
Recent research advances in interleukin, microRNA and neuroendocrine tumor biomarkers (Review)
- Authors:
- Xiaofan Guo
- Shaofeng Yang
- Chunli Cao
- Donghai Li
-
Affiliations: Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China - Published online on: June 17, 2025 https://doi.org/10.3892/mco.2025.2866
- Article Number: 71
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002.PubMed/NCBI View Article : Google Scholar | |
Khandia R and Munjal A: Interplay between inflammation and cancer. Adv Protein Chem Struct Biol. 119:199–245. 2020.PubMed/NCBI View Article : Google Scholar | |
Soler MF, Abaurrea A, Azcoaga P, Araujo AM and Caffarel MM: New perspectives in cancer immunotherapy: Targeting IL-6 cytokine family. J Immunother Cancer. 11(e007530)2023.PubMed/NCBI View Article : Google Scholar | |
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F and Delort L: Crosstalk of inflammatory cytokines within the breast tumor microenvironment. Int J Mol Sci. 24(4002)2023.PubMed/NCBI View Article : Google Scholar | |
Geisler L, Hellberg T, Lambrecht J, Jann H, Knorr J, Eschrich J, Loosen SH, Wree A, Hammerich L, Krieg A, et al: Inflammatory cytokines associated with diagnosis, tumor grade and prognosis in patients with neuroendocrine tumors. J Clin Med. 11(6191)2022.PubMed/NCBI View Article : Google Scholar | |
Cigrovski Berkovic M, Cacev T, Catela Ivkovic T, Zjacic-Rotkvic V and Kapitanovic S: New insights into the role of chronic inflammation and cytokines in the etiopathogenesis of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 99:75–84. 2014.PubMed/NCBI View Article : Google Scholar | |
Chang KT, Tsai CM, Chiou YC, Chiu CH, Jeng KS and Huang CY: IL-6 induces neuroendocrine dedifferentiation and cell proliferation in non-small cell lung cancer cells. Am J Physiol Lung Cell Mol Physiol. 289:L446–L453. 2005.PubMed/NCBI View Article : Google Scholar | |
Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986.PubMed/NCBI View Article : Google Scholar | |
Le Bitoux MA and Stamenkovic I: Tumor-host interactions: The role of inflammation. Histochem Cell Biol. 130:1079–1090. 2008.PubMed/NCBI View Article : Google Scholar | |
Marzagalli M, Ebelt ND and Manuel ER: Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 59:236–250. 2019.PubMed/NCBI View Article : Google Scholar | |
Yi M, Xu L, Jiao Y, Luo S, Li A and Wu K: The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol. 13(25)2020.PubMed/NCBI View Article : Google Scholar | |
Jia Z, Jia J, Yao L and Li Z: Crosstalk of exosomal non-coding RNAs in the tumor microenvironment: Novel frontiers. Front Immunol. 13(900155)2022.PubMed/NCBI View Article : Google Scholar | |
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433:769–773. 2005.PubMed/NCBI View Article : Google Scholar | |
Liang Y, Liu Y, Zhang Q, Zhang H and Du J: Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res. 231:102–112. 2021.PubMed/NCBI View Article : Google Scholar | |
Solé C and Lawrie CH: MicroRNAs in metastasis and the tumour microenvironment. Int J Mol Sci. 22(4859)2021.PubMed/NCBI View Article : Google Scholar | |
Kousar K, Ahmad T, Abduh MS, Kanwal B, Shah SS, Naseer F and Anjum S: miRNAs in regulation of tumor microenvironment, chemotherapy resistance, immunotherapy modulation and miRNA therapeutics in cancer. Int J Mol Sci. 23(13822)2022.PubMed/NCBI View Article : Google Scholar | |
Yin Y, Liu B, Cao Y, Yao S, Liu Y, Jin G, Qin Y, Chen Y, Cui K, Zhou L, et al: Colorectal cancer-derived small extracellular vesicles promote tumor immune evasion by upregulating PD-L1 expression in tumor-associated macrophages. Adv Sci (Weinh). 9(2102620)2022.PubMed/NCBI View Article : Google Scholar | |
Song TY, Long M, Zhao HX, Zou MW, Fan HJ, Liu Y, Geng CL, Song MF, Liu YF, Chen JY, et al: Tumor evolution selectively inactivates the core microRNA machinery for immune evasion. Nat Commun. 12(7003)2021.PubMed/NCBI View Article : Google Scholar | |
