Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular and Clinical Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9450 Online ISSN: 2049-9469
Journal Cover
August-2025 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review)

  • Authors:
    • Xiaofan Guo
    • Shaofeng Yang
    • Chunli Cao
    • Donghai Li
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
    Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 71
    |
    Published online on: June 17, 2025
       https://doi.org/10.3892/mco.2025.2866
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The incidence of neuroendocrine tumors (NETs) has been increasing in recent years and most cases are not easily detected in the early stages. The diagnostic modalities used for NETs are currently limited due to the small number of individuals with this type of disease. It is clear that patients exhibit chronic inflammation in the early stages, which leads to corresponding changes in inflammatory factors and in the tumor microenvironment. Among the numerous inflammatory factors, the interleukin (IL)‑6 family has a clear association with tumor development and serves a role in most NETs. In addition, the IL‑6 family, through various signaling pathways, can influence tumor progression. IL‑6 is also involved in the upregulation and suppression of novel biomarkers of NETs. In terms of diagnosis, the specific elevation of inflammatory factors and the alterations in non‑coding RNAs for different NETs is of great importance for the early differentiation of tumor types.
View Figures

Figure 1

In thyroid medullary carcinoma, IL-6
and miR-375 jointly act on the Hippo pathway to promote the
proliferation process of tumor cells. The figure was created using
Figdraw 2.0 software (https://www.figdraw.com/static/index.html#/). IL-6,
interleukin-6; miR-375, microRNA-375; YAP, Yes-associated
protein.

Figure 2

IL-6 and tumor-related microRNAs can
interact and exert effects on tumors through various signaling
pathways such as PI3K/AKT/mTOR, STAT3, and NF-κB, either in a
coordinated or antagonistic manner. The figure was created using
Figdraw 2.0 software (https://www.figdraw.com/static/index.html#/). IL,
interleukin; miR, microRNA; PNET, pancreatic neuroendocrine tumors;
g-NEN, gastric neuroendocrine neoplasm; SCLC, small cell lung
cancer; IGF1R, insulin-like growth factor 1 receptor; SI-NET,
neuroendocrine tumors of the small intestine.
View References

1 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002.PubMed/NCBI View Article : Google Scholar

2 

Khandia R and Munjal A: Interplay between inflammation and cancer. Adv Protein Chem Struct Biol. 119:199–245. 2020.PubMed/NCBI View Article : Google Scholar

3 

Soler MF, Abaurrea A, Azcoaga P, Araujo AM and Caffarel MM: New perspectives in cancer immunotherapy: Targeting IL-6 cytokine family. J Immunother Cancer. 11(e007530)2023.PubMed/NCBI View Article : Google Scholar

4 

Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F and Delort L: Crosstalk of inflammatory cytokines within the breast tumor microenvironment. Int J Mol Sci. 24(4002)2023.PubMed/NCBI View Article : Google Scholar

5 

Geisler L, Hellberg T, Lambrecht J, Jann H, Knorr J, Eschrich J, Loosen SH, Wree A, Hammerich L, Krieg A, et al: Inflammatory cytokines associated with diagnosis, tumor grade and prognosis in patients with neuroendocrine tumors. J Clin Med. 11(6191)2022.PubMed/NCBI View Article : Google Scholar

6 

Cigrovski Berkovic M, Cacev T, Catela Ivkovic T, Zjacic-Rotkvic V and Kapitanovic S: New insights into the role of chronic inflammation and cytokines in the etiopathogenesis of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 99:75–84. 2014.PubMed/NCBI View Article : Google Scholar

7 

Chang KT, Tsai CM, Chiou YC, Chiu CH, Jeng KS and Huang CY: IL-6 induces neuroendocrine dedifferentiation and cell proliferation in non-small cell lung cancer cells. Am J Physiol Lung Cell Mol Physiol. 289:L446–L453. 2005.PubMed/NCBI View Article : Google Scholar

8 

Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986.PubMed/NCBI View Article : Google Scholar

9 

Le Bitoux MA and Stamenkovic I: Tumor-host interactions: The role of inflammation. Histochem Cell Biol. 130:1079–1090. 2008.PubMed/NCBI View Article : Google Scholar

10 

Marzagalli M, Ebelt ND and Manuel ER: Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 59:236–250. 2019.PubMed/NCBI View Article : Google Scholar

11 

Yi M, Xu L, Jiao Y, Luo S, Li A and Wu K: The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol. 13(25)2020.PubMed/NCBI View Article : Google Scholar

12 

Jia Z, Jia J, Yao L and Li Z: Crosstalk of exosomal non-coding RNAs in the tumor microenvironment: Novel frontiers. Front Immunol. 13(900155)2022.PubMed/NCBI View Article : Google Scholar

13 

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433:769–773. 2005.PubMed/NCBI View Article : Google Scholar

14 

Liang Y, Liu Y, Zhang Q, Zhang H and Du J: Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res. 231:102–112. 2021.PubMed/NCBI View Article : Google Scholar

