillance and escape. Nat Rev Clin Oncol. 14:155–167.
2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Barnes TA and Amir E: HYPE or HOPE: The
prognostic value of infiltrating immune cells in cancer. Br J
Cancer. 117:451–460. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Yagnik G, Rutowski MJ, Shah SS and Aghi
MK: Stratifying nonfunctional pituitary adenomas into two groups
distinguished by macrophage subtypes. Oncotarget. 10:2212–2223.
2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Marques P, Barry S, Carlsen E, Collier D,
Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, et
al: Chemokines modulate the tumour microenvironment in pituitary
neuroendocrine tumours. Acta Neuropathol Commun.
7(172)2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Fujiwara K, Yatabe M, Tofrizal A, Jindatip
D, Yashiro T and Nagai R: Identification of M2 macrophages in
anterior pituitary glands of normal rats and rats with
estrogen-induced prolactinoma. Cell Tissue Res. 368:371–378.
2017.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y,
Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2
polarization of tumor-associated macrophages promotes the invasion
of pituitary adenoma by secreting CCL17. Theranostics.
11:3839–3852. 2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J,
Zhang S, Wang Y and Zheng T: The present roles and future
perspectives of interleukin-6 in biliary tract cancer. Cytokine.
169(156271)2023.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Wang X, Fang Y, Zhou Y, Guo X, Xu K, Li C,
Zhang J and Hong Y: SDF-1α/MicroRNA-134 axis regulates
nonfunctioning pituitary neuroendocrine tumor growth via targeting
VEGFA. Front Endocrinol (Lausanne). 11(566761)2020.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Zimmermann N, Knief J, Kacprowski T,
Lazar-Karsten P, Keck T, Billmann F, Schmid S, Luley K, Lehnert H,
Brabant G and Thorns C: MicroRNA analysis of gastroenteropancreatic
neuroendocrine tumors and metastases. Oncotarget. 9:28379–28390.
2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Zatelli MC, Grossrubatscher EM, Guadagno
E, Sciammarella C, Faggiano A and Colao A: Circulating tumor cells
and miRNAs as prognostic markers in neuroendocrine neoplasms.
Endocr Relat Cancer. 24:R223–R237. 2017.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Yoshimoto T, Motoi N, Yamamoto N, Nagano
H, Ushijima M, Matsuura M, Okumura S, Yamaguchi T, Fukayama M and
Ishikawa Y: Pulmonary carcinoids and low-grade gastrointestinal
neuroendocrine tumors show common MicroRNA expression profiles,
different from adenocarcinomas and small cell carcinomas.
Neuroendocrinology. 106:47–57. 2018.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Cavalcanti E, Galleggiante V, Coletta S,
Stasi E, Chieppa M, Armentano R and Serino G: Altered miRNAs
expression correlates with gastroenteropancreatic neuroendocrine
tumors grades. Front Oncol. 10(1187)2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Butz H and Patócs A: MicroRNAs in
endocrine tumors. EJIFCC. 30:146–164. 2019.PubMed/NCBI
|
|
100
|
Nosho K, Igarashi H, Nojima M, Ito M,
Maruyama R, Yoshii S, Naito T, Sukawa Y, Mikami M, Sumioka W, et
al: Association of microRNA-31 with BRAF mutation, colorectal
cancer survival and serrated pathway. Carcinogenesis. 35:776–783.
2014.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Yan LX, Huang XF, Shao Q, Huang MY, Deng
L, Wu QL, Zeng YX and Shao JY: MicroRNA miR-21 overexpression in
human breast cancer is associated with advanced clinical stage,
lymph node metastasis and patient poor prognosis. RNA.
14:2348–2360. 2008.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Du X, Zhang J, Wang J, Lin X and Ding F:
Role of miRNA in lung cancer-potential biomarkers and therapies.
Curr Pharm Des. 23:5997–6010. 2018.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Lobera ES, Varela MA, Jimenez RL and
Moreno RB: miRNA as biomarker in lung cancer. Mol Biol Rep.
50:9521–9527. 2023.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Zeng ZL, Zhu Q, Zhao Z, Zu X and Liu J:
Magic and mystery of microRNA-32. J Cell Mol Med. 25:8588–8601.
2021.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Maués JHDS, Moreira-Nunes CDFA and Burbano
RMR: Computational identification and characterization of new
microRNAs in human platelets stored in a blood bank. Biomolecules.
10(1173)2020.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Wang H and Chen YH: microRNA biomarkers in
clinical study. Biomolecules. 11(1810)2021.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Duran-Sanchon S, Vila-Navarro E, Marcuello
M, Lozano JJ, Muñoz J, Cubiella J, Diez MS, Bujanda L, Lanas A,
Jover R, et al: Validation of miR-1228-3p as housekeeping for
MicroRNA analysis in liquid biopsies from colorectal cancer
patients. Biomolecules. 10(16)2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Al-Eitan LN, Alghamdi MA, Tarkhan AH and
Al-Qarqaz FA: Gene expression profiling of MicroRNAs in HPV-induced
warts and normal skin. Biomolecules. 9(757)2019.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Fahim SA, Abdullah MS, Espinoza-Sánchez
NA, Hassan H, Ibrahim AM, Ahmed SH, Shakir G, Badawy MA, Zakhary
NI, Greve B, et al: Inflammatory breast carcinoma: Elevated
microRNA miR-181b-5p and reduced miR-200b-3p, miR-200c-3p, and
miR-203a-3p expression as potential biomarkers with diagnostic
value. Biomolecules. 10(1059)2020.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Malczewska A, Kidd M, Matar S, Kos-Kudla B
and Modlin IM: A comprehensive assessment of the role of miRNAs as
biomarkers in gastroenteropancreatic neuroendocrine tumors.