Muscogiuri G, Altieri B, Albertelli M, Dotto A, Modica R, Barrea L, Fanciulli G, Feola T, Baldelli R, Ruggeri RM, et al: Epidemiology of pancreatic neuroendocrine neoplasms: A gender perspective. Endocrine. 69:441–450. 2020.PubMed/NCBI View Article : Google Scholar | |
Ruggeri RM, Benevento E, De Cicco F, Fazzalari B, Guadagno E, Hasballa I, Tarsitano MG, Isidori AM, Colao A and Faggiano A: NIKE Group. Neuroendocrine neoplasms in the context of inherited tumor syndromes: A reappraisal focused on targeted therapies. J Endocrinol Invest. 46:213–234. 2023.PubMed/NCBI View Article : Google Scholar | |
Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A and Evans DB: One hundred years after ‘carcinoid’: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 26:3063–3072. 2008.PubMed/NCBI View Article : Google Scholar | |
Vanoli A, La Rosa S, Luinetti O, Klersy C, Manca R, Alvisi C, Rossi S, Trespi E, Zangrandi A, Sessa F, et al: Histologic changes in type A chronic atrophic gastritis indicating increased risk of neuroendocrine tumor development: The predictive role of dysplastic and severely hyperplastic enterochromaffin-like cell lesions. Hum Pathol. 44:1827–1837. 2013.PubMed/NCBI View Article : Google Scholar | |
Modica R, La Salvia A, Liccardi A, Cannavale G, Minotta R, Benevento E, Faggiano A and Colao A: Lipid metabolism and homeostasis in patients with neuroendocrine neoplasms: From risk factor to potential therapeutic target. Metabolites. 12(1057)2022.PubMed/NCBI View Article : Google Scholar | |
Oberg K: Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). Curr Opin Endocrinol Diabetes Obes. 16:72–78. 2009.PubMed/NCBI View Article : Google Scholar | |
Rindi G, Inzani F and Solcia E: Pathology of gastrointestinal disorders. Endocrinol Metab Clin North Am. 39:713–727. 2010.PubMed/NCBI View Article : Google Scholar | |
Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, Zhang L, Thorland EC, Minn KT, Tentu R, et al: The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest. 123:2502–2508. 2013.PubMed/NCBI View Article : Google Scholar | |
Cunningham JL, Díaz de Ståhl T, Sjöblom T, Westin G, Dumanski JP and Janson ET: Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors. Genes Chromosomes Cancer. 50:82–94. 2011.PubMed/NCBI View Article : Google Scholar | |
Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M, Piemonti L, Capurso G, Di Florio A, delle Fave G, et al: Pancreatic endocrine tumors: Expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 28:245–255. 2010.PubMed/NCBI View Article : Google Scholar | |
Ruebel K, Leontovich AA, Stilling GA, Zhang S, Righi A, Jin L and Lloyd RV: MicroRNA expression in ileal carcinoid tumors: Downregulation of microRNA-133a with tumor progression. Mod Pathol. 23:367–375. 2010.PubMed/NCBI View Article : Google Scholar | |
Huang M, Fanciulli G, Wu SQ, Zhang Z and Zhang J: Analysis of the lower incidence of medullary thyroid cancer in China. Chin Med J (Engl). 132:2516–2517. 2019.PubMed/NCBI View Article : Google Scholar | |
Dey A, Varelas X and Guan KL: Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 19:480–494. 2020.PubMed/NCBI View Article : Google Scholar | |
Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S and Koul HK: Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett. 507:112–123. 2021.PubMed/NCBI View Article : Google Scholar | |
Meng Z, Moroishi T and Guan KL: Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–17. 2016.PubMed/NCBI View Article : Google Scholar | |
Mia MM, Cibi DM, Abdul Ghani SAB, Song W, Tee N, Ghosh S, Mao J, Olson EN and Singh MK: YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 18(e3000941)2020.PubMed/NCBI View Article : Google Scholar | |
Manfioletti G and Fedele M: Epithelial-mesenchymal transition (EMT). Int J Mol Sci. 24(11386)2023.PubMed/NCBI View Article : Google Scholar | |
Zheng D, Jin L, Chen B, Qi Y, Bhandari A, Wen J, Lin B, Zhang X and Zhang W: The ETNK2 gene promotes progression of papillary thyroid carcinoma through the HIPPO pathway. J Cancer. 13:508–516. 2022.PubMed/NCBI View Article : Google Scholar | |
