|
1
|
Nurgali K, Jagoe RT and Abalo R: Adverse
effects of cancer chemotherapy: Anything new to improve tolerance
and reduce sequelae? Front Pharmacol. 9(245)2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Pearce A, Haas M, Viney R, Pearson SA,
Haywood P, Brown C and Ward R: Incidence and severity of
self-reported chemotherapy side effects in routine care: A
prospective cohort study. PLoS One. 12(e0184360)2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Vasan N, Baselga J and Hyman DM: A view on
drug resistance in cancer. Nature. 575:299–309. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Wang X, Zhang H and Chen X: Drug
resistance and combating drug resistance in cancer. Cancer Drug
Resist. 2:141–160. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Goodall GJ and Wickramasinghe VO: RNA in
cancer. Nat Rev Cancer. 21:22–36. 2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zhang Y, Tang J, Wang C, Zhang Q, Zeng A
and Song L: Autophagy-related lncRNAs in tumor progression and drug
resistance: A double-edged sword. Genes Dis. 11:367–381.
2023.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Anastasiadou E, Jacob LS and Slack FJ:
Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18.
2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Yan H and Bu P: Non-coding RNA in cancer.
Essays Biochem. 65:625–639. 2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Mitra R, Adams C and Eischen C: Decoding
the lncRNAome across diverse cellular stresses reveals core
p53-effector pan-cancer suppressive lncRNAs. Cancer Res Commun.
3:842–859. 2023.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Guo Q, Liu Q, He D, Xin M, Dai Y, Sun R,
Li H, Zhang Y, Li J, Kong C, et al: LnCeCell 2.0: An updated
resource for lncRNA-associated ceRNA networks and web tools based
on single-cell and spatial transcriptomics sequencing data. Nucleic
Acids Res. 53:D107–D115. 2025.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Slack FJ and Chinnaiyan AM: The role of
non-coding RNAs in oncology. Cell. 179:1033–1055. 2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Adams D, Gonzalez-Duarte A, O'Riordan WD,
Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk
JL, et al: Patisiran, an RNAi therapeutic, for hereditary
transthyretin amyloidosis. N Engl J Med. 379:11–21. 2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xu C, Haque F, Jasinski DL, Binzel DW, Shu
D and Guo P: Favorable biodistribution, specific targeting and
conditional endosomal escape of RNA nanoparticles in cancer
therapy. Cancer Lett. 414:57–70. 2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Naeli P, Winter T, Hackett AP, Alboushi L
and Jafarnejad SM: The intricate balance between microRNA-induced
mRNA decay and translational repression. FEBS J. 290:2508–2524.
2023.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Nejad C, Stunden HJ and Gantier MP: A
guide to miRNAs in inflammation and innate immune responses. FEBS
J. 285:3695–3716. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA
language? Cell. 146:353–358. 2011.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zelli V, Compagnoni C, Capelli R, Corrente
A, Cornice J, Vecchiotti D, Di Padova M, Zazzeroni F, Alesse E and
Tessitore A: Emerging role of isomiRs in cancer: State of the art
and recent advances. Genes (Basel). 12(1447)2021.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Kim GD, Shin SI, Jung SW, An H, Choi SY,
Eun M, Jun CD, Lee S and Park J: Cell type- and age-specific
expression of lncRNAs across kidney cell types. J Am Soc Nephrol.
35:870–885. 2024.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Bosia C, Pagnani A and Zecchina R:
Modelling competing endogenous RNA networks. PLoS One.
8(e66609)2013.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Wagner V, Meese E and Keller A: The
intricacies of isomiRs: From classification to clinical relevance.
Trends Genet. 40:784–796. 2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Guo L, Dou Y, Yang Y, Zhang S, Kang Y,
Shen L, Tang L, Zhang Y, Li C, Wang J, et al: Protein profiling
reveals potential isomiR-associated cross-talks among RNAs in
cholangiocarcinoma. Comput Struct Biotechnol J. 19:5722–5734.
2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Drillis G, Goulielmaki M, Spandidos DA,
Aggelaki S and Zoumpourlis V: Non-coding RNAs (miRNAs and lncRNAs)
and their roles in lymphogenesis in all types of lymphomas and
lymphoid malignancies. Oncol Lett. 21(393)2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Sun B, Liu C, Li H, Zhang L, Luo G, Liang
S and Lü M: Research progress on the interactions between long
non-coding RNAs and microRNAs in human cancer. Oncol Lett.
