|
1
|
Grada AA and Phillips TJ: Lymphedema:
Pathophysiology and clinical manifestations. J Am Acad Dermatol.
77:1009–1020. 2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hu LR and Pan J: Adipose-derived stem cell
therapy shows promising results for secondary lymphedema. World J
Stem Cells. 12:612–620. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Vargo M, Aldrich M, Donahue P, Iker E,
Koelmeyer L, Crescenzi R and Cheville A: Current diagnostic and
quantitative techniques in the field of lymphedema management: A
critical review. Med Oncol. 41(241)2024.PubMed/NCBI View Article : Google Scholar
|
|
4
|
McLaughlin SA, Brunelle CL and Taghian A:
Breast cancer-related lymphedema: Risk factors, screening,
management, and the impact of locoregional treatment. J Clin Oncol.
38:2341–2350. 2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Aguilera-Eguía RA, Seron P,
Gutiérrez-Arias R and Zaror C: Which physical therapy intervention
is most effective in reducing secondary lymphoedema associated with
breast cancer? Protocol for a systematic review and network
meta-analysis. BMJ Open. 12(e065045)2022.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zhang H, Wang L, Chen Y, Wu Q, Chen G,
Shen X, Wang Q, Yan Y, Yu Y, Zhong Y, et al: Outcomes of novel
coronavirus disease 2019 (COVID-19) infection in 107 patients with
cancer from Wuhan, China. Cancer. 126:4023–4031. 2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Jariwala P and Kaur N: A descriptive study
on prevalence of arm/shoulder problems and its impact on quality of
life in breast cancer survivors. Indian J Cancer. 58:201–206.
2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Hasenoehrl T, Palma S, Ramazanova D, Kölbl
H, Dorner TE, Keilani M and Crevenna R: Resistance exercise and
breast cancer-related lymphedema-a systematic review update and
meta-analysis. Support Care Cancer. 28:3593–3603. 2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
DiSipio T, Rye S, Newman B and Hayes S:
Incidence of unilateral arm lymphoedema after breast cancer: A
systematic review and meta-analysis. Lancet Oncol. 14:500–515.
2013.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Dessources K, Aviki E and Leitao MM Jr:
Lower extremity lymphedema in patients with gynecologic
malignancies. Int J Gynecol Cancer. 30:252–260. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Bruno C, Cesta CE, Hjellvik V, Ulrichsen
SP, Bjørk MH, Esen B, Gillies MB, Gissler M, Havard A, Karlstad Ø,
et al: Corrigendum to Antipsychotic use during pregnancy and risk
of specific neurodevelopmental disorders and learning difficulties
in children: A multinational cohort study [eClinicalMedicine 70
(2024) 102531/DOI: 10.1016/j.eclinm.2024.102531]. EClinicalMedicine
81: 103139, 2025.
|
|
13
|
Hassan AM, Fisher CS and Hassanein AH: ASO
author reflections: navigating the nuances of lymphedema prevention
with immediate lymphatic reconstruction. Ann Surg Oncol: Apr 20,
2025 (Epub ahead of print).
|
|
14
|
Bouhali S, Merchant F, Karni RJ, Gutierrez
C and Rasmussen JC: 3D rendering and analysis of dermal backflow as
an early indicator of cancer-acquired lymphedema using RGB-D and
near-infrared fluorescence lymphatic imaging. Proc SPIE 12930,
Medical Imaging 2024: Clinical and Biomedical Imaging, 1293008,
2024.
|
|
15
|
Frueh FS, Körbel C, Gassert L, Müller A,
Gousopoulos E, Lindenblatt N, Giovanoli P, Laschke MW and Menger
MD: High-resolution 3D volumetry versus conventional measuring
techniques for the assessment of experimental lymphedema in the
mouse hindlimb. Sci Rep. 6(34673)2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Wang N, Liao C, Cao X, Nishimura M,
Brackenier YWE, Yurt M, Gao M, Abraham D, Alkan C, Iyer SS, et al:
Spherical echo-planar time-resolved imaging (sEPTI) for rapid 3D
quantitative T2* and susceptibility imaging.