Ciarletto AM, Narick C, Malchoff CD, Massoll NA, Labourier E, Haugh K, Mireskandari A, Finkelstein SD and Kumar G: Analytical and clinical validation of pairwise microRNA expression analysis to identify medullary thyroid cancer in thyroid fine-needle aspiration samples. Cancer Cytopathol. 129:239–249. 2021.PubMed/NCBI View Article : Google Scholar | |
Dingemans AC, Früh M, Ardizzoni A, Besse B, Faivre-Finn C, Hendriks LE, Lantuejoul S, Peters S, Reguart N, Rudin CM, et al: Small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up☆. Ann Oncol. 32:839–853. 2021.PubMed/NCBI View Article : Google Scholar | |
Soomro Z, Youssef M, Yust-Katz S, Jalali A, Patel AJ and Mandel J: Paraneoplastic syndromes in small cell lung cancer. J Thorac Dis. 12:6253–6263. 2020.PubMed/NCBI View Article : Google Scholar | |
Pfeiffer M, Hartmann TN, Leick M, Catusse J, Schmitt-Graeff A and Burger M: Alternative implication of CXCR4 in JAK2/STAT3 activation in small cell lung cancer. Br J Cancer. 100:1949–1956. 2009.PubMed/NCBI View Article : Google Scholar | |
Iriki T, Ohnishi K, Fujiwara Y, Horlad H, Saito Y, Pan C, Ikeda K, Mori T, Suzuki M, Ichiyasu H, et al: The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation. Lung Cancer. 106:22–32. 2017.PubMed/NCBI View Article : Google Scholar | |
Lu Y, Li H, Zhao P, Tian L, Liu Y, Sun X and Cheng Y: Dynamic phenotypic reprogramming and chemoresistance induced by lung fibroblasts in small cell lung cancer. Sci Rep. 14(2884)2024.PubMed/NCBI View Article : Google Scholar | |
Lim JS, Ibaseta A, Fischer MM, Cancilla B, O'Young G, Cristea S, Luca VC, Yang D, Jahchan NS, Hamard C, et al: Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 545:360–364. 2017.PubMed/NCBI View Article : Google Scholar | |
Hua J, Wang X, Ma L, Li J, Cao G, Zhang S and Lin W: CircVAPA promotes small cell lung cancer progression by modulating the miR-377-3p and miR-494-3p/IGF1R/AKT axis. Mol Cancer. 21(123)2022.PubMed/NCBI View Article : Google Scholar | |
Delle Fave G, O'Toole D, Sundin A, Taal B, Ferolla P, Ramage JK, Ferone D, Ito T, Weber W, Zheng-Pei Z, et al: ENETS consensus guidelines update for gastroduodenal neuroendocrine neoplasms. Neuroendocrinology. 103:119–124. 2016.PubMed/NCBI View Article : Google Scholar | |
Gluckman CR and Metz DC: Gastric neuroendocrine tumors (carcinoids). Curr Gastroenterol Rep. 21(13)2019.PubMed/NCBI View Article : Google Scholar | |
Tsolakis AV, Ragkousi A, Vujasinovic M, Kaltsas G and Daskalakis K: Gastric neuroendocrine neoplasms type 1: A systematic review and meta-analysis. World J Gastroenterol. 25:5376–5387. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang J, Li D, Cang H and Guo B: Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 8:4709–4721. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, et al: Role of tumor microenvironment in tumorigenesis. J Cancer. 8:761–773. 2017.PubMed/NCBI View Article : Google Scholar | |
Girardi DM, Silva ACB, Rêgo JFM, Coudry RA and Riechelmann RP: Unraveling molecular pathways of poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: A systematic review. Cancer Treat Rev. 56:28–35. 2017.PubMed/NCBI View Article : Google Scholar | |
Duerr EM, Mizukami Y, Ng A, Xavier RJ, Kikuchi H, Deshpande V, Warshaw AL, Glickman J, Kulke MH and Chung DC: Defining molecular classifications and targets in gastroenteropancreatic neuroendocrine tumors through DNA microarray analysis. Endocr Relat Cancer. 15:243–256. 2008.PubMed/NCBI View Article : Google Scholar | |
Korotaeva A, Mansorunov D, Apanovich N, Kuzevanova A and Karpukhin A: MiRNA expression in neuroendocrine neoplasms of frequent localizations. Noncoding RNA. 7(38)2021.PubMed/NCBI View Article : Google Scholar | |
Ahmed M: Gastrointestinal neuroendocrine tumors in 2020. World J Gastrointest Oncol. 12:791–807. 2020.PubMed/NCBI View Article : Google Scholar | |
Stålberg P, Westin G and Thirlwell C: Genetics and epigenetics in small intestinal neuroendocrine tumours. J Intern Med. 280:584–594. 2016.PubMed/NCBI View Article : Google Scholar | |