19:595–605. 2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Yang Y, Zhang S and Guo L:
Characterization of cell cycle-related competing endogenous RNAs
using robust rank aggregation as prognostic biomarker in lung
adenocarcinoma. Front Oncol. 12(807367)2022.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Liang F, Xu Y, Zheng H and Tang W:
Establishing a carcinoembryonic antigen-associated competitive
endogenous RNA network and forecasting an important regulatory axis
in colon adenocarcinoma patients. J Gastrointest Oncol. 15:220–236.
2024.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wang J, Zhang W, Zhang Y, Zhou J, Li J,
Zhang M, Wen S, Gao X, Zhou N, Li H, et al: Reproducible and high
sample throughput isomiR next-generation sequencing for cancer
diagnosis. J Clin Oncol. 42(e15013)2024.
|
|
27
|
Rahmani F, Zandigohar M, Safavi P, Behzadi
M, Ghorbani Z, Payazdan M, Ferns G, Hassanian SM and Avan A: The
interplay between noncoding RNAs and p21 signaling in
gastrointestinal cancer: From tumorigenesis to metastasis. Curr
Pharm Des. 29:766–776. 2023.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K,
Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs
in serum: A novel class of biomarkers for diagnosis of cancer and
other diseases. Cell Res. 18:997–1006. 2008.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Asangani IA, Rasheed SA, Nikolova DA,
Leupold JH, Colburn NH, Post S and Allgayer H: MicroRNA-21 (miR-21)
post-transcriptionally downregulates tumor suppressor Pdcd4 and
stimulates invasion, intravasation and metastasis in colorectal
cancer. Oncogene. 27:2128–2136. 2008.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Yu Z, Rong Z, Sheng J, Luo Z, Zhang J, Li
T, Zhu Z, Fu Z, Qiu Z and Huang C: Aberrant non-coding RNA
expressed in gastric cancer and its diagnostic value. Front Oncol.
11(606764)2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ruan Z, Chi D, Wang Q, Jiang J, Quan Q,
Bei J and Peng R: Development and validation of a prognostic model
and gene co-expression networks for breast carcinoma based on
scRNA-seq and bulk-seq data. Ann Transl Med.
10(1333)2022.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Rahman MS, Ghorai S, Panda K, Santiago MJ,
Aggarwal S, Wang T, Rahman I, Chinnapaiyan S and Unwalla HJ: Dr.
Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human
health and disease. Noncoding RNA Res. 11:22–37. 2024.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Yuan X, Mao Y and Ou S: Diagnostic
accuracy of circulating exosomal circRNAs in malignancies: A
meta-analysis and systematic review. Medicine (Baltimore).
102(e33872)2023.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wang D, Zhang W, Zhang C, Wang L, Chen H
and Xu J: Exosomal non-coding RNAs have a significant effect on
tumor metastasis. Mol Ther Nucleic Acids. 29:16–35. 2022.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Natarelli N, Boby A, Aflatooni S, Tran JT,
Diaz MJ, Taneja K and Forouzandeh M: Regulatory miRNAs and lncRNAs
in skin cancer: A narrative review. Life (Basel).
13(1696)2023.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Benedetti A, Turco C, Fontemaggi G and
Fazi F: Non-coding RNAs in the crosstalk between breast cancer
cells and tumor-associated macrophages. Noncoding RNA.
8(16)2022.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhan DT and Xian HC: Exploring the
regulatory role of lncRNA in cancer immunity. Front Oncol.
13(1191913)2023.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Wang H, Wang L, Tang L, Luo J, Ji H, Zhang
W, Zhou J, Li Q and Miao L: Long noncoding RNA SNHG6 promotes
proliferation and angiogenesis of cholangiocarcinoma cells through
sponging miR-101-3p and activation of E2F8. J Cancer. 11:3002–3012.
