|
1
|
Shoulders CC, Stephens DJ and Jones B: The
intracellular transport of chylomicrons requires the small GTPase,
Sar1b. Curr Opin Lipidol. 15:191–197. 2004.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Huang M, Weissman JT, Beraud-Dufour S,
Luan P, Wang C, Chen W, Aridor M, Wilson IA and Balch WE: Crystal
structure of Sar1-GDP at 1.7 A resolution and the role of the NH2
terminus in ER export. J Cell Biol. 155:937–948. 2001.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Loftus AF, Hsieh VL and Parthasarathy R:
Modulation of membrane rigidity by the human vesicle trafficking
proteins Sar1A and Sar1B. Biochem Biophys Res Commun. 426:585–589.
2012.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Reiner DJ and Lundquist EA: Small GTPases.
WormBook. 2018:1–65. 2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Takai Y, Sasaki T and Matozaki T: Small
GTP-binding proteins. Physiol Rev. 81:153–208. 2001.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Melville D, Gorur A and Schekman R:
Fatty-acid binding protein 5 modulates the SAR1 GTPase cycle and
enhances budding of large COPII cargoes. Mol Biol Cell. 30:387–399.
2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Maeda M, Arakawa M, Komatsu Y and Saito K:
Small GTPase ActIvitY ANalyzing (SAIYAN) system: A method to detect
GTPase activation in living cells. J Cell Biol.
223(e202403179)2024.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Van der Verren SE and Zanetti G: The small
GTPase Sar1, control centre of COPII trafficking. FEBS Lett.
597:865–882. 2023.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Tang VT, Xiang J, Chen Z, McCormick J,
Abbineni PS, Chen XW, Hoenerhoff M, Emmer BT, Khoriaty R, Lin JD
and Ginsburg D: Functional overlap between the mammalian Sar1a and
Sar1b paralogs in vivo. Proc Natl Acad Sci USA.
121(e2322164121)2024.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Melville DB, Studer S and Schekman R:
Small sequence variations between two mammalian paralogs of the
small GTPase SAR1 underlie functional differences in coat protein
complex II assembly. J Biol Chem. 295:8401–8412. 2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Lu Y, Zhou SK, Chen R, Jiang LX, Yang LL
and Bi TN: Knockdown of SAR1B suppresses proliferation and induces
apoptosis of RKO colorectal cancer cells. Oncol Lett.
20(186)2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Wang X, Wang H, Xu B, Huang D, Nie C, Pu
L, Zajac GJM, Yan H, Zhao J, Shi F, et al: Receptor-mediated ER
export of lipoproteins controls lipid homeostasis in mice and
humans. Cell Metab. 33:350–366.e7. 2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Geng F and Guo D: SREBF1/SREBP-1
concurrently regulates lipid synthesis and lipophagy to maintain
lipid homeostasis and tumor growth. Autophagy. 20:1183–1185.
2024.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Deng CF, Zhu N, Zhao TJ, Li HF, Gu J, Liao
DF and Qin L: Involvement of LDL and ox-LDL in cancer development
and its therapeutical potential. Front Oncol.
12(803473)2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Sané A, Ahmarani L, Delvin E, Auclair N,
Spahis S and Levy E: SAR1B GTPase is necessary to protect
intestinal cells from disorders of lipid homeostasis, oxidative
stress, and inflammation. J Lipid Res. 60:1755–1764.
2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Makiyama T, Obama T, Watanabe Y and Itabe
H: Sar1 affects the localization of perilipin 2 to lipid droplets.
Int J Mol Sci. 23(6366)2022.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Yang Z and Klionsky DJ: Mammalian
autophagy: Core molecular machinery and signaling regulation. Curr
Opin Cell Biol. 22:124–131. 2010.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Li S, Yan R, Xu J, Zhao S, Ma X, Sun Q,
Zhang M, Li Y, Liu JG, Chen L, et al: A new type of ERGIC-ERES
membrane contact mediated by TMED9 and SEC12 is required for
autophagosome biogenesis. Cell Res. 32:119–138. 2022.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Li S, Zhang M and Ge L: A new type of
membrane contact in the ER-Golgi system regulates autophagosome
biogenesis. Autophagy. 17:4499–4501. 2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Ge L, Zhang M, Kenny SJ, Liu D, Maeda M,
Saito K, Mathur A, Xu K and Schekman R: Remodeling of ER-exit sites
initiates a membrane supply pathway for autophagosome biogenesis.
EMBO Rep. 18:1586–1603. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zoppino FC, Militello RD, Slavin I,
Alvarez C and Colombo MI: Autophagosome formation depends on the
small GTPase Rab1 and functional ER exit sites. Traffic.
11:1246–1261. 2010.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Wu R, Murali R, Kabe Y, French SW, Chiang
YM, Liu S, Sher L, Wang CC, Louie S and Tsukamoto H: Baicalein
targets GTPase-mediated autophagy to eliminate liver
tumor-initiating stem cell-like cells resistant to mTORC1
inhibition. Hepatology. 68:1726–1740. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Morgan NE, Cutrona MB and Simpson JC:
Multitasking Rab proteins in autophagy and membrane trafficking: A
focus on Rab33b. Int J Mol Sci. 20(3916)2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Yu L, Chen Y and Tooze SA: Autophagy
pathway: Cellular and molecular mechanisms. Autophagy. 14:207–215.