Ito T, Lee L and Jensen RT: Carcinoid-syndrome: Recent advances, current status and controversies. Curr Opin Endocrinol Diabetes Obes. 25:22–35. 2018.PubMed/NCBI View Article : Google Scholar | |
Di Domenico A, Wiedmer T, Marinoni I and Perren A: Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer. 24:R315–R334. 2017.PubMed/NCBI View Article : Google Scholar | |
Wei ZZ, Yu SP, Lee JH, Chen D, Taylor TM, Deveau TC, Yu AC and Wei L: Regulatory role of the JNK-STAT1/3 signaling in neuronal differentiation of cultured mouse embryonic stem cells. Cell Mol Neurobiol. 34:881–893. 2014.PubMed/NCBI View Article : Google Scholar | |
Walker CD, Long H, Williams S and Richard D: Long-lasting effects of elevated neonatal leptin on rat hippocampal function, synaptic proteins and NMDA receptor subunits. J Neurosci Res. 85:816–828. 2007.PubMed/NCBI View Article : Google Scholar | |
Tang QP, Shen Q, Wu LX, Feng XL, Liu H, Wu B, Huang XS, Wang GQ, Li ZH and Liu ZJ: STAT3 signal that mediates the neural plasticity is involved in willed-movement training in focal ischemic rats. J Zhejiang Univ Sci B. 17:493–502. 2016.PubMed/NCBI View Article : Google Scholar | |
De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald TT, Pallone F, et al: Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 34:3493–3503. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang XY, Chai NL, Linghu EQ, Li HK, Zhai YQ, Feng XX, Zhang WG, Zou JL, Li LS and Xiang JY: Efficacy and safety of hybrid endoscopic submucosal dissection compared with endoscopic submucosal dissection for rectal neuroendocrine tumors and risk factors associated with incomplete endoscopic resection. Ann Transl Med. 8(368)2020.PubMed/NCBI View Article : Google Scholar | |
Osagiede O, Habermann E, Day C, Gabriel E, Merchea A, Lemini R, Jabbal IS and Colibaseanu DT: Factors associated with worse outcomes for colorectal neuroendocrine tumors in radical versus local resections. J Gastrointest Oncol. 11:836–846. 2020.PubMed/NCBI View Article : Google Scholar | |
Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T and Yao JC: Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3:1335–1342. 2017.PubMed/NCBI View Article : Google Scholar | |
Zou J, Chen S, Lian G, Li R, Li Y, Huang K and Chen Y: Prognostic and metastasis-related factors in colorectal neuroendocrine tumors: A cross-sectional study based on the surveillance, epidemiology and end results. Oncol Lett. 18:5129–5138. 2019.PubMed/NCBI View Article : Google Scholar | |
Tran MT: Identification of TIMP1-induced dysregulation of epithelial-mesenchymal transition as a key pathway in inflammatory bowel disease and small intestinal neuroendocrine tumors shared pathogenesis. Front Genet. 15(1376123)2024.PubMed/NCBI View Article : Google Scholar | |
Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.PubMed/NCBI View Article : Google Scholar | |
Inzani F, Petrone G and Rindi G: The new World Health Organization classification for pancreatic neuroendocrine neoplasia. Endocrinol Metab Clin North Am. 47:463–470. 2018.PubMed/NCBI View Article : Google Scholar | |
Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, de Wilde RF, Maitra A, Hicks J, Demarzo AM, et al: Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 36:173–184. 2012.PubMed/NCBI View Article : Google Scholar | |
Cives M, Partelli S, Palmirotta R, Lovero D, Mandriani B, Quaresmini D, Pelle E, Andreasi V, Castelli P, Strosberg J, et al: DAXX mutations as potential genomic markers of malignant evolution in small nonfunctioning pancreatic neuroendocrine tumors. Sci Rep. 9(18614)2019.PubMed/NCBI View Article : Google Scholar | |
Mafficini A and Scarpa A: Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms. Endocr Rev. 40:506–536. 2019.PubMed/NCBI View Article : Google Scholar | |
Conemans EB, Lodewijk L, Moelans CB, Offerhaus GJA, Pieterman CRC, Morsink FH, Dekkers OM, de Herder WW, Hermus AR, van der Horst-Schrivers AN, et al: DNA methylation profiling in MEN1-related pancreatic neuroendocrine tumors reveals a potential epigenetic target for treatment. Eur J Endocrinol. 179:153–160. 2018.PubMed/NCBI View Article : Google Scholar | |
Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, et al: Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 543:65–71. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu GY and Sabatini DM: mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 21:183–203. 2020.PubMed/NCBI View Article : Google Scholar | |
Kim J and Guan KL: mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 21:63–71. 2019.PubMed/NCBI View Article : Google Scholar | |
Elsässer SJ, Allis CD and Lewis PW: Cancer. New epigenetic drivers of cancers. Science. 331:1145–1146. 2011.PubMed/NCBI View Article : Google Scholar | |
Hackeng WM, Brosens LAA, Kim JY, O'Sullivan R, Sung YN, Liu TC, Cao D, Heayn M, Brosnan-Cashman J, An S, et al: Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut. 71:961–973. 2022.PubMed/NCBI View Article : Google Scholar | |
Kidd M, Modlin I and Öberg K: Towards a new classification of gastroenteropancreatic neuroendocrine neoplasms. Nat Rev Clin Oncol. 13:691–705. 2016.PubMed/NCBI View Article : Google Scholar | |
Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, et al: DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 331:1199–1203. 2011.PubMed/NCBI View Article : Google Scholar | |
Li H, Wang X, Hu C, Cui J, Li H, Luo X and Hao Y: IL-6 enhances the activation of PI3K-AKT/mTOR-GSK-3β by upregulating GRPR in hippocampal neurons of autistic mice. J Neuroimmune Pharmacol. 19(12)2024.PubMed/NCBI View Article : Google Scholar | |
Karakaxas D, Sioziou A, Aravantinos G, Coker A, Papanikolaou IS, Liakakos T, Dervenis C and Gazouli M: Genetic polymorphisms of interleukin 1β gene and sporadic pancreatic neuroendocrine tumors susceptibility. World J Gastrointest Oncol. 8:520–525. 2016.PubMed/NCBI View Article : Google Scholar | |
Berković MC, Jokić M, Marout J, Radosević S, Zjacić-Rotkvić V and Kapitanović S: IL-6-174 C/G polymorphism in the gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Exp Mol Pathol. 83:474–479. 2007.PubMed/NCBI View Article : Google Scholar | |
Imam R, Chang Q, Black M, Yu C and Cao W: CD47 expression and CD163+ macrophages correlated with prognosis of pancreatic neuroendocrine tumor. BMC Cancer. 21(320)2021.PubMed/NCBI View Article : Google Scholar | |
Zhong Y, Tian Y, Wang Y, Bai J, Long Q, Yan L, Gong Z, Gao W and Tang Q: Small extracellular vesicle piR-hsa-30937 derived from pancreatic neuroendocrine neoplasms upregulates CD276 in macrophages to promote immune evasion. Cancer Immunol Res. 12:840–853. 2024.PubMed/NCBI View Article : Google Scholar | |
Lu F, Ye M, Shen Y, Xu Y, Hu C, Chen J, Yu P, Xue B, Gu D, Xu L, et al: Hypoxic tumor-derived exosomal miR-4488 induces macrophage M2 polarization to promote liver metastasis of pancreatic neuroendocrine neoplasm through RTN3/FABP5 mediated fatty acid oxidation. Int J Biol Sci. 20:3201–3218. 2024.PubMed/NCBI View Article : Google Scholar | |
Enguita JM, Díaz I, García D, Cubiella T, Chiara MD and Valdés N: Visual analytics identifies key miRNAs for differentiating peripancreatic paraganglioma and pancreatic neuroendocrine tumors. Front Endocrinol (Lausanne). 14(1162725)2023.PubMed/NCBI View Article : Google Scholar | |
Molitch ME: Diagnosis and treatment of pituitary adenomas: A review. JAMA. 317:516–524. 2017.PubMed/NCBI View Article : Google Scholar | |
Mohme M, Riethdorf S and Pantel K: Circulating and disseminated tumour cells-mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 14:155–167. 2017.PubMed/NCBI View Article : Google Scholar | |
Barnes TA and Amir E: HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer. 117:451–460. 2017.PubMed/NCBI View Article : Google Scholar | |
Yagnik G, Rutowski MJ, Shah SS and Aghi MK: Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget. 10:2212–2223. 2019.PubMed/NCBI View Article : Google Scholar | |
Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, et al: Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun. 7(172)2019.PubMed/NCBI View Article : Google Scholar | |