15 

Solé C and Lawrie CH: MicroRNAs in metastasis and the tumour microenvironment. Int J Mol Sci. 22(4859)2021.PubMed/NCBI View Article : Google Scholar

16 

Kousar K, Ahmad T, Abduh MS, Kanwal B, Shah SS, Naseer F and Anjum S: miRNAs in regulation of tumor microenvironment, chemotherapy resistance, immunotherapy modulation and miRNA therapeutics in cancer. Int J Mol Sci. 23(13822)2022.PubMed/NCBI View Article : Google Scholar

17 

Yin Y, Liu B, Cao Y, Yao S, Liu Y, Jin G, Qin Y, Chen Y, Cui K, Zhou L, et al: Colorectal cancer-derived small extracellular vesicles promote tumor immune evasion by upregulating PD-L1 expression in tumor-associated macrophages. Adv Sci (Weinh). 9(2102620)2022.PubMed/NCBI View Article : Google Scholar

18 

Song TY, Long M, Zhao HX, Zou MW, Fan HJ, Liu Y, Geng CL, Song MF, Liu YF, Chen JY, et al: Tumor evolution selectively inactivates the core microRNA machinery for immune evasion. Nat Commun. 12(7003)2021.PubMed/NCBI View Article : Google Scholar

19 

Muscogiuri G, Altieri B, Albertelli M, Dotto A, Modica R, Barrea L, Fanciulli G, Feola T, Baldelli R, Ruggeri RM, et al: Epidemiology of pancreatic neuroendocrine neoplasms: A gender perspective. Endocrine. 69:441–450. 2020.PubMed/NCBI View Article : Google Scholar

20 

Ruggeri RM, Benevento E, De Cicco F, Fazzalari B, Guadagno E, Hasballa I, Tarsitano MG, Isidori AM, Colao A and Faggiano A: NIKE Group. Neuroendocrine neoplasms in the context of inherited tumor syndromes: A reappraisal focused on targeted therapies. J Endocrinol Invest. 46:213–234. 2023.PubMed/NCBI View Article : Google Scholar

21 

Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A and Evans DB: One hundred years after ‘carcinoid’: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 26:3063–3072. 2008.PubMed/NCBI View Article : Google Scholar

22 

Vanoli A, La Rosa S, Luinetti O, Klersy C, Manca R, Alvisi C, Rossi S, Trespi E, Zangrandi A, Sessa F, et al: Histologic changes in type A chronic atrophic gastritis indicating increased risk of neuroendocrine tumor development: The predictive role of dysplastic and severely hyperplastic enterochromaffin-like cell lesions. Hum Pathol. 44:1827–1837. 2013.PubMed/NCBI View Article : Google Scholar

23 

Modica R, La Salvia A, Liccardi A, Cannavale G, Minotta R, Benevento E, Faggiano A and Colao A: Lipid metabolism and homeostasis in patients with neuroendocrine neoplasms: From risk factor to potential therapeutic target. Metabolites. 12(1057)2022.PubMed/NCBI View Article : Google Scholar

24 

Oberg K: Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). Curr Opin Endocrinol Diabetes Obes. 16:72–78. 2009.PubMed/NCBI View Article : Google Scholar

25 

Rindi G, Inzani F and Solcia E: Pathology of gastrointestinal disorders. Endocrinol Metab Clin North Am. 39:713–727. 2010.PubMed/NCBI View Article : Google Scholar

26 

Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, Zhang L, Thorland EC, Minn KT, Tentu R, et al: The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest. 123:2502–2508. 2013.PubMed/NCBI View Article : Google Scholar

27 

Cunningham JL, Díaz de Ståhl T, Sjöblom T, Westin G, Dumanski JP and Janson ET: Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors. Genes Chromosomes Cancer. 50:82–94. 2011.PubMed/NCBI View Article : Google Scholar

28 

Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M, Piemonti L, Capurso G, Di Florio A, delle Fave G, et al: Pancreatic endocrine tumors: Expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 28:245–255. 2010.PubMed/NCBI View Article : Google Scholar

29 

Ruebel K, Leontovich AA, Stilling GA, Zhang S, Righi A, Jin L and Lloyd RV: MicroRNA expression in ileal carcinoid tumors: Downregulation of microRNA-133a with tumor progression. Mod Pathol. 23:367–375. 2010.PubMed/NCBI View Article : Google Scholar

30 

Huang M, Fanciulli G, Wu SQ, Zhang Z and Zhang J: Analysis of the lower incidence of medullary thyroid cancer in China. Chin Med J (Engl). 132:2516–2517. 2019.PubMed/NCBI View Article : Google Scholar

31 

Dey A, Varelas X and Guan KL: Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 19:480–494. 2020.PubMed/NCBI View Article : Google Scholar

32 

Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S and Koul HK: Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett. 507:112–123. 2021.PubMed/NCBI View Article : Google Scholar

33 

Meng Z, Moroishi T and Guan KL: Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–17. 2016.PubMed/NCBI View Article : Google Scholar

34 

Mia MM, Cibi DM, Abdul Ghani SAB, Song W, Tee N, Ghosh S, Mao J, Olson EN and Singh MK: YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 18(e3000941)2020.PubMed/NCBI View Article : Google Scholar