2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Abu-Alghayth MH, Khan FR, Belali TM,
Abalkhail A, Alshaghdali K, Nassar SA, Almoammar NE, Almasoudi HH,
Hessien KBG, Aldossari MS and Binshaya AS: The emerging role of
noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast
cancer. Pathol Res Pract. 255(155180)2024.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Golhani V, Ray SK and Mukherjee S: Role of
microRNAs and long non-coding RNAs in regulating angiogenesis in
human breast cancer: A molecular medicine perspective. Curr Mol
Med. 22:882–893. 2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zheng M, Wu L, Xiao RC, Zhou Y, Cai J and
Shen SR: Integrated analysis of coexpression and a tumor-specific
ceRNA network revealed a potential prognostic biomarker in breast
cancer. Transl Cancer Res. 12:949–964. 2023.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Hussain MS, Moglad E, Afzal M, Gupta G,
Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Gupta S, Kumar D, et
al: Non-coding RNA mediated regulation of PI3K/Akt pathway in
hepatocellular carcinoma: therapeutic perspectives. Pathol Res
Pract. 258(155303)2024.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Liu J, Xiao S and Chen J: Development of
an inflammation-related lncRNA-miRNA-mRNA network based on
competing endogenous RNA in breast cancer at single-cell
resolution. Front Cell Dev Biol. 10(839876)2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhan H, Tu S, Zhang F, Shao A and Lin J:
MicroRNAs and long non-coding RNAs in c-Met-regulated cancers.
Front Cell Dev Biol. 8(145)2020.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Cui J, Chen M, Zhang L, Huang S, Xiao F
and Zou L: Circular RNAs: Biomarkers of cancer. Cancer Innov.
1:197–206. 2022.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Panoutsopoulou K, Avgeris M and Scorilas
A: miRNA and long non-coding RNA: molecular function and clinical
value in breast and ovarian cancers. Expert Rev Mol Diagn.
18:963–979. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhong X, Li J, Wu X, Wu X, Hu L, Ding B
and Qian L: Identification of N6-methyladenosine-related lncRNAs
for predicting overall survival and clustering of a potentially
novel molecular subtype of breast cancer. Front Oncol.
11(742944)2021.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Helsmoortel H, Everaert C, Lumen N, Ost P
and Vandesompele J: Detecting long non-coding RNA biomarkers in
prostate cancer liquid biopsies: Hype or hope? Noncoding RNA Res.
3:64–74. 2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Islakoglu YO, Noyan S, Aydos A and
Dedeoglu BG: Meta-microRNA biomarker signatures to classify breast
cancer subtypes. OMICS. 22:709–716. 2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Lee BI, Oades K, Vo L, Lee J, Landers M,
Wang Y and Monforte J: NGS-based targeted RNA sequencing for
expression analysis of patients with triple-negative breast cancer
using a modulized, 96-gene biomarker panel. J Clin Oncol.
30(56)2012.
|
|
51
|
Narrandes S and Xu W: Gene expression
detection assay for cancer clinical use. J Cancer. 9:2249–2265.
2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Lange T, Gross T, Jeney Á, Scherzinger J,
Sinkala E, Niemöller C, Zimmermann S, Koltay P, Stetten F, Zengerle
R and Jeney C: Validation of scRNA-seq by scRT-ddPCR using the
example of ErbB2 in MCF7 cells. bioRxiv, 2022.
|
|
53
|
Poel D, Voortman J, Oord R, Gall H and
Verheul H: Standardization and optimization of circulating microRNA
serum profiling in patients with cancer. Cancer Res 75: doi.org/10.1158/1538-7445.AM2015-3991,
2015.
|
|
54
|
Ratti M, Lampis A, Ghidini M, Salati M,
Mirchev MB, Valeri N and Hahne JC: MicroRNAs (miRNAs) and long
non-coding RNAs (lncRNAs) as new tools for cancer therapy: First
steps from bench to bedside. Target Oncol. 15:261–278.
2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Slaby O, Laga R and Sedlacek O:
Therapeutic targeting of non-coding RNAs in cancer. Biochem J.
474:4219–4251. 2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Haryana S: Long non-coding RNA (lncRNA)
and microRNA (miRNA) in cancer management. J Med Sci.