Fujiwara K, Yatabe M, Tofrizal A, Jindatip D, Yashiro T and Nagai R: Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma. Cell Tissue Res. 368:371–378. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 11:3839–3852. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J, Zhang S, Wang Y and Zheng T: The present roles and future perspectives of interleukin-6 in biliary tract cancer. Cytokine. 169(156271)2023.PubMed/NCBI View Article : Google Scholar | |
Wang X, Fang Y, Zhou Y, Guo X, Xu K, Li C, Zhang J and Hong Y: SDF-1α/MicroRNA-134 axis regulates nonfunctioning pituitary neuroendocrine tumor growth via targeting VEGFA. Front Endocrinol (Lausanne). 11(566761)2020.PubMed/NCBI View Article : Google Scholar | |
Zimmermann N, Knief J, Kacprowski T, Lazar-Karsten P, Keck T, Billmann F, Schmid S, Luley K, Lehnert H, Brabant G and Thorns C: MicroRNA analysis of gastroenteropancreatic neuroendocrine tumors and metastases. Oncotarget. 9:28379–28390. 2018.PubMed/NCBI View Article : Google Scholar | |
Zatelli MC, Grossrubatscher EM, Guadagno E, Sciammarella C, Faggiano A and Colao A: Circulating tumor cells and miRNAs as prognostic markers in neuroendocrine neoplasms. Endocr Relat Cancer. 24:R223–R237. 2017.PubMed/NCBI View Article : Google Scholar | |
Yoshimoto T, Motoi N, Yamamoto N, Nagano H, Ushijima M, Matsuura M, Okumura S, Yamaguchi T, Fukayama M and Ishikawa Y: Pulmonary carcinoids and low-grade gastrointestinal neuroendocrine tumors show common MicroRNA expression profiles, different from adenocarcinomas and small cell carcinomas. Neuroendocrinology. 106:47–57. 2018.PubMed/NCBI View Article : Google Scholar | |
Cavalcanti E, Galleggiante V, Coletta S, Stasi E, Chieppa M, Armentano R and Serino G: Altered miRNAs expression correlates with gastroenteropancreatic neuroendocrine tumors grades. Front Oncol. 10(1187)2020.PubMed/NCBI View Article : Google Scholar | |
Butz H and Patócs A: MicroRNAs in endocrine tumors. EJIFCC. 30:146–164. 2019.PubMed/NCBI | |
Nosho K, Igarashi H, Nojima M, Ito M, Maruyama R, Yoshii S, Naito T, Sukawa Y, Mikami M, Sumioka W, et al: Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway. Carcinogenesis. 35:776–783. 2014.PubMed/NCBI View Article : Google Scholar | |
Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX and Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008.PubMed/NCBI View Article : Google Scholar | |
Du X, Zhang J, Wang J, Lin X and Ding F: Role of miRNA in lung cancer-potential biomarkers and therapies. Curr Pharm Des. 23:5997–6010. 2018.PubMed/NCBI View Article : Google Scholar | |
Lobera ES, Varela MA, Jimenez RL and Moreno RB: miRNA as biomarker in lung cancer. Mol Biol Rep. 50:9521–9527. 2023.PubMed/NCBI View Article : Google Scholar | |
Zeng ZL, Zhu Q, Zhao Z, Zu X and Liu J: Magic and mystery of microRNA-32. J Cell Mol Med. 25:8588–8601. 2021.PubMed/NCBI View Article : Google Scholar | |
Maués JHDS, Moreira-Nunes CDFA and Burbano RMR: Computational identification and characterization of new microRNAs in human platelets stored in a blood bank. Biomolecules. 10(1173)2020.PubMed/NCBI View Article : Google Scholar | |
Wang H and Chen YH: microRNA biomarkers in clinical study. Biomolecules. 11(1810)2021.PubMed/NCBI View Article : Google Scholar | |
Duran-Sanchon S, Vila-Navarro E, Marcuello M, Lozano JJ, Muñoz J, Cubiella J, Diez MS, Bujanda L, Lanas A, Jover R, et al: Validation of miR-1228-3p as housekeeping for MicroRNA analysis in liquid biopsies from colorectal cancer patients. Biomolecules. 10(16)2019.PubMed/NCBI View Article : Google Scholar | |
Al-Eitan LN, Alghamdi MA, Tarkhan AH and Al-Qarqaz FA: Gene expression profiling of MicroRNAs in HPV-induced warts and normal skin. Biomolecules. 9(757)2019.PubMed/NCBI View Article : Google Scholar | |