35 

Manfioletti G and Fedele M: Epithelial-mesenchymal transition (EMT). Int J Mol Sci. 24(11386)2023.PubMed/NCBI View Article : Google Scholar

36 

Zheng D, Jin L, Chen B, Qi Y, Bhandari A, Wen J, Lin B, Zhang X and Zhang W: The ETNK2 gene promotes progression of papillary thyroid carcinoma through the HIPPO pathway. J Cancer. 13:508–516. 2022.PubMed/NCBI View Article : Google Scholar

37 

Ciarletto AM, Narick C, Malchoff CD, Massoll NA, Labourier E, Haugh K, Mireskandari A, Finkelstein SD and Kumar G: Analytical and clinical validation of pairwise microRNA expression analysis to identify medullary thyroid cancer in thyroid fine-needle aspiration samples. Cancer Cytopathol. 129:239–249. 2021.PubMed/NCBI View Article : Google Scholar

38 

Dingemans AC, Früh M, Ardizzoni A, Besse B, Faivre-Finn C, Hendriks LE, Lantuejoul S, Peters S, Reguart N, Rudin CM, et al: Small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up☆. Ann Oncol. 32:839–853. 2021.PubMed/NCBI View Article : Google Scholar

39 

Soomro Z, Youssef M, Yust-Katz S, Jalali A, Patel AJ and Mandel J: Paraneoplastic syndromes in small cell lung cancer. J Thorac Dis. 12:6253–6263. 2020.PubMed/NCBI View Article : Google Scholar

40 

Pfeiffer M, Hartmann TN, Leick M, Catusse J, Schmitt-Graeff A and Burger M: Alternative implication of CXCR4 in JAK2/STAT3 activation in small cell lung cancer. Br J Cancer. 100:1949–1956. 2009.PubMed/NCBI View Article : Google Scholar

41 

Iriki T, Ohnishi K, Fujiwara Y, Horlad H, Saito Y, Pan C, Ikeda K, Mori T, Suzuki M, Ichiyasu H, et al: The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation. Lung Cancer. 106:22–32. 2017.PubMed/NCBI View Article : Google Scholar

42 

Lu Y, Li H, Zhao P, Tian L, Liu Y, Sun X and Cheng Y: Dynamic phenotypic reprogramming and chemoresistance induced by lung fibroblasts in small cell lung cancer. Sci Rep. 14(2884)2024.PubMed/NCBI View Article : Google Scholar

43 

Lim JS, Ibaseta A, Fischer MM, Cancilla B, O'Young G, Cristea S, Luca VC, Yang D, Jahchan NS, Hamard C, et al: Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 545:360–364. 2017.PubMed/NCBI View Article : Google Scholar

44 

Hua J, Wang X, Ma L, Li J, Cao G, Zhang S and Lin W: CircVAPA promotes small cell lung cancer progression by modulating the miR-377-3p and miR-494-3p/IGF1R/AKT axis. Mol Cancer. 21(123)2022.PubMed/NCBI View Article : Google Scholar

45 

Delle Fave G, O'Toole D, Sundin A, Taal B, Ferolla P, Ramage JK, Ferone D, Ito T, Weber W, Zheng-Pei Z, et al: ENETS consensus guidelines update for gastroduodenal neuroendocrine neoplasms. Neuroendocrinology. 103:119–124. 2016.PubMed/NCBI View Article : Google Scholar

46 

Gluckman CR and Metz DC: Gastric neuroendocrine tumors (carcinoids). Curr Gastroenterol Rep. 21(13)2019.PubMed/NCBI View Article : Google Scholar

47 

Tsolakis AV, Ragkousi A, Vujasinovic M, Kaltsas G and Daskalakis K: Gastric neuroendocrine neoplasms type 1: A systematic review and meta-analysis. World J Gastroenterol. 25:5376–5387. 2019.PubMed/NCBI View Article : Google Scholar

48 

Wang J, Li D, Cang H and Guo B: Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 8:4709–4721. 2019.PubMed/NCBI View Article : Google Scholar

49 

Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, et al: Role of tumor microenvironment in tumorigenesis. J Cancer. 8:761–773. 2017.PubMed/NCBI View Article : Google Scholar

50 

Girardi DM, Silva ACB, Rêgo JFM, Coudry RA and Riechelmann RP: Unraveling molecular pathways of poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: A systematic review. Cancer Treat Rev. 56:28–35. 2017.PubMed/NCBI View Article : Google Scholar

51 

Duerr EM, Mizukami Y, Ng A, Xavier RJ, Kikuchi H, Deshpande V, Warshaw AL, Glickman J, Kulke MH and Chung DC: Defining molecular classifications and targets in gastroenteropancreatic neuroendocrine tumors through DNA microarray analysis. Endocr Relat Cancer. 15:243–256. 2008.PubMed/NCBI View Article : Google Scholar