2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Till A, Saito R, Merkurjev D, Liu JJ, Syed
GH, Kolnik M, Siddiqui A, Glas M, Scheffler B, Ideker T, et al:
Evolutionary trends and functional anatomy of the human expanded
autophagy network. Autophagy. 11:1652–1667. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Zhang Y and Li G: A tumor suppressor DLC1:
The functions and signal pathways. J Cell Physiol. 235:4999–5007.
2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Cao W, Li J, Yang K and Cao D: An overview
of autophagy: Mechanism, regulation and research progress. Bull
Cancer. 108:304–322. 2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Zhang X, Cheng Q, Yin H and Yang G:
Regulation of autophagy and EMT by the interplay between p53 and
RAS during cancer progression (Review). Int J Oncol. 51:18–24.
2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Qi Z and Chen L: Endoplasmic reticulum
stress and autophagy. Adv Exp Med Biol. 1206:167–177.
2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Caruso ME, Jenna S, Bouchecareilh M,
Baillie DL, Boismenu D, Halawani D, Latterich M and Chevet E:
GTPase-mediated regulation of the unfolded protein response in
Caenorhabditis elegans is dependent on the AAA+ ATPase CDC-48. Mol
Cell Biol. 28:4261–4274. 2008.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Debnath J, Gammoh N and Ryan KM: Autophagy
and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol.
24:560–575. 2023.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Schatoff EM, Leach BI and Dow LE: Wnt
signaling and colorectal cancer. Curr Colorectal Cancer Rep.
13:101–110. 2017.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Sun J, Yu S, Zhang X, Capac C, Aligbe O,
Daudelin T, Bonder EM and Gao N: A Wntless-SEC12 complex on the ER
membrane regulates early Wnt secretory vesicle assembly and mature
ligand export. J Cell Sci. 130:2159–2171. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Sztul E, Chen PW, Casanova JE, Cherfils J,
Dacks JB, Lambright DG, Lee FS, Randazzo PA, Santy LC, Schürmann A,
et al: ARF GTPases and their GEFs and GAPs: Concepts and
challenges. Mol Biol Cell. 30:1249–1271. 2019.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Sun L, Xing J, Zhou X, Song X and Gao S:
Wnt/β-catenin signalling, epithelial-mesenchymal transition and
crosslink signalling in colorectal cancer cells. Biomed
Pharmacother. 175(116685)2024.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Huang M and Wang Y: Targeted quantitative
proteomic approach for probing altered protein expression of small
GTPases associated with colorectal cancer metastasis. Anal Chem.
91:6233–6241. 2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhan F, Deng Q, Chen Z, Xie C, Xiang S,
Qiu S, Tian L, Wu C, Ou Y, Chen J and Xu L: SAR1A regulates the
RhoA/YAP and autophagy signaling pathways to influence osteosarcoma
invasion and metastasis. Cancer Sci. 113:4104–4119. 2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Wan X, Kong Z, Chu K, Yi C, Hu J, Qin R,
Zhao C, Fu F, Wu H, Li Y and Huang Y: Co-expression analysis
revealed PTCH1-3'UTR promoted cell migration and invasion by
activating miR-101-3p/SLC39A6 axis in non-small cell lung cancer:
Implicating the novel function of PTCH1. Oncotarget. 9:4798–4813.
2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Mossmann D, Park S and Hall MN: mTOR
signalling and cellular metabolism are mutual determinants in
cancer. Nat Rev Cancer. 18:744–757. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Fu W and Wu G: Targeting mTOR for
anti-aging and anti-cancer therapy. Molecules.
28(3157)2023.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi
S, Sreenivasmurthy SG, Liu J, Wang Z, Tong BC, Song J, Lu J, et al:
Balancing mTOR signaling and autophagy in the treatment of
Parkinson's disease. Int J Mol Sci. 20(728)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Davoody S, Asgari Taei A, Khodabakhsh P
and Dargahi L: mTOR signaling and Alzheimer's disease: What we know
and where we are? CNS Neurosci Ther. 30(e14463)2024.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Mafi S, Mansoori B, Taeb S, Sadeghi H,
Abbasi R, Cho WC and Rostamzadeh D: mTOR-mediated regulation of
immune responses in cancer and tumor microenvironment. Front
Immunol. 12(774103)2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Ananieva EA, Powell JD and Hutson SM:
Leucine metabolism in T cell activation: mTOR signaling and beyond.
Adv Nutr. 7:798S–805S. 2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Chen J, Ou Y, Luo R, Wang J, Wang D, Guan
J, Li Y, Xia P, Chen PR and Liu Y: SAR1B senses leucine levels to
regulate mTORC1 signalling. Nature. 596:281–284. 2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Senapati PK, Mahapatra KK, Singh A and
Bhutia SK: mTOR inhibitors in targeting autophagy and
autophagy-associated signaling for cancer cell death and therapy.
Biochim Biophys Acta Rev Cancer. 1880(189342)2025.PubMed/NCBI View Article : Google Scholar
|