|
1
|
Hennigs JK, Matuszcak C, Trepel M and
Körbelin J: Vascular endothelial cells: Heterogeneity and targeting
approaches. Cells. 10(2712)2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Saravi B, Goebel U, Hassenzahl LO, Jung C,
David S, Feldheiser A, Stopfkuchen-Evans M and Wollborn J:
Capillary leak and endothelial permeability in critically ill
patients: A current overview. Intensive Care Med Exp.
11(96)2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Rubanyi GM: The role of endothelium in
cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol. 22
(Suppl 4):S1–S14. 1993.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Chistiakov DA, Orekhov AN and Bobryshev
YV: Endothelial barrier and its abnormalities in cardiovascular
disease. Front Physiol. 6(365)2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Kopaliani I, Elsaid B, Speier S and
Deussen A: Immune and metabolic mechanisms of endothelial
dysfunction. Int J Mol Sci. 25(13337)2024.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Vassiliou AG, Kotanidou A, Dimopoulou I
and Orfanos SE: Endothelial damage in acute respiratory distress
syndrome. Int J Mol Sci. 21(8793)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Cunha-Vaz J, Bernardes R and Lobo C:
Blood-retinal barrier. Eur J Ophthalmol. 21 (Suppl 6):S3–S9.
2011.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Goncalves A and Antonetti DA: Transgenic
animal models to explore and modulate the blood brain and blood
retinal barriers of the CNS. Fluids Barriers CNS.
19(86)2022.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Liu X, Zheng T, Zhao C, Zhang Y, Liu H,
Wang L and Liu P: Genetic mutations and molecular mechanisms of
Fuchs endothelial corneal dystrophy. Eye Vis (Lond).
8(24)2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Wang X and He B: Endothelial dysfunction:
Molecular mechanisms and clinical implications. MedComm (2020).
5(e651)2024.PubMed/NCBI View
Article : Google Scholar
|
|
11
|
Siasos G, Gouliopoulos N, Moschos MM,
Oikonomou E, Kollia C, Konsola T, Athanasiou D, Siasou G, Mourouzis
K, Zisimos K, et al: Role of endothelial dysfunction and arterial
stiffness in the development of diabetic retinopathy. Diabetes
Care. 38:e9–e10. 2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Steyers CM III and Miller FJ Jr:
Endothelial dysfunction in chronic inflammatory diseases. Int J Mol
Sci. 15:11324–11349. 2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Poredos P, Poredos AV and Gregoric I:
Endothelial dysfunction and its clinical implications. Angiology.
72:604–615. 2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Sarelius IH and Glading AJ: Control of
vascular permeability by adhesion molecules. Tissue Barriers.
3(e985954)2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Aghajanian A, Wittchen ES, Allingham MJ,
Garrett TA and Burridge K: Endothelial cell junctions and the
regulation of vascular permeability and leukocyte transmigration. J
Thromb Haemost. 6:1453–1460. 2008.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Peng Z, Shu B, Zhang Y and Wang M:
Endothelial response to pathophysiological stress. Arterioscler
Thromb Vasc Biol. 39:e233–e243. 2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Goshua G, Pine AB, Meizlish ML, Chang CH,
Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, et al:
Endotheliopathy in COVID-19-associated coagulopathy: Evidence from
a single-centre, cross-sectional study. Lancet Haematol.
7:e575–e582. 2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
van Hinsbergh VW: Endothelium-role in
regulation of coagulation and inflammation. Semin Immunopathol.
34:93–106. 2012.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D,
Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction
in atherosclerotic cardiovascular diseases and beyond: from
mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967.
2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Shaito A, Aramouni K, Assaf R, Parenti A,
Orekhov A, Yazbi AE, Pintus G and Eid AH: Oxidative stress-induced
endothelial dysfunction in cardiovascular diseases. Front Biosci
(Landmark Ed). 27(105)2022.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Janaszak-Jasiecka A, Płoska A, Wierońska
JM, Dobrucki LW and Kalinowski L: Endothelial dysfunction due to
eNOS uncoupling: molecular mechanisms as potential therapeutic
targets. Cell Mol Biol Lett. 28(21)2023.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Alp NJ and Channon KM: Regulation of
endothelial nitric oxide synthase by tetrahydrobiopterin in
vascular disease. Arterioscler Thromb Vasc Biol. 24:413–420.
2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Jin RC and Loscalzo J: Vascular nitric
oxide: Formation and function. J Blood Med. 2010:147–162.