Magn Reson Med. 93:121–137. 2025.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Xie K, Jiang H, Chen X, Ning Y, Yu Q, Lv
F, Liu R, Zhou Y, Xu L, Yue Q and Peng J: Multiparameter MRI-based
model integrating radiomics and deep learning for preoperative
staging of laryngeal squamous cell carcinoma. Sci Rep.
15(16239)2025.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Rogan S, Taeymans J, Luginbuehl H, Aebi M,
Mahnig S and Gebruers N: Therapy modalities to reduce lymphoedema
in female breast cancer patients: A systematic review and
meta-analysis. Breast Cancer Res Treat. 159:1–14. 2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Gao Y, Ma T, Han M, Yu M and Wang X, Lv Y
and Wang X: Effects of acupuncture and moxibustion on breast
cancer-related lymphedema: A systematic review and meta-analysis of
randomized controlled trials. Integr Cancer Ther.
20(15347354211044107)2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Keeley V: Advances in understanding and
management of lymphoedema (cancer, primary). Curr Opin Support
Palliat Care. 11:355–360. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Raju A and Chang DW: Vascularized lymph
node transfer for treatment of lymphedema: A comprehensive
literature review. Ann Surg. 261:1013–1023. 2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
No authors listed. Successful mesenchymal
stem cell treatment of leg ulcers complicated by Behcet disease: A
case report and literature review: Erratum. Medicine (Baltimore).
97(e0670)2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Toyserkani NM, Christensen ML, Sheikh SP
and Sørensen JA: Stem cells show promising results for lymphoedema
treatment-a literature review. J Plast Surg Hand Surg. 49:65–71.
2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Das M, Mayilsamy K, Mohapatra SS and
Mohapatra S: Mesenchymal stem cell therapy for the treatment of
traumatic brain injury: Progress and prospects. Rev Neurosci.
30:839–855. 2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Pittenger MF, Discher DE, Péault BM,
Phinney DG, Hare JM and Caplan AI: Mesenchymal stem cell
perspective: Cell biology to clinical progress. NPJ Regen Med.
4(22)2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Jensen MR, Simonsen L, Karlsmark T and
Bülow J: Microvascular filtration is increased in the forearms of
patients with breast cancer-related lymphedema. J Appl Physiol
(1985). 114:19–27. 2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Castilla DM, Liu ZJ, Tian R, Li Y,
Livingstone AS and Velazquez OC: A novel autologous cell-based
therapy to promote diabetic wound healing. Ann Surg. 256:560–572.
2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Wariss BR, de Souza Abrahão K, de Aguiar
SS, Bergmann A and Thuler LCS: Effectiveness of four inflammatory
markers in predicting prognosis in 2374 women with breast cancer.
Maturitas. 101:51–56. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Cong C, Rao C, Ma Z, Yu M, He Y, He Y, Hao
Z, Li C, Lou H and Gao D: ‘Nano-lymphatic’ photocatalytic
water-splitting for relieving tumor interstitial fluid pressure and
achieving hydrodynamic therapy†. Mater Horiz. 7:3266–3274.
2020.
|
|
30
|
Zhuang T, Lei Y, Chang JJ, Zhou YP, Li Y,
Li YX, Yang YF, Chen MH, Meng T, Fu SM, et al: A2AR-mediated
lymphangiogenesis via VEGFR2 signaling prevents salt-sensitive
hypertension. Eur Heart J. 44:2730–2742. 2023.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Schoofs H, Daubel N, Schnabellehner S,
Grönloh MLB, Palacios Martínez S, Halme A, Marks AM, Jeansson M,
Barcos S, Brakebusch C, et al: Dynamic cytoskeletal regulation of
cell shape supports resilience of lymphatic endothelium. Nature.