Fahim SA, Abdullah MS, Espinoza-Sánchez NA, Hassan H, Ibrahim AM, Ahmed SH, Shakir G, Badawy MA, Zakhary NI, Greve B, et al: Inflammatory breast carcinoma: Elevated microRNA miR-181b-5p and reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p expression as potential biomarkers with diagnostic value. Biomolecules. 10(1059)2020.PubMed/NCBI View Article : Google Scholar | |
Malczewska A, Kidd M, Matar S, Kos-Kudla B and Modlin IM: A comprehensive assessment of the role of miRNAs as biomarkers in gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 107:73–90. 2018.PubMed/NCBI View Article : Google Scholar | |
Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH and Goggins M: MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 19:3600–3610. 2013.PubMed/NCBI View Article : Google Scholar | |
Thorns C, Schurmann C, Gebauer N, Wallaschofski H, Kümpers C, Bernard V, Feller AC, Keck T, Habermann JK, Begum N, et al: Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res. 34:2249–2254. 2014.PubMed/NCBI | |
Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A and Croce CM: MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 24:4677–4684. 2006.PubMed/NCBI View Article : Google Scholar | |
Wang M, Xia X, Chu W, Xia L, Meng T, Liu L and Liu Y: Roles of miR-186 and PTTG1 in colorectal neuroendocrine tumors. Int J Clin Exp Med. 8:22149–22157. 2015.PubMed/NCBI | |
Mitsuhashi K, Yamamoto I, Kurihara H, Kanno S, Ito M, Igarashi H, Ishigami K, Sukawa Y, Tachibana M, Takahashi H, et al: Analysis of the molecular features of rectal carcinoid tumors to identify new biomarkers that predict biological malignancy. Oncotarget. 6:22114–22125. 2015.PubMed/NCBI View Article : Google Scholar | |
Lloyd KA, Moore AR, Parsons BN, O'Hara A, Boyce M, Dockray GJ, Varro A and Pritchard DM: Gastrin-induced miR-222 promotes gastric tumor development by suppressing p27kip1. Oncotarget. 7:45462–45478. 2016.PubMed/NCBI View Article : Google Scholar | |
Bowden M, Zhou CW, Zhang S, Brais L, Rossi A, Naudin L, Thiagalingam A, Sicinska E and Kulke MH: Profiling of metastatic small intestine neuroendocrine tumors reveals characteristic miRNAs detectable in plasma. Oncotarget. 8:54331–54344. 2017.PubMed/NCBI View Article : Google Scholar | |
Tanaka T, Narazaki M, Masuda K and Kishimoto T: Regulation of IL-6 in immunity and diseases. Adv Exp Med Biol. 941:79–88. 2016.PubMed/NCBI View Article : Google Scholar | |
Jones SA and Jenkins BJ: Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 18:773–789. 2018.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Ding L, Hu Q, Xia J, Sun J, Wang X, Xiong H, Gurbani D, Li L, Liu Y and Liu A: MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis. Mol Cancer. 16(141)2017.PubMed/NCBI View Article : Google Scholar | |
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014.PubMed/NCBI View Article : Google Scholar | |
Cai Z, Li J, Zhuang Q, Zhang X, Yuan A, Shen L, Kang K, Qu B, Tang Y, Pu J, et al: MiR-125a-5p ameliorates monocrotaline-induced pulmonary arterial hypertension by targeting the TGF-β1 and IL-6/STAT3 signaling pathways. Exp Mol Med. 50:1–11. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z and Cao X: Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 185:6226–6233. 2010.PubMed/NCBI View Article : Google Scholar | |
Collins AS, McCoy CE, Lloyd AT, O'Farrelly C and Stevenson NJ: miR-19a: An effective regulator of SOCS3 and enhancer of JAK-STAT signalling. PLoS One. 8(e69090)2013.PubMed/NCBI View Article : Google Scholar | |
Ohta M, Kihara T, Toriuchi K, Aoki H, Iwaki S, Kakita H, Yamada Y and Aoyama M: IL-6 promotes cell adhesion in human endothelial cells via microRNA-126-3p suppression. Exp Cell Res. 393(112094)2020.PubMed/NCBI View Article : Google Scholar | |
Ren W, Zhang X, Li Q, Pu C and Zhang D: Activating IL-6/STAT3 enhances protein stability of proteasome 20S α+ β in colorectal cancer by miR-1254. Biomed Res Int. 2022(4250013)2022.PubMed/NCBI View Article : Google Scholar | |
Peng Y, Wu XJ, Ji XJ, Huang GX, Wu T, Liu X, Yang R, Pi J, Shen HB, Wang FF and Xu JF: Circular RNA circTRAPPC6B enhances IL-6 and IL-1β expression and repolarizes mycobacteria induced macrophages from M2- to M1-like phenotype by targeting miR-892c-3p. J Interferon Cytokine Res. 43:269–279. 2023.PubMed/NCBI View Article : Google Scholar | |