52 

Korotaeva A, Mansorunov D, Apanovich N, Kuzevanova A and Karpukhin A: MiRNA expression in neuroendocrine neoplasms of frequent localizations. Noncoding RNA. 7(38)2021.PubMed/NCBI View Article : Google Scholar

53 

Ahmed M: Gastrointestinal neuroendocrine tumors in 2020. World J Gastrointest Oncol. 12:791–807. 2020.PubMed/NCBI View Article : Google Scholar

54 

Stålberg P, Westin G and Thirlwell C: Genetics and epigenetics in small intestinal neuroendocrine tumours. J Intern Med. 280:584–594. 2016.PubMed/NCBI View Article : Google Scholar

55 

Ito T, Lee L and Jensen RT: Carcinoid-syndrome: Recent advances, current status and controversies. Curr Opin Endocrinol Diabetes Obes. 25:22–35. 2018.PubMed/NCBI View Article : Google Scholar

56 

Di Domenico A, Wiedmer T, Marinoni I and Perren A: Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer. 24:R315–R334. 2017.PubMed/NCBI View Article : Google Scholar

57 

Wei ZZ, Yu SP, Lee JH, Chen D, Taylor TM, Deveau TC, Yu AC and Wei L: Regulatory role of the JNK-STAT1/3 signaling in neuronal differentiation of cultured mouse embryonic stem cells. Cell Mol Neurobiol. 34:881–893. 2014.PubMed/NCBI View Article : Google Scholar

58 

Walker CD, Long H, Williams S and Richard D: Long-lasting effects of elevated neonatal leptin on rat hippocampal function, synaptic proteins and NMDA receptor subunits. J Neurosci Res. 85:816–828. 2007.PubMed/NCBI View Article : Google Scholar

59 

Tang QP, Shen Q, Wu LX, Feng XL, Liu H, Wu B, Huang XS, Wang GQ, Li ZH and Liu ZJ: STAT3 signal that mediates the neural plasticity is involved in willed-movement training in focal ischemic rats. J Zhejiang Univ Sci B. 17:493–502. 2016.PubMed/NCBI View Article : Google Scholar

60 

De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald TT, Pallone F, et al: Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 34:3493–3503. 2015.PubMed/NCBI View Article : Google Scholar

61 

Wang XY, Chai NL, Linghu EQ, Li HK, Zhai YQ, Feng XX, Zhang WG, Zou JL, Li LS and Xiang JY: Efficacy and safety of hybrid endoscopic submucosal dissection compared with endoscopic submucosal dissection for rectal neuroendocrine tumors and risk factors associated with incomplete endoscopic resection. Ann Transl Med. 8(368)2020.PubMed/NCBI View Article : Google Scholar

62 

Osagiede O, Habermann E, Day C, Gabriel E, Merchea A, Lemini R, Jabbal IS and Colibaseanu DT: Factors associated with worse outcomes for colorectal neuroendocrine tumors in radical versus local resections. J Gastrointest Oncol. 11:836–846. 2020.PubMed/NCBI View Article : Google Scholar

63 

Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T and Yao JC: Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3:1335–1342. 2017.PubMed/NCBI View Article : Google Scholar

64 

Zou J, Chen S, Lian G, Li R, Li Y, Huang K and Chen Y: Prognostic and metastasis-related factors in colorectal neuroendocrine tumors: A cross-sectional study based on the surveillance, epidemiology and end results. Oncol Lett. 18:5129–5138. 2019.PubMed/NCBI View Article : Google Scholar

65 

Tran MT: Identification of TIMP1-induced dysregulation of epithelial-mesenchymal transition as a key pathway in inflammatory bowel disease and small intestinal neuroendocrine tumors shared pathogenesis. Front Genet. 15(1376123)2024.PubMed/NCBI View Article : Google Scholar

66 

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.PubMed/NCBI View Article : Google Scholar

67 

Inzani F, Petrone G and Rindi G: The new World Health Organization classification for pancreatic neuroendocrine neoplasia. Endocrinol Metab Clin North Am. 47:463–470. 2018.PubMed/NCBI View Article : Google Scholar

68 

Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, de Wilde RF, Maitra A, Hicks J, Demarzo AM, et al: Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 36:173–184. 2012.PubMed/NCBI View Article : Google Scholar

69 

Cives M, Partelli S, Palmirotta R, Lovero D, Mandriani B, Quaresmini D, Pelle E, Andreasi V, Castelli P, Strosberg J, et al: DAXX mutations as potential genomic markers of malignant evolution in small nonfunctioning pancreatic neuroendocrine tumors. Sci Rep. 9(18614)2019.PubMed/NCBI View Article : Google Scholar

70 

Mafficini A and Scarpa A: Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms. Endocr Rev. 40:506–536. 2019.PubMed/NCBI View Article : Google Scholar

71 

Conemans EB, Lodewijk L, Moelans CB, Offerhaus GJA, Pieterman CRC, Morsink FH, Dekkers OM, de Herder WW, Hermus AR, van der Horst-Schrivers AN, et al: DNA methylation profiling in MEN1-related pancreatic neuroendocrine tumors reveals a potential epigenetic target for treatment. Eur J Endocrinol. 179:153–160. 2018.PubMed/NCBI View Article : Google Scholar