641:465–475. 2025.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Chen CE, Chiang NJ, Perng CK, Ma H and Lin
CH: Review of preclinical and clinical studies of using cell-based
therapy for secondary lymphedema. J Surg Oncol. 121:109–120.
2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Avraham T, Zampell JC, Yan A, Elhadad S,
Weitman ES, Rockson SG, Bromberg J and Mehrara BJ: Th2
differentiation is necessary for soft tissue fibrosis and lymphatic
dysfunction resulting from lymphedema. FASEB J. 27:1114–1126.
2013.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Nishioka T, Katayama KI, Kumegawa S, Isono
K, Baba T, Tsujimoto H, Yamada G, Inoue N and Asamura S: Increased
infiltration of CD4+ T cell in the complement deficient
lymphedema model. BMC Immunol. 24(42)2023.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Uemura K, Katayama KI, Nishioka T,
Watanabe H, Yamada G, Inoue N and Asamura S: Dynamics of immune
cell infiltration and fibroblast-derived IL-33/ST2 axis induction
in a mouse model of post-surgical lymphedema. Int J Mol Sci.
26(1371)2025.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ogata F, Fujiu K, Matsumoto S, Nakayama Y,
Shibata M, Oike Y, Koshima I, Watabe T, Nagai R and Manabe I:
Excess lymphangiogenesis cooperatively induced by macrophages and
CD4(+) T cells drives the pathogenesis of lymphedema. J Invest
Dermatol. 136:706–714. 2016.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ogino R, Yokooji T, Hayashida M, Suda S,
Yamakawa S and Hayashida K: Emerging anti-inflammatory
pharmacotherapy and cell-based therapy for lymphedema. Int J Mol
Sci. 23(7614)2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Higgins ET, Busse WW, Esnault S, Christian
BT, Klaus DR, Bach JC, Frye CJ and Rosenkranz MA: Fueling the fire
in the lung-brain axis: The salience network connects
allergen-provoked TH17 responses to psychological stress in asthma.
Brain Behav Immun. 128:276–288. 2025.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
39
|
De Castro V, Abdellaoui O, Dehecq B, Ndao
B, Mercier-Letondal P, Dauvé A, Garnache-Ottou F, Adotévi O, Loyon
R and Godet Y: Characterization of the aryl hydrocarbon receptor as
a potential candidate to improve cancer T cell therapies. Cancer
Immunol Immunother. 74(200)2025.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Li H, Wu Y, Song XH, Li CX, Cai Y and Chen
C: Expression of Th1 and Th2 cytokines in serum of patients with
lupus nephritis. Mod Prev Med. 40 746:2013.
|
|
41
|
Zhu Q, Yang H, Altaf F, Wu N, Hu Y, Su L,
Li J, Liu J, Wang G, Igbiriki DG, et al: SOCS8 deficiency models
MAFLD-like progression in the zebrafish gut-liver axis. Water
Biology and Security. Elsevier, pp100414, 2025.
|
|
42
|
Lee SO and Kim IK: Molecular
pathophysiology of secondary lymphedema. Front Cell Dev Biol.
12(1363811)2024.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Duhon BH, Phan TT, Taylor SL, Crescenzi RL
and Rutkowski JM: Current mechanistic understandings of lymphedema
and lipedema: Tales of fluid, fat, and fibrosis. Int J Mol Sci.
23(6621)2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Peña Quián Y, Hernández Ramirez P, Batista
Cuellar JF, Perera Pintado A and Coca Pérez MA: Lymphoscintigraphy
for the assessment of autologous stem cell implantation in chronic
lymphedema. Clin Nucl Med. 40:217–219. 2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Toyserkani NM, Jensen CH, Tabatabaeifar S,
Jørgensen MG, Hvidsten S, Simonsen JA, Andersen DC, Sheikh SP and
Sørensen JA: Adipose-derived regenerative cells and fat grafting
for treating breast cancer-related lymphedema: Lymphoscintigraphic
evaluation with 1 year of follow-up. J Plast Reconstr Aesthet Surg.