Neuroendocrinology. 107:73–90. 2018.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Li A, Yu J, Kim H, Wolfgang CL, Canto MI,
Hruban RH and Goggins M: MicroRNA array analysis finds elevated
serum miR-1290 accurately distinguishes patients with low-stage
pancreatic cancer from healthy and disease controls. Clin Cancer
Res. 19:3600–3610. 2013.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Thorns C, Schurmann C, Gebauer N,
Wallaschofski H, Kümpers C, Bernard V, Feller AC, Keck T, Habermann
JK, Begum N, et al: Global microRNA profiling of pancreatic
neuroendocrine neoplasias. Anticancer Res. 34:2249–2254.
2014.PubMed/NCBI
|
|
113
|
Roldo C, Missiaglia E, Hagan JP, Falconi
M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A and
Croce CM: MicroRNA expression abnormalities in pancreatic endocrine
and acinar tumors are associated with distinctive pathologic
features and clinical behavior. J Clin Oncol. 24:4677–4684.
2006.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Wang M, Xia X, Chu W, Xia L, Meng T, Liu L
and Liu Y: Roles of miR-186 and PTTG1 in colorectal neuroendocrine
tumors. Int J Clin Exp Med. 8:22149–22157. 2015.PubMed/NCBI
|
|
115
|
Mitsuhashi K, Yamamoto I, Kurihara H,
Kanno S, Ito M, Igarashi H, Ishigami K, Sukawa Y, Tachibana M,
Takahashi H, et al: Analysis of the molecular features of rectal
carcinoid tumors to identify new biomarkers that predict biological
malignancy. Oncotarget. 6:22114–22125. 2015.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Lloyd KA, Moore AR, Parsons BN, O'Hara A,
Boyce M, Dockray GJ, Varro A and Pritchard DM: Gastrin-induced
miR-222 promotes gastric tumor development by suppressing p27kip1.
Oncotarget. 7:45462–45478. 2016.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Bowden M, Zhou CW, Zhang S, Brais L, Rossi
A, Naudin L, Thiagalingam A, Sicinska E and Kulke MH: Profiling of
metastatic small intestine neuroendocrine tumors reveals
characteristic miRNAs detectable in plasma. Oncotarget.
8:54331–54344. 2017.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Tanaka T, Narazaki M, Masuda K and
Kishimoto T: Regulation of IL-6 in immunity and diseases. Adv Exp
Med Biol. 941:79–88. 2016.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Jones SA and Jenkins BJ: Recent insights
into targeting the IL-6 cytokine family in inflammatory diseases
and cancer. Nat Rev Immunol. 18:773–789. 2018.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Yang Y, Ding L, Hu Q, Xia J, Sun J, Wang
X, Xiong H, Gurbani D, Li L, Liu Y and Liu A: MicroRNA-218
functions as a tumor suppressor in lung cancer by targeting
IL-6/STAT3 and negatively correlates with poor prognosis. Mol
Cancer. 16(141)2017.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Rokavec M, Öner MG, Li H, Jackstadt R,
Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et
al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated
colorectal cancer invasion and metastasis. J Clin Invest.
124:1853–1867. 2014.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Cai Z, Li J, Zhuang Q, Zhang X, Yuan A,
Shen L, Kang K, Qu B, Tang Y, Pu J, et al: MiR-125a-5p ameliorates
monocrotaline-induced pulmonary arterial hypertension by targeting
the TGF-β1 and IL-6/STAT3 signaling pathways. Exp Mol Med. 50:1–11.
2018.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Wang P, Hou J, Lin L, Wang C, Liu X, Li D,
Ma F, Wang Z and Cao X: Inducible microRNA-155 feedback promotes
type I IFN signaling in antiviral innate immunity by targeting
suppressor of cytokine signaling 1. J Immunol. 185:6226–6233.
2010.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Collins AS, McCoy CE, Lloyd AT, O'Farrelly
C and Stevenson NJ: miR-19a: An effective regulator of SOCS3 and
enhancer of JAK-STAT signalling. PLoS One. 8(e69090)2013.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Ohta M, Kihara T, Toriuchi K, Aoki H,
Iwaki S, Kakita H, Yamada Y and Aoyama M: IL-6 promotes cell
adhesion in human endothelial cells via microRNA-126-3p
suppression. Exp Cell Res. 393(112094)2020.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Ren W, Zhang X, Li Q, Pu C and Zhang D:
Activating IL-6/STAT3 enhances protein stability of proteasome 20S
α+ β in colorectal cancer by miR-1254. Biomed Res Int.