72 

Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, et al: Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 543:65–71. 2017.PubMed/NCBI View Article : Google Scholar

73 

Liu GY and Sabatini DM: mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 21:183–203. 2020.PubMed/NCBI View Article : Google Scholar

74 

Kim J and Guan KL: mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 21:63–71. 2019.PubMed/NCBI View Article : Google Scholar

75 

Elsässer SJ, Allis CD and Lewis PW: Cancer. New epigenetic drivers of cancers. Science. 331:1145–1146. 2011.PubMed/NCBI View Article : Google Scholar

76 

Hackeng WM, Brosens LAA, Kim JY, O'Sullivan R, Sung YN, Liu TC, Cao D, Heayn M, Brosnan-Cashman J, An S, et al: Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut. 71:961–973. 2022.PubMed/NCBI View Article : Google Scholar

77 

Kidd M, Modlin I and Öberg K: Towards a new classification of gastroenteropancreatic neuroendocrine neoplasms. Nat Rev Clin Oncol. 13:691–705. 2016.PubMed/NCBI View Article : Google Scholar

78 

Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, et al: DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 331:1199–1203. 2011.PubMed/NCBI View Article : Google Scholar

79 

Li H, Wang X, Hu C, Cui J, Li H, Luo X and Hao Y: IL-6 enhances the activation of PI3K-AKT/mTOR-GSK-3β by upregulating GRPR in hippocampal neurons of autistic mice. J Neuroimmune Pharmacol. 19(12)2024.PubMed/NCBI View Article : Google Scholar

80 

Karakaxas D, Sioziou A, Aravantinos G, Coker A, Papanikolaou IS, Liakakos T, Dervenis C and Gazouli M: Genetic polymorphisms of interleukin 1β gene and sporadic pancreatic neuroendocrine tumors susceptibility. World J Gastrointest Oncol. 8:520–525. 2016.PubMed/NCBI View Article : Google Scholar

81 

Berković MC, Jokić M, Marout J, Radosević S, Zjacić-Rotkvić V and Kapitanović S: IL-6-174 C/G polymorphism in the gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Exp Mol Pathol. 83:474–479. 2007.PubMed/NCBI View Article : Google Scholar

82 

Imam R, Chang Q, Black M, Yu C and Cao W: CD47 expression and CD163+ macrophages correlated with prognosis of pancreatic neuroendocrine tumor. BMC Cancer. 21(320)2021.PubMed/NCBI View Article : Google Scholar

83 

Zhong Y, Tian Y, Wang Y, Bai J, Long Q, Yan L, Gong Z, Gao W and Tang Q: Small extracellular vesicle piR-hsa-30937 derived from pancreatic neuroendocrine neoplasms upregulates CD276 in macrophages to promote immune evasion. Cancer Immunol Res. 12:840–853. 2024.PubMed/NCBI View Article : Google Scholar

84 

Lu F, Ye M, Shen Y, Xu Y, Hu C, Chen J, Yu P, Xue B, Gu D, Xu L, et al: Hypoxic tumor-derived exosomal miR-4488 induces macrophage M2 polarization to promote liver metastasis of pancreatic neuroendocrine neoplasm through RTN3/FABP5 mediated fatty acid oxidation. Int J Biol Sci. 20:3201–3218. 2024.PubMed/NCBI View Article : Google Scholar

85 

Enguita JM, Díaz I, García D, Cubiella T, Chiara MD and Valdés N: Visual analytics identifies key miRNAs for differentiating peripancreatic paraganglioma and pancreatic neuroendocrine tumors. Front Endocrinol (Lausanne). 14(1162725)2023.PubMed/NCBI View Article : Google Scholar

86 

Molitch ME: Diagnosis and treatment of pituitary adenomas: A review. JAMA. 317:516–524. 2017.PubMed/NCBI View Article : Google Scholar

87 

Mohme M, Riethdorf S and Pantel K: Circulating and disseminated tumour cells-mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 14:155–167. 2017.PubMed/NCBI View Article : Google Scholar

88 

Barnes TA and Amir E: HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer. 117:451–460. 2017.PubMed/NCBI View Article : Google Scholar

89 

Yagnik G, Rutowski MJ, Shah SS and Aghi MK: Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget. 10:2212–2223. 2019.PubMed/NCBI View Article : Google Scholar

90 

Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, et al: Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun. 7(172)2019.PubMed/NCBI View Article : Google Scholar

91 

Fujiwara K, Yatabe M, Tofrizal A, Jindatip D, Yashiro T and Nagai R: Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma. Cell Tissue Res. 368:371–378. 2017.PubMed/NCBI View Article : Google Scholar

92 

Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 11:3839–3852. 2021.PubMed/NCBI View Article : Google Scholar

93 

Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J, Zhang S, Wang Y and Zheng T: The present roles and future perspectives of interleukin-6 in biliary tract cancer. Cytokine. 169(156271)2023.PubMed/NCBI View Article : Google Scholar