72:71–77. 2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Jørgensen MG, Toyserkani NM, Hansen FCG,
Thomsen JB and Sørensen JA: Prospective validation of indocyanine
green lymphangiography staging of breast cancer-related lymphedema.
Cancers (Basel). 13(1540)2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Kern S, Eichler H, Stoeve J, Klüter H and
Bieback K: Comparative analysis of mesenchymal stem cells from bone
marrow, umbilical cord blood, or adipose tissue. Stem Cells.
24:1294–1301. 2006.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Yu SJ, Kim HJ, Lee ES, Park CG, Cho SJ and
Jeon SH: β-catenin accumulation is associated with increased
expression of nanog protein and predicts maintenance of MSC
self-renewal. Cell Transplant. 26:365–377. 2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Zuk PA, Zhu M, Ashjian P, De Ugarte DA,
Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P and Hedrick
MH: Human adipose tissue is a source of multipotent stem cells. Mol
Biol Cell. 13:4279–4295. 2002.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Le Blanc K and Ringdén O: Immunomodulation
by mesenchymal stem cells and clinical experience. J Intern Med.
262:509–525. 2007.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Hassanein AH, Sinha M, Neumann CR, Mohan
G, Khan I and Sen CK: A murine tail lymphedema model. J Vis Exp.
(10.3791/61848)2021.PubMed/NCBI View
Article : Google Scholar
|
|
52
|
Arruda G, Ariga S, de Lima TM, Souza HP
and Andrade M: A modified mouse-tail lymphedema model. Lymphology.
53:29–37. 2020.PubMed/NCBI
|
|
53
|
Yu J and Guo W: Modern medical progress of
peripheral lymphedema treated by integrated traditional Chinese and
western medicine. Adv Clin Med. 12:4228–4234. 2022.
|
|
54
|
Hou C, Wu X and Jin X: Autologous bone
marrow stromal cells transplantation for the treatment of secondary
arm lymphedema: A prospective controlled study in patients with
breast cancer related lymphedema. Jpn J Clin Oncol. 38:670–674.
2008.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Zhou H, Wang M, Hou C, Jin X and Wu X:
Exogenous VEGF-C augments the efficacy of therapeutic
lymphangiogenesis induced by allogenic bone marrow stromal cells in
a rabbit model of limb secondary lymphedema. Jpn J Clin Oncol.
41:841–846. 2011.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Ismail AM, Abdou SM, Abdelnaby AY, Hamdy
MA, El Saka AA and Gawaly A: Stem cell therapy using bone
marrow-derived mononuclear cells in treatment of lower limb
lymphedema: A randomized controlled clinical trial. Lymphat Res
Biol. 16:270–277. 2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Weigand A, Beier JP, Arkudas A, Al-Abboodi
M, Polykandriotis E, Horch RE and Boos AM: The arteriovenous (AV)
loop in a small animal model to study angiogenesis and vascularized
tissue engineering. J Vis Exp. (54676)2016.PubMed/NCBI View
Article : Google Scholar
|
|
58
|
Boos AM, Loew JS, Weigand A, Deschler G,
Klumpp D, Arkudas A, Bleiziffer O, Gulle H, Kneser U, Horch RE and
Beier JP: Engineering axially vascularized bone in the sheep
arteriovenous-loop model. J Tissue Eng Regen Med. 7:654–664.
2013.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Weigand A, Horch RE, Boos AM, Beier JP and
Arkudas A: The arteriovenous loop: Engineering of axially
vascularized tissue. Eur Surg Res. 59:286–299. 2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Robering JW, Al-Abboodi M, Titzmann A,
Horn I, Beier JP, Horch RE, Kengelbach-Weigand A and Boos AM:
Tissue engineering of lymphatic vasculature in the arteriovenous
loop model of the rat. Tissue Eng Part A. 27:129–141.