48(35)2016.
|
|
57
|
Gambari R, Brognara E, Spandidos D and
Fabbri E: Targeting oncomiRNAs and mimicking tumor suppressor
miRNAs: New trends in the development of miRNA therapeutic
strategies in oncology. Int J Oncol. 49:5–32. 2016.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Pierouli K, Papakonstantinou E,
Papageorgiou L, Diakou I, Mitsis T, Dragoumani K, Spandidos DA,
Bacopoulou F, Chrousos GP, Goulielmos G, et al: Long noncoding RNAs
and microRNAs as regulators of stress in cancer. Mol Med Rep.
26(361)2022.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Agami R: Abstract CN01-03: Prospects for
miRNA- and lncRNA-based cancer therapeutics. Mol Cancer Ther.
12(CN01-03-CN01-03)2013.
|
|
60
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung K and
Shi C: MicroRNA as an important target for anticancer drug
development. Front Pharmacol. 12(736323)2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Hong D, Kang Y, Borad M, Sachdev J, Ejadi
S, Lim H, Brenner A, Park K, Lee J, Kim T, et al: Phase 1 study of
MRX34, a liposomal miR-34a mimic, in patients with advanced solid
tumours. Br J Cancer. 122:1630–1637. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Varghese AM, Ang C, Dimaio CJ, Javle MM,
Gutierrez M, Yarom N, Stemmer SM, Golan T, Geva R, Semenisty V, et
al: A phase II study of siG12D-LODER in combination with
chemotherapy in patients with locally advanced pancreatic cancer
(PROTACT). J Clin Oncol. 38 (Suppl 15)(TPS4672)2020.
|
|
63
|
ClinicalTrials.gov: A phase 2 study of siG12D LODER
in combination with chemotherapy in patients with locally advanced
pancreatic cancer. Identifier: NCT01676259. Accessed Aug 21,
2025.
|
|
64
|
Tolcher AW, Papadopoulos KP, Patnaik A,
Rasco D, Martinez D, Wood D, Fielman B, Sharma MR, Janisch L, Brown
B, et al: Safety and activity of DCR-MYC, a first-in-class
Dicer-substrate siRNA targeting MYC, in a phase I study in patients
with advanced solid tumors. J Clin Oncol. 33 (Suppl
15)(11006)2015.
|
|
65
|
ClinicalTrials.gov: Phase Ib/II, multicenter dose
escalation study of DCR-MYC in hepatocellular carcinoma.
Identifier: NCT02314052 (status history/results). Accessed Aug 21,
2025.
|
|
66
|
Bazhenova L, Mamdani H, Chiappori A, Spira
A, Iams W, Tolcher A, Barve M, Gabayan A, Vandross A, Cina C, et
al: First-in-human dose-expansion study of NBF-006, a novel
investigational siRNA targeting GSTP, in patients with KRAS-mutated
non-small cell lung cancer. Cancer Res. 84 (Suppl
7)(CT040)2024.
|
|
67
|
Cina C, Majeti B, O'Brien Z, Wang L,
Clamme JP, Adami R, Tsang KY, Harborth J, Ying W and Zabludoff S: A
novel lipid nanoparticle NBF-006 encapsulating glutathione
S-Transferase P. siRNA for the treatment of KRAS-driven non-small
cell lung cancer. Mol Cancer Ther. 24:7–17. 2025.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Cantarella S, Di Nisio E, Carnevali D,
Dieci G and Montanini B: Interpreting and integrating big data in
non-coding RNA research. Emerg Top Life Sci. 3:343–355.
2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Veneziano D, Marceca GP, Di Bella S,
Nigita G, Distefano R and Croce CM: Investigating miRNA-lncRNA
interactions: Computational tools and resources. Methods Mol Biol.
1970:251–277. 2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Jiang J, Lyu P, Li J, Huang S, Blackshaw
S, Qian J and Wang J: IReNA: Integrated regulatory network analysis
of single-cell transcriptomes and chromatin accessibility profiles.
iScience. 25(105359)2021.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Kumar N, Mishra B, Athar M and Mukhtar S:
Inference of gene regulatory network from single-cell
transcriptomic data using pySCENIC. Methods Mol Biol. 2328:171–182.
2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Nersisyan S, Gorbonos A, Makhonin A,
Zhiyanov A, Shkurnikov M and Tonevitsky A: isomiRTar: A
comprehensive portal of pan-cancer 5'-isomiR targeting. PeerJ.
10(e14205)2022.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Hou X, Zaks T, Langer R and Dong Y: Lipid
nanoparticles for mRNA/RNA delivery: Challenges and opportunities.