94 

Wang X, Fang Y, Zhou Y, Guo X, Xu K, Li C, Zhang J and Hong Y: SDF-1α/MicroRNA-134 axis regulates nonfunctioning pituitary neuroendocrine tumor growth via targeting VEGFA. Front Endocrinol (Lausanne). 11(566761)2020.PubMed/NCBI View Article : Google Scholar

95 

Zimmermann N, Knief J, Kacprowski T, Lazar-Karsten P, Keck T, Billmann F, Schmid S, Luley K, Lehnert H, Brabant G and Thorns C: MicroRNA analysis of gastroenteropancreatic neuroendocrine tumors and metastases. Oncotarget. 9:28379–28390. 2018.PubMed/NCBI View Article : Google Scholar

96 

Zatelli MC, Grossrubatscher EM, Guadagno E, Sciammarella C, Faggiano A and Colao A: Circulating tumor cells and miRNAs as prognostic markers in neuroendocrine neoplasms. Endocr Relat Cancer. 24:R223–R237. 2017.PubMed/NCBI View Article : Google Scholar

97 

Yoshimoto T, Motoi N, Yamamoto N, Nagano H, Ushijima M, Matsuura M, Okumura S, Yamaguchi T, Fukayama M and Ishikawa Y: Pulmonary carcinoids and low-grade gastrointestinal neuroendocrine tumors show common MicroRNA expression profiles, different from adenocarcinomas and small cell carcinomas. Neuroendocrinology. 106:47–57. 2018.PubMed/NCBI View Article : Google Scholar

98 

Cavalcanti E, Galleggiante V, Coletta S, Stasi E, Chieppa M, Armentano R and Serino G: Altered miRNAs expression correlates with gastroenteropancreatic neuroendocrine tumors grades. Front Oncol. 10(1187)2020.PubMed/NCBI View Article : Google Scholar

99 

Butz H and Patócs A: MicroRNAs in endocrine tumors. EJIFCC. 30:146–164. 2019.PubMed/NCBI

100 

Nosho K, Igarashi H, Nojima M, Ito M, Maruyama R, Yoshii S, Naito T, Sukawa Y, Mikami M, Sumioka W, et al: Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway. Carcinogenesis. 35:776–783. 2014.PubMed/NCBI View Article : Google Scholar

101 

Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX and Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008.PubMed/NCBI View Article : Google Scholar

102 

Du X, Zhang J, Wang J, Lin X and Ding F: Role of miRNA in lung cancer-potential biomarkers and therapies. Curr Pharm Des. 23:5997–6010. 2018.PubMed/NCBI View Article : Google Scholar

103 

Lobera ES, Varela MA, Jimenez RL and Moreno RB: miRNA as biomarker in lung cancer. Mol Biol Rep. 50:9521–9527. 2023.PubMed/NCBI View Article : Google Scholar

104 

Zeng ZL, Zhu Q, Zhao Z, Zu X and Liu J: Magic and mystery of microRNA-32. J Cell Mol Med. 25:8588–8601. 2021.PubMed/NCBI View Article : Google Scholar

105 

Maués JHDS, Moreira-Nunes CDFA and Burbano RMR: Computational identification and characterization of new microRNAs in human platelets stored in a blood bank. Biomolecules. 10(1173)2020.PubMed/NCBI View Article : Google Scholar

106 

Wang H and Chen YH: microRNA biomarkers in clinical study. Biomolecules. 11(1810)2021.PubMed/NCBI View Article : Google Scholar

107 

Duran-Sanchon S, Vila-Navarro E, Marcuello M, Lozano JJ, Muñoz J, Cubiella J, Diez MS, Bujanda L, Lanas A, Jover R, et al: Validation of miR-1228-3p as housekeeping for MicroRNA analysis in liquid biopsies from colorectal cancer patients. Biomolecules. 10(16)2019.PubMed/NCBI View Article : Google Scholar

108 

Al-Eitan LN, Alghamdi MA, Tarkhan AH and Al-Qarqaz FA: Gene expression profiling of MicroRNAs in HPV-induced warts and normal skin. Biomolecules. 9(757)2019.PubMed/NCBI View Article : Google Scholar

109 

Fahim SA, Abdullah MS, Espinoza-Sánchez NA, Hassan H, Ibrahim AM, Ahmed SH, Shakir G, Badawy MA, Zakhary NI, Greve B, et al: Inflammatory breast carcinoma: Elevated microRNA miR-181b-5p and reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p expression as potential biomarkers with diagnostic value. Biomolecules. 10(1059)2020.PubMed/NCBI View Article : Google Scholar

110 

Malczewska A, Kidd M, Matar S, Kos-Kudla B and Modlin IM: A comprehensive assessment of the role of miRNAs as biomarkers in gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 107:73–90. 2018.PubMed/NCBI View Article : Google Scholar

111 

Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH and Goggins M: MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 19:3600–3610. 2013.PubMed/NCBI View Article : Google Scholar