2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Levi B, Glotzbach JP, Sorkin M, Hyun J,
Januszyk M, Wan DC, Li S, Nelson ER, Longaker MT and Gurtner GC:
Molecular analysis and differentiation capacity of adipose-derived
stem cells from lymphedema tissue. Plast Reconstr Surg.
132:580–589. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Dhumale P, Nielsen JV, Hansen ACS, Burton
M, Beck HC, Jørgensen MG, Toyserkani NM, Haahr MK, Hansen ST, Lund
L, et al: CD31 defines a subpopulation of human adipose-derived
regenerative cells with potent angiogenic effects. Sci Rep.
13(14401)2023.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Ackermann M, Wettstein R, Senaldi C,
Kalbermatten DF, Konerding MA, Raffoul W and Erba P: Impact of
platelet rich plasma and adipose stem cells on lymphangiogenesis in
a murine tail lymphedema model. Microvasc Res. 102:78–85.
2015.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Hayashida K, Yoshida S, Yoshimoto H,
Fujioka M, Saijo H, Migita K, Kumaya M and Akita S: Adipose-derived
stem cells and vascularized lymph node transfers successfully treat
mouse hindlimb secondary lymphedema by early reconnection of the
lymphatic system and lymphangiogenesis. Plast Reconstr Surg.
139:639–651. 2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Ogino R, Hayashida K, Yamakawa S and
Morita E: Adipose-derived stem cells promote intussusceptive
lymphangiogenesis by restricting dermal fibrosis in irradiated
tissue of mice. Int J Mol Sci. 21(3885)2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Dai T, Jiang Z, Cui C, Sun Y, Lu B, Li H,
Cao W, Chen B, Li S and Guo L: The roles of
podoplanin-positive/podoplanin-negative cells from adipose-derived
stem cells in lymphatic regeneration. Plast Reconstr Surg.
145:420–431. 2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Jørgensen MG, Toyserkani NM, Jensen CH,
Andersen DC, Sheikh SP and Sørensen JA: Adipose-derived
regenerative cells and lipotransfer in alleviating breast
cancer-related lymphedema: An open-label phase I trial with 4 years
of follow-up. Stem Cells Transl Med. 10:844–854. 2021.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Yang S, Sun Y and Yan C: Recent advances
in the use of extracellular vesicles from adipose-derived stem
cells for regenerative medical therapeutics. J Nanobiotechnology.
22(316)2024.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Kasseroller RG and Brenner E:
Effectiveness of manual lymphatic drainage in intensive phase I
therapy of breast cancer-related lymphedema-a retrospective
analysis. Support Care Cancer. 32(5)2023.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Tashiro K, Yoshioka Y and Ochiya T:
Extracellular vesicles from adipose-derived stem cells relieve
extremity lymphedema in mouse models. Plast Reconstr Surg.
152:1011–1021. 2023.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Cheng X, Henick BS and Cheng K: Anticancer
therapy targeting cancer-derived extracellular vesicles. ACS Nano.
18:6748–6765. 2024.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Yuan Z, Zhu Z, Zhu F, Ding F, Wang Y, Wang
X, Luo X, Yang J, Liu F and Sun D: Impact of human adipose
tissue-derived stem cells on dermatofibrosarcoma protuberans cells
in an indirect co-culture: An in vitro study. Stem Cell Res Ther.
12(440)2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Diao X, Guo C, Zheng H, Zhao K, Luo Y, An
M, Lin Y, Chen J, Li Y, Li Y, et al: SUMOylation-triggered ALIX
activation modulates extracellular vesicles circTLCD4-RWDD3 to
promote lymphatic metastasis of non-small cell lung cancer. Signal
Transduct Target Ther. 8(426)2023.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Li Y, Zheng H, Luo Y, Lin Y, An M, Kong Y,
Zhao Y, Yin Y, Ai L, Huang J and Chen C: An HGF-dependent positive
feedback loop between bladder cancer cells and fibroblasts mediates
lymphangiogenesis and lymphatic metastasis. Cancer Commun (Lond).