Nat Rev Mater. 6:1078–1094. 2021.
|
|
74
|
Jayaraman M, Ansell SM, Mui BL, Tam YK,
Chen J, Du X, Butler D, Eltepu L, Matsuda S, Narayanannair JK, et
al: Maximizing the potency of siRNA lipid nanoparticles for in vivo
delivery. Angew Chem Int Ed. 51:8529–8533. 2012.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Tam YYC, Chen S and Cullis PR: Advances in
lipid nanoparticles for siRNA delivery. Adv Drug Deliv Rev.
65:331–339. 2013.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Springer AD and Dowdy SF: GalNAc-siRNA
conjugates: Leading the way for delivery to hepatocytes. Nucleic
Acid Ther. 28:109–118. 2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Debacker AJ, Voutila J, Catley M, Blakey D
and Habib N: Delivery of oligonucleotides to the liver with GalNAc.
Nucleic Acid Ther. 30:364–386. 2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
McNamara JO II, Andrechek ER, Wang Y,
Viles KD, Rempel RE, Gilboa E, Sullenger BA and Giangrande PH: Cell
type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat
Biotechnol. 24:1005–1015. 2006.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Karikó K, Buckstein M, Ni H and Weissman
D: Suppression of RNA recognition by Toll-like receptors: Impact of
nucleoside modifications. Immunity. 23:165–175. 2005.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Coch C, Lück C, Schwickart A, Putschli B,
Renn M, Höller T, Barchet W, Hartmann G and Schlee M: A human in
vitro whole-blood assay to predict therapeutic
oligonucleotide-induced cytokine release. PLoS One.
8(e71057)2013.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Jackson AL, Burchard J, Schelter J, Chau
N, Cleary M, Lim L and Linsley P: Widespread siRNA off-target
transcript silencing mediated by seed region interactions. Nat
Biotechnol. 24:635–637. 2006.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Chi SW, Zang JB, Mele A and Darnell RB:
Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature.
460:479–486. 2009.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Hafner M, Landthaler M, Burger L, Khorshid
M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC,
Munschauer M, et al: Transcriptome-wide identification of
RNA-binding protein and microRNA target sites by PAR-CLIP. Cell.
141:129–141. 2010.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Dai H, Jin QQ, Li L and Chen LN:
Reconstructing gene regulatory networks in single-cell
transcriptomic data analysis. Zool Res. 41:599–604. 2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Schmidt R, Steinhart Z, Layeghi M, Freimer
J, Bueno R, Nguyen V, Blaeschke F, Ye C and Marson A: CRISPR
activation and interference screens decode stimulation responses in
primary human T cells. Science. 375(eabj4008)2022.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Pandey S, Agarwala P and Maiti S:
Targeting RNA G-quadruplexes for potential therapeutic
applications. Top Curr Chem (Cham). 377:177–206. 2017.
|
|
87
|
Roxo C, Zielińska K and Pasternak A:
Bispecific G-quadruplexes as inhibitors of cancer cells growth.
Biochimie. 214:91–100. 2023.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Chuya N and Hiroyuki S: G-quadruplex in
cancer biology and drug discovery. Biochem Biophys Res Commun.
533:762–773. 2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Zhang J, Zhang P, Wang L, Piao HL and Ma
L: Long non-coding RNA HOTAIR in carcinogenesis and metastasis.
Acta Biochim Biophys Sin (Shanghai). 46:1–5. 2014.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Poliseno L, Salmena L, Zhang J, Carver B,
Haveman WJ and Pandolfi PP: A coding-independent function of gene
and pseudogene mRNAs regulates tumour biology. Nature.
465:1033–1038. 2010.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Chen Y, Liu Y, Wu J, Xu Y, Li H and Zhao
Y: LINC00160 promotes hepatocellular carcinoma progression via the
miR-132/AKT1 axis. BMC Cancer. 21(21)2021.
|
|
92
|
Xie Z, Dang Y, Wu H, Tian Y, Zhou Y, Li J
and Gu Z: The role of lncRNA-miRNA-mRNA ceRNA network in the
development and progression of pancreatic cancer. Cancer Cell Int.
20(273)2020.PubMed/NCBI View Article : Google Scholar
|