Mahjoor M, Afkhami H, Najafi M, Nasr A and Khorrami S: The role of microRNA-30c in targeting interleukin 6, as an inflammatory cytokine, in the mesenchymal stem cell: A therapeutic approach in colorectal cancer. J Cancer Res Clin Oncol. 149:3149–3160. 2023.PubMed/NCBI View Article : Google Scholar | |
Lv Q, Xia Q, Li A and Wang Z: circRNA_101277 influences cisplatin resistance of colorectal cancer cells by modulating the miR-370/IL-6 axis. Genet Res (Camb). 2022(4237327)2022.PubMed/NCBI View Article : Google Scholar | |
Tseng HY, Chen YA, Jen J, Shen PC, Chen LM, Lin TD, Wang YC and Hsu HL: Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis. 6(e313)2017.PubMed/NCBI View Article : Google Scholar | |
Fisher DT, Appenheimer MM and Evans SS: The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 26:38–47. 2014.PubMed/NCBI View Article : Google Scholar | |
Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, Tung YC and Hsu HL: MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 18(42)2019.PubMed/NCBI View Article : Google Scholar | |
Wang Y, van Boxel-Dezaire AHH, Cheon H, Yang J and Stark GR: STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci USA. 110:16975–16980. 2013.PubMed/NCBI View Article : Google Scholar | |
Levy DE and Darnell JE Jr: Stats: Transcriptional control and biological impact. Nat Rev Mol Cell Biol. 3:651–662. 2002.PubMed/NCBI View Article : Google Scholar | |
Ochoa Bernal MA, Song Y, Joshi N, Burns GW, Paul EN, Vegter E, Hrbek S, Sempere LF and Fazleabas AT: The regulation of MicroRNA-21 by interleukin-6 and its role in the development of fibrosis in endometriotic lesions. Int J Mol Sci. 25(8994)2024.PubMed/NCBI View Article : Google Scholar | |
Kanavarioti A, Rehman MH, Qureshi S, Rafiq A and Sultan M: High sensitivity and specificity platform to validate MicroRNA biomarkers in cancer and human diseases. Noncoding RNA. 10(42)2024.PubMed/NCBI View Article : Google Scholar | |
De A, Powers B, De A, Zhou J, Sharma S, Van Veldhuizen P, Bansal A, Sharma R and Sharma M: Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells. Oncotarget. 7:31484–31500. 2016.PubMed/NCBI View Article : Google Scholar | |
Guo F, Gao Y, Sui G, Jiao D, Sun L, Fu Q and Jin C: miR-375-3p/YWHAZ/β-catenin axis regulates migration, invasion, EMT in gastric cancer cells. Clin Exp Pharmacol Physiol. 46:144–152. 2019.PubMed/NCBI View Article : Google Scholar | |
Li F, Yang H, Kong T, Chen S, Li P, Chen L, Cheng J, Cui G and Zhang G: PGAM1, regulated by miR-3614-5p, functions as an oncogene by activating transforming growth factor-β (TGF-β) signaling in the progression of non-small cell lung carcinoma. Cell Death Dis. 11(710)2020.PubMed/NCBI View Article : Google Scholar | |
Soldevilla B, Lens-Pardo A, Espinosa-Olarte P, Carretero-Puche C, Molina-Pinelo S, Robles C, Benavent M, Gomez-Izquierdo L, Fierro-Fernández M, Morales-Burgo P, et al: MicroRNA signature and integrative omics analyses define prognostic clusters and key pathways driving prognosis in patients with neuroendocrine neoplasms. Mol Oncol. 17:582–597. 2023.PubMed/NCBI View Article : Google Scholar | |
Peng Y, Zhang X, Feng X, Fan X and Jin Z: The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget. 8:14089–14106. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, He H, He L and Shi B: IL-6 accelerates the proliferation and metastasis of pancreatic cancer cells via the miR-455-5p/IGF-1R axis. Cancer Biother Radiopharm. 39:255–263. 2024.PubMed/NCBI View Article : Google Scholar | |
Yang S and Li D: Role of microRNAs in triple-negative breast cancer and new therapeutic concepts (review). Oncol Lett. 28(431)2024.PubMed/NCBI View Article : Google Scholar | |
Poon JS, Eves R and Mak AS: Both lipid- and protein-phosphatase activities of PTEN contribute to the p53-PTEN anti-invasion pathway. Cell Cycle. 9:4450–4454. 2010.PubMed/NCBI View Article : Google Scholar |