43:1289–1311. 2023.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Zhang HF, Wang YL, Tan YZ, Wang HJ, Tao P
and Zhou P: Enhancement of cardiac lymphangiogenesis by
transplantation of CD34+VEGFR-3+ endothelial
progenitor cells and sustained release of VEGF-C. Basic Res
Cardiol. 114(43)2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Kawai Y, Shiomi H, Abe H, Naka S, Kurumi Y
and Tani T: Cell transplantation therapy for a rat model of
secondary lymphedema. J Surg Res. 189:184–191. 2014.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Deng J, Dai T, Sun Y, Zhang Q, Jiang Z, Li
S and Cao W: Overexpression of Prox1 induces the differentiation of
human adipose-derived stem cells into lymphatic endothelial-like
cells in vitro. Cell Reprogram. 19:54–63. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ou HX, Guo BB, Liu Q, Li YK, Yang Z, Feng
WJ and Mo ZC: Regulatory T cells as a new therapeutic target for
atherosclerosis. Acta Pharmacol Sin. 39:1249–1258. 2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Chen DB: Experimental study of bone marrow
mesenchymal stem cells (BMSCs) promoting hematopoietic
reconstruction and immune regulation POST-HSCT. Fujian Medical
University, 2022.
|
|
80
|
Salek Farrokhi A, Zarnani AH, Rezaei
Kahmini F and Moazzeni SM: Mesenchymal stem cells induce expansion
of regulatory T cells in abortion-prone mice. Reproduction.
161:477–487. 2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Gousopoulos E, Proulx ST, Bachmann SB,
Scholl J, Dionyssiou D, Demiri E, Halin C, Dieterich LC and Detmar
M: Regulatory T cell transfer ameliorates lymphedema and promotes
lymphatic vessel function. JCI Insight. 1(e89081)2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Choi G, Na H, Kuen DS, Kim BS and Chung Y:
Autocrine TGF-β1 maintains the stability of Foxp3+
regulatory T cells via IL-12Rβ2 downregulation. Biomolecules.
10(819)2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Christofi P, Pantazi C, Psatha N,
Sakellari I, Yannaki E and Papadopoulou A: Promises and pitfalls of
next-generation treg adoptive immunotherapy. Cancers (Basel).
15(5877)2023.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Mao LL, Yuan H, Wang WW, Wang YJ, Yang MF,
Sun BL, Zhang ZY and Yang XY: Adoptive regulatory T-cell therapy
attenuates perihematomal inflammation in a mouse model of
experimental intracerebral hemorrhage. Cell Mol Neurobiol.
37:919–929. 2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Ehyaeeghodraty V, Molavi B, Nikbakht M,
Malek Mohammadi A, Mohammadi S, Ehyaeeghodraty N, Fallahi B,
Mousavi SA, Vaezi M and Sefidbakht S: Effects of mobilized
peripheral blood stem cells on treatment of primary lower extremity
lymphedema. J Vasc Surg Venous Lymphat Disord. 8:445–451.
2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Białobrzeska M, Stępniewski J, Martyniak
A, Szuba A and Dulak J: Generation of human induced pluripotent
stem cell line from peripheral blood of patient with
lymphedema-distichiasis syndrome. Stem Cell Res.
85(103693)2025.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Ren Y, Kebede MA, Ogunleye AA, Emerson MA,
Evenson KR, Carey LA, Hayes SC and Troester MA: Burden of
lymphedema in long-term breast cancer survivors by race and age.
Cancer. 128:4119–4128. 2022.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Huang Y, Luo L, Xu Y, Li J, Wu Z, Zhao C,
Wen J, Jiang P, Zhu H, Wang L, et al: UHRF1-mediated epigenetic
reprogramming regulates glycolysis to promote progression of B-cell
acute lymphoblastic leukemia. Cell Death Dis.