2010.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Su JB: Vascular endothelial dysfunction
and pharmacological treatment. World J Cardiol. 7:719–741.
2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Zhang W, Jiang L, Tong X, He H, Zheng Y
and Xia Z: Sepsis-induced endothelial dysfunction: Permeability and
regulated cell death. J Inflamm Res. 17:9953–9973. 2024.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Liehn EA and Cabrera-Fuentes HA:
Inflammation between defense and disease: Impact on tissue repair
and chronic sickness. Discoveries (Craiova). 3(e42)2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Tripathi S, Sharma Y and Kumar D:
Unveiling the link between chronic inflammation and cancer. Metabol
Open. 25(100347)2025.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Chavda VP, Feehan J and Apostolopoulos V:
Inflammation: The cause of all diseases. Cells.
13(1906)2024.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Furman D, Campisi J, Verdin E,
Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW,
Fasano A, Miller GW, et al: Chronic inflammation in the etiology of
disease across the life span. Nat Med. 25:1822–1832.
2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng
J, Li Y, Wang X and Zhao L: Inflammatory responses and
inflammation-associated diseases in organs. Oncotarget.
9:7204–7218. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Castellon X and Bogdanova V: Chronic
inflammatory diseases and endothelial dysfunction. Aging Dis.
7:81–89. 2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Du L, Ho BM, Zhou L, Yip YWY, He JN, Wei
Y, Tham CC, Chan SO, Schally AV, Pang CP, et al: Growth hormone
releasing hormone signaling promotes Th17 cell differentiation and
autoimmune inflammation. Nat Commun. 14(3298)2023.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Chee YJ, Dalan R and Cheung C: The
interplay between immunity, inflammation and endothelial
dysfunction. Int J Mol Sci. 26(1708)2025.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Fakir S, Kubra KT and Barabutis N:
Octreotide protects against LPS-induced endothelial cell and lung
injury. Cell Signal. 124(111455)2024.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Fakir S, Sigdel M, Sarker MMR and
Barabutis N: Pasireotide exerts anti-inflammatory effects in the
endothelium. J Biochem Mol Toxicol. 39(e70306)2025.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Clemens A, Klevesath MS, Hofmann M, Raulf
F, Henkels M, Amiral J, Seibel MJ, Zimmermann J, Ziegler R, Wahl P
and Nawroth PP: Octreotide (somatostatin analog) treatment reduces
endothelial cell dysfunction in patients with diabetes mellitus.
Metabolism. 48:1236–1240. 1999.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Barabutis N and Akhter MS: Involvement of
NEK2 and NEK9 in LPS-induced endothelial barrier dysfunction.
Microvasc Res. 152(104651)2024.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Karalis K, Mastorakos G, Chrousos GP and
Tolis G: Somatostatin analogues suppress the inflammatory reaction
in vivo. J Clin Invest. 93:2000–2006. 1994.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Sall JW, Klisovic DD, O'Dorisio MS and
Katz SE: Somatostatin inhibits IGF-1 mediated induction of VEGF in
human retinal pigment epithelial cells. Exp Eye Res. 79:465–476.
2004.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Basivireddy J, Somvanshi RK, Romero IA,
Weksler BB, Couraud PO, Oger J and Kumar U: Somatostatin preserved
blood brain barrier against cytokine induced alterations: Possible
role in multiple sclerosis. Biochem Pharmacol. 86:497–507.
2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Mentlein R, Eichler O, Forstreuter F and
Held-Feindt J: Somatostatin inhibits the production of vascular
endothelial growth factor in human glioma cells. Int J Cancer.
92:545–550. 2001.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ayuk J and Sheppard MC: Growth hormone and
its disorders. Postgrad Med J. 82:24–30. 2006.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ranke MB: Short and long-term effects of
growth hormone in children and adolescents with GH deficiency.
Front Endocrinol (Lausanne). 12(720419)2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Sharma R, Kopchick JJ, Puri V and Sharma
VM: Effect of growth hormone on insulin signaling. Mol Cell
Endocrinol. 518(111038)2020.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Pech-Pool S, Berumen LC, Martínez-Moreno
CG, García-Alcocer G, Carranza M, Luna M and Arámburo C:
Thyrotropin-releasing hormone (TRH) and somatostatin (SST), but not
growth hormone-releasing hormone (GHRH) nor Ghrelin (GHRL),
regulate expression and release of immune growth hormone (GH) from
chicken bursal B-lymphocyte cultures. Int J Mol Sci.