2022(4250013)2022.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Peng Y, Wu XJ, Ji XJ, Huang GX, Wu T, Liu
X, Yang R, Pi J, Shen HB, Wang FF and Xu JF: Circular RNA
circTRAPPC6B enhances IL-6 and IL-1β expression and repolarizes
mycobacteria induced macrophages from M2- to M1-like phenotype by
targeting miR-892c-3p. J Interferon Cytokine Res. 43:269–279.
2023.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Mahjoor M, Afkhami H, Najafi M, Nasr A and
Khorrami S: The role of microRNA-30c in targeting interleukin 6, as
an inflammatory cytokine, in the mesenchymal stem cell: A
therapeutic approach in colorectal cancer. J Cancer Res Clin Oncol.
149:3149–3160. 2023.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Lv Q, Xia Q, Li A and Wang Z:
circRNA_101277 influences cisplatin resistance of colorectal cancer
cells by modulating the miR-370/IL-6 axis. Genet Res (Camb).
2022(4237327)2022.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Tseng HY, Chen YA, Jen J, Shen PC, Chen
LM, Lin TD, Wang YC and Hsu HL: Oncogenic MCT-1 activation promotes
YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis.
6(e313)2017.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Fisher DT, Appenheimer MM and Evans SS:
The two faces of IL-6 in the tumor microenvironment. Semin Immunol.
26:38–47. 2014.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Weng YS, Tseng HY, Chen YA, Shen PC, Al
Haq AT, Chen LM, Tung YC and Hsu HL: MCT-1/miR-34a/IL-6/IL-6R
signaling axis promotes EMT progression, cancer stemness and M2
macrophage polarization in triple-negative breast cancer. Mol
Cancer. 18(42)2019.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Wang Y, van Boxel-Dezaire AHH, Cheon H,
Yang J and Stark GR: STAT3 activation in response to IL-6 is
prolonged by the binding of IL-6 receptor to EGF receptor. Proc
Natl Acad Sci USA. 110:16975–16980. 2013.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Levy DE and Darnell JE Jr: Stats:
Transcriptional control and biological impact. Nat Rev Mol Cell
Biol. 3:651–662. 2002.PubMed/NCBI View
Article : Google Scholar
|
|
135
|
Ochoa Bernal MA, Song Y, Joshi N, Burns
GW, Paul EN, Vegter E, Hrbek S, Sempere LF and Fazleabas AT: The
regulation of MicroRNA-21 by interleukin-6 and its role in the
development of fibrosis in endometriotic lesions. Int J Mol Sci.
25(8994)2024.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Kanavarioti A, Rehman MH, Qureshi S, Rafiq
A and Sultan M: High sensitivity and specificity platform to
validate MicroRNA biomarkers in cancer and human diseases.
Noncoding RNA. 10(42)2024.PubMed/NCBI View Article : Google Scholar
|
|
137
|
De A, Powers B, De A, Zhou J, Sharma S,
Van Veldhuizen P, Bansal A, Sharma R and Sharma M: Emblica
officinalis extract downregulates pro-angiogenic molecules via
upregulation of cellular and exosomal miR-375 in human ovarian
cancer cells. Oncotarget. 7:31484–31500. 2016.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Guo F, Gao Y, Sui G, Jiao D, Sun L, Fu Q
and Jin C: miR-375-3p/YWHAZ/β-catenin axis regulates migration,
invasion, EMT in gastric cancer cells. Clin Exp Pharmacol Physiol.
46:144–152. 2019.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Li F, Yang H, Kong T, Chen S, Li P, Chen
L, Cheng J, Cui G and Zhang G: PGAM1, regulated by miR-3614-5p,
functions as an oncogene by activating transforming growth factor-β
(TGF-β) signaling in the progression of non-small cell lung
carcinoma. Cell Death Dis. 11(710)2020.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Soldevilla B, Lens-Pardo A,
Espinosa-Olarte P, Carretero-Puche C, Molina-Pinelo S, Robles C,
Benavent M, Gomez-Izquierdo L, Fierro-Fernández M, Morales-Burgo P,
et al: MicroRNA signature and integrative omics analyses define
prognostic clusters and key pathways driving prognosis in patients
with neuroendocrine neoplasms. Mol Oncol. 17:582–597.
2023.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Peng Y, Zhang X, Feng X, Fan X and Jin Z:
The crosstalk between microRNAs and the Wnt/β-catenin signaling
pathway in cancer. Oncotarget. 8:14089–14106. 2017.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Zhang Y, He H, He L and Shi B: IL-6
accelerates the proliferation and metastasis of pancreatic cancer
cells via the miR-455-5p/IGF-1R axis. Cancer Biother Radiopharm.
39:255–263. 2024.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Yang S and Li D: Role of microRNAs in
triple-negative breast cancer and new therapeutic concepts
(review). Oncol Lett. 28(431)2024.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Poon JS, Eves R and Mak AS: Both lipid-
and protein-phosphatase activities of PTEN contribute to the
p53-PTEN anti-invasion pathway. Cell Cycle. 9:4450–4454.
2010.PubMed/NCBI View Article : Google Scholar
|