16(351)2025.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Deng Y, Lin A, Lai C, He W, Li J, Zhang N,
Huang S, Tong L, Lai Y, Huo Y and Xu J: Combined inhibition of
importin-β and PBR enhances osteogenic differentiation of BMSCs by
reducing nuclear accumulation of glucocorticoid receptor and
promoting its mitochondrial translocation. J Steroid Biochem Mol
Biol. 250(106731)2025.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Liu Y, Xu W, Liu G, Ma L and Li Z:
Therapeutic efficacy of autologous bone marrow mesenchymal stem
cell transplantation in patients with spinal cord injury: A
meta-analysis. EFORT Open Rev. 10:309–315. 2025.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Xiang Q, Xu F, Li Y, Liu X, Chen Q, Huang
J, Yu N, Zeng Z, Yuan M, Zhang Q, et al: Transcriptome analysis and
functional identification of adipose-derived mesenchymal stem cells
in secondary lymphedema. Gland Surg. 9:558–574. 2020.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Volarevic V, Markovic BS, Gazdic M,
Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako
M and Stojkovic M: Ethical and safety issues of stem cell-based
therapy. Int J Med Sci. 15:36–45. 2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Yoon YS, Park JS, Tkebuchava T, Luedeman C
and Losordo DW: Unexpected severe calcification after
transplantation of bone marrow cells in acute myocardial
infarction. Circulation. 109:3154–3157. 2004.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Lan T, Luo M and Wei X: Mesenchymal
stem/stromal cells in cancer therapy. J Hematol Oncol.
14(195)2021.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Ljujic B, Milovanovic M, Volarevic V,
Murray B, Bugarski D, Przyborski S, Arsenijevic N, Lukic ML and
Stojkovic M: Human mesenchymal stem cells creating an
immunosuppressive environment and promote breast cancer in mice.
Sci Rep. 3(2298)2013.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Marcella S, Braile M, Grimaldi AM,
Soricelli A and Smaldone G: Exploring thymic stromal lymphopoietin
in the breast cancer microenvironment: A preliminary study. Oncol
Lett. 29(182)2025.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Zang L, Li Y, Hao H, Liu J, Cheng Y, Li B,
Yin Y, Zhang Q, Gao F, Wang H, et al: Efficacy and safety of
umbilical cord-derived mesenchymal stem cells in Chinese adults
with type 2 diabetes: A single-center, double-blinded, randomized,
placebo-controlled phase II trial. Stem Cell Res Ther.
13(180)2022.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Astori G, Amati E, Bambi F, Bernardi M,
Chieregato K, Schäfer R, Sella S and Rodeghiero F: Platelet lysate
as a substitute for animal serum for the ex-vivo expansion of
mesenchymal stem/stromal cells: Present and future. Stem Cell Res
Ther. 7(93)2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Thongsit A, Oontawee S, Siriarchavatana P,
Rodprasert W, Somparn P, Na Nan D, Osathanon T, Egusa H and
Sawangmake C: Scalable production of anti-inflammatory exosomes
from three-dimensional cultures of canine adipose-derived
mesenchymal stem cells: Production, stability, bioactivity, and
safety assessment. BMC Vet Res. 21(81)2025.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Xie X, Song Q, Dai C, Cui S, Tang R, Li S,
Chang J, Li P, Wang J, Li J, et al: Clinical safety and efficacy of
allogenic human adipose mesenchymal stromal cells-derived exosomes
in patients with mild to moderate Alzheimer's disease: A phase I/II
clinical trial. Gen Psychiatr. 36(e101143)2023.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Chu M, Wang H, Bian L, Huang J, Wu D,
Zhang R, Fei F, Chen Y and Xia J: Nebulization therapy with
umbilical cord mesenchymal stem cell-derived exosomes for COVID-19
pneumonia. Stem Cell Rev Rep. 18:2152–2163. 2022.PubMed/NCBI View Article : Google Scholar
|