112 

Thorns C, Schurmann C, Gebauer N, Wallaschofski H, Kümpers C, Bernard V, Feller AC, Keck T, Habermann JK, Begum N, et al: Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res. 34:2249–2254. 2014.PubMed/NCBI

113 

Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A and Croce CM: MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 24:4677–4684. 2006.PubMed/NCBI View Article : Google Scholar

114 

Wang M, Xia X, Chu W, Xia L, Meng T, Liu L and Liu Y: Roles of miR-186 and PTTG1 in colorectal neuroendocrine tumors. Int J Clin Exp Med. 8:22149–22157. 2015.PubMed/NCBI

115 

Mitsuhashi K, Yamamoto I, Kurihara H, Kanno S, Ito M, Igarashi H, Ishigami K, Sukawa Y, Tachibana M, Takahashi H, et al: Analysis of the molecular features of rectal carcinoid tumors to identify new biomarkers that predict biological malignancy. Oncotarget. 6:22114–22125. 2015.PubMed/NCBI View Article : Google Scholar

116 

Lloyd KA, Moore AR, Parsons BN, O'Hara A, Boyce M, Dockray GJ, Varro A and Pritchard DM: Gastrin-induced miR-222 promotes gastric tumor development by suppressing p27kip1. Oncotarget. 7:45462–45478. 2016.PubMed/NCBI View Article : Google Scholar

117 

Bowden M, Zhou CW, Zhang S, Brais L, Rossi A, Naudin L, Thiagalingam A, Sicinska E and Kulke MH: Profiling of metastatic small intestine neuroendocrine tumors reveals characteristic miRNAs detectable in plasma. Oncotarget. 8:54331–54344. 2017.PubMed/NCBI View Article : Google Scholar

118 

Tanaka T, Narazaki M, Masuda K and Kishimoto T: Regulation of IL-6 in immunity and diseases. Adv Exp Med Biol. 941:79–88. 2016.PubMed/NCBI View Article : Google Scholar

119 

Jones SA and Jenkins BJ: Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 18:773–789. 2018.PubMed/NCBI View Article : Google Scholar

120 

Yang Y, Ding L, Hu Q, Xia J, Sun J, Wang X, Xiong H, Gurbani D, Li L, Liu Y and Liu A: MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis. Mol Cancer. 16(141)2017.PubMed/NCBI View Article : Google Scholar

121 

Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014.PubMed/NCBI View Article : Google Scholar

122 

Cai Z, Li J, Zhuang Q, Zhang X, Yuan A, Shen L, Kang K, Qu B, Tang Y, Pu J, et al: MiR-125a-5p ameliorates monocrotaline-induced pulmonary arterial hypertension by targeting the TGF-β1 and IL-6/STAT3 signaling pathways. Exp Mol Med. 50:1–11. 2018.PubMed/NCBI View Article : Google Scholar

123 

Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z and Cao X: Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 185:6226–6233. 2010.PubMed/NCBI View Article : Google Scholar

124 

Collins AS, McCoy CE, Lloyd AT, O'Farrelly C and Stevenson NJ: miR-19a: An effective regulator of SOCS3 and enhancer of JAK-STAT signalling. PLoS One. 8(e69090)2013.PubMed/NCBI View Article : Google Scholar

125 

Ohta M, Kihara T, Toriuchi K, Aoki H, Iwaki S, Kakita H, Yamada Y and Aoyama M: IL-6 promotes cell adhesion in human endothelial cells via microRNA-126-3p suppression. Exp Cell Res. 393(112094)2020.PubMed/NCBI View Article : Google Scholar

126 

Ren W, Zhang X, Li Q, Pu C and Zhang D: Activating IL-6/STAT3 enhances protein stability of proteasome 20S α+ β in colorectal cancer by miR-1254. Biomed Res Int. 2022(4250013)2022.PubMed/NCBI View Article : Google Scholar

127 

Peng Y, Wu XJ, Ji XJ, Huang GX, Wu T, Liu X, Yang R, Pi J, Shen HB, Wang FF and Xu JF: Circular RNA circTRAPPC6B enhances IL-6 and IL-1β expression and repolarizes mycobacteria induced macrophages from M2- to M1-like phenotype by targeting miR-892c-3p. J Interferon Cytokine Res. 43:269–279. 2023.PubMed/NCBI View Article : Google Scholar

128 

Mahjoor M, Afkhami H, Najafi M, Nasr A and Khorrami S: The role of microRNA-30c in targeting interleukin 6, as an inflammatory cytokine, in the mesenchymal stem cell: A therapeutic approach in colorectal cancer. J Cancer Res Clin Oncol. 149:3149–3160. 2023.PubMed/NCBI View Article : Google Scholar

129 

Lv Q, Xia Q, Li A and Wang Z: circRNA_101277 influences cisplatin resistance of colorectal cancer cells by modulating the miR-370/IL-6 axis. Genet Res (Camb). 2022(4237327)2022.PubMed/NCBI View Article : Google Scholar

130 

Tseng HY, Chen YA, Jen J, Shen PC, Chen LM, Lin TD, Wang YC and Hsu HL: Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis. 6(e313)2017.PubMed/NCBI View Article : Google Scholar

131 

Fisher DT, Appenheimer MM and Evans SS: The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 26:38–47. 2014.PubMed/NCBI View Article : Google Scholar

132 

Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, Tung YC and Hsu HL: MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 18(42)2019.PubMed/NCBI View Article : Google Scholar

133 

Wang Y, van Boxel-Dezaire AHH, Cheon H, Yang J and Stark GR: STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci USA. 110:16975–16980. 2013.PubMed/NCBI View Article : Google Scholar

134 

Levy DE and Darnell JE Jr: Stats: Transcriptional control and biological impact. Nat Rev Mol Cell Biol. 3:651–662. 2002.PubMed/NCBI View Article : Google Scholar

135 

Ochoa Bernal MA, Song Y, Joshi N, Burns GW, Paul EN, Vegter E, Hrbek S, Sempere LF and Fazleabas AT: The regulation of MicroRNA-21 by interleukin-6 and its role in the development of fibrosis in endometriotic lesions. Int J Mol Sci. 25(8994)2024.PubMed/NCBI View Article : Google Scholar

136 

Kanavarioti A, Rehman MH, Qureshi S, Rafiq A and Sultan M: High sensitivity and specificity platform to validate MicroRNA biomarkers in cancer and human diseases. Noncoding RNA. 10(42)2024.PubMed/NCBI View Article : Google Scholar

137 

De A, Powers B, De A, Zhou J, Sharma S, Van Veldhuizen P, Bansal A, Sharma R and Sharma M: Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells. Oncotarget. 7:31484–31500. 2016.PubMed/NCBI View Article : Google Scholar

138 

Guo F, Gao Y, Sui G, Jiao D, Sun L, Fu Q and Jin C: miR-375-3p/YWHAZ/β-catenin axis regulates migration, invasion, EMT in gastric cancer cells. Clin Exp Pharmacol Physiol. 46:144–152. 2019.PubMed/NCBI View Article : Google Scholar

139 

Li F, Yang H, Kong T, Chen S, Li P, Chen L, Cheng J, Cui G and Zhang G: PGAM1, regulated by miR-3614-5p, functions as an oncogene by activating transforming growth factor-β (TGF-β) signaling in the progression of non-small cell lung carcinoma. Cell Death Dis. 11(710)2020.PubMed/NCBI View Article : Google Scholar

140 

Soldevilla B, Lens-Pardo A, Espinosa-Olarte P, Carretero-Puche C, Molina-Pinelo S, Robles C, Benavent M, Gomez-Izquierdo L, Fierro-Fernández M, Morales-Burgo P, et al: MicroRNA signature and integrative omics analyses define prognostic clusters and key pathways driving prognosis in patients with neuroendocrine neoplasms. Mol Oncol. 17:582–597. 2023.PubMed/NCBI View Article : Google Scholar

141 

Peng Y, Zhang X, Feng X, Fan X and Jin Z: The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget. 8:14089–14106. 2017.PubMed/NCBI View Article : Google Scholar

142 

Zhang Y, He H, He L and Shi B: IL-6 accelerates the proliferation and metastasis of pancreatic cancer cells via the miR-455-5p/IGF-1R axis. Cancer Biother Radiopharm. 39:255–263. 2024.PubMed/NCBI View Article : Google Scholar

143 

Yang S and Li D: Role of microRNAs in triple-negative breast cancer and new therapeutic concepts (review). Oncol Lett. 28(431)2024.PubMed/NCBI View Article : Google Scholar

144 

Poon JS, Eves R and Mak AS: Both lipid- and protein-phosphatase activities of PTEN contribute to the p53-PTEN anti-invasion pathway. Cell Cycle. 9:4450–4454. 2010.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo X, Yang S, Cao C and Li D: Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review). Mol Clin Oncol 23: 71, 2025.
APA
Guo, X., Yang, S., Cao, C., & Li, D. (2025). Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review). Molecular and Clinical Oncology, 23, 71. https://doi.org/10.3892/mco.2025.2866
MLA
Guo, X., Yang, S., Cao, C., Li, D."Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review)". Molecular and Clinical Oncology 23.2 (2025): 71.
Chicago
Guo, X., Yang, S., Cao, C., Li, D."Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review)". Molecular and Clinical Oncology 23, no. 2 (2025): 71. https://doi.org/10.3892/mco.2025.2866
Copy and paste a formatted citation
x
Spandidos Publications style
Guo X, Yang S, Cao C and Li D: Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review). Mol Clin Oncol 23: 71, 2025.
APA
Guo, X., Yang, S., Cao, C., & Li, D. (2025). Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review). Molecular and Clinical Oncology, 23, 71. https://doi.org/10.3892/mco.2025.2866
MLA
Guo, X., Yang, S., Cao, C., Li, D."Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review)". Molecular and Clinical Oncology 23.2 (2025): 71.
Chicago
Guo, X., Yang, S., Cao, C., Li, D."Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review)". Molecular and Clinical Oncology 23, no. 2 (2025): 71. https://doi.org/10.3892/mco.2025.2866
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team