21(1436)2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Dehkhoda F, Lee CMM, Medina J and Brooks
AJ: The growth hormone receptor: Mechanism of receptor activation,
cell signaling, and physiological aspects. Front Endocrinol
(Lausanne). 9(35)2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Ohlsson C, Mohan S, Sjögren K, Tivesten A,
Isgaard J, Isaksson O, Jansson JO and Svensson J: The role of
liver-derived insulin-like growth factor-I. Endocr Rev. 30:494–535.
2009.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Kopchick JJ, Berryman DE, Puri V, Lee KY
and Jorgensen JOL: The effects of growth hormone on adipose tissue:
Old observations, new mechanisms. Nat Rev Endocrinol. 16:135–146.
2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kim SH and Park MJ: Effects of growth
hormone on glucose metabolism and insulin resistance in human. Ann
Pediatr Endocrinol Metab. 22:145–152. 2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Hansen TK, Møller J, Thomsen K, Frandsen
E, Dall R, Jørgensen JO and Christiansen JS: Effects of growth
hormone on renal tubular handling of sodium in healthy humans. Am J
Physiol Endocrinol Metab. 281:E1326–E1332. 2001.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ricci Bitti S, Franco M, Albertelli M,
Gatto F, Vera L, Ferone D and Boschetti M: GH replacement in the
elderly: Is it worth it? Front Endocrinol (Lausanne).
12(680579)2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Reed ML, Merriam GR and Kargi AY: Adult
growth hormone deficiency-benefits, side effects, and risks of
growth hormone replacement. Front Endocrinol (Lausanne).
4(64)2013.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kim JH, Chae HW, Chin SO, Ku CR, Park KH,
Lim DJ, Kim KJ, Lim JS, Kim G, Choi YM, et al: Diagnosis and
treatment of growth hormone deficiency: A position statement from
Korean endocrine society and Korean Society of pediatric
endocrinology. Endocrinol Metab (Seoul). 35:272–287.
2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Alatzoglou KS, Webb EA, Le Tissier P and
Dattani MT: Isolated growth hormone deficiency (GHD) in childhood
and adolescence: Recent advances. Endocr Rev. 35:376–432.
2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Mullis PE: Genetics of isolated growth
hormone deficiency. J Clin Res Pediatr Endocrinol. 2:52–62.
2010.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Kautsar A, Wit JM and Pulungan A: Isolated
growth hormone deficiency type 2 due to a novel GH1 mutation: A
case report. J Clin Res Pediatr Endocrinol. 11:426–431.
2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Alatzoglou KS, Kular D and Dattani MT:
Autosomal dominant growth hormone deficiency (type II). Pediatr
Endocrinol Rev. 12:347–355. 2015.PubMed/NCBI
|
|
58
|
Feldt-Rasmussen U and Klose M: Adult
Growth Hormone Deficiency-Clinical Management. In: Endotext
[Internet]. Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A,
Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, et
al (eds). MDText.com, Inc., South Dartmouth, MA, 2000.
|
|
59
|
Murray RD: Adult growth hormone
replacement: Current understanding. Curr Opin Pharmacol. 3:642–649.
2003.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Papadogias DS, Makras P, Kaltsas GA and
Monson JP: GH deficiency in adults. Hormones (Athens). 2:217–218.
2003.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Bello MO and Garla VV: Gigantism and
Acromegaly. In: StatPearls [Internet]. StatPearls Publishing,
Treasure Island, FL, 2025.
|
|
62
|
Rhee N, Jeong K, Yang EM and Kim CJ:
Gigantism caused by growth hormone secreting pituitary adenoma. Ann
Pediatr Endocrinol Metab. 19:96–99. 2014.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Hannah-Shmouni F, Trivellin G and
Stratakis CA: Genetics of gigantism and acromegaly. Growth Horm IGF
Res. 30-31:37–41. 2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Dieguez C, Lopez M and Casanueva F:
Hypothalamic GHRH. Rev Endocr Metab Disord. 26:297–303.
2025.PubMed/NCBI View Article : Google Scholar
|
|
65
|
George MM, Eugster EA and Chernausek SD:
Pituitary Gigantism. In: Endotext [Internet]. Feingold KR, Ahmed
SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de
Herder WW, Dhatariya K, Dungan K, et al (eds). MDText.com,
Inc., South Dartmouth, MA, 2020.
|
|
66
|
Quock TP, Chang E, Das AK, Speller A,
Tarbox MH, Rattana SK, Paulson IE and Broder MS: Clinical and
economic burden among older adults with acromegaly in the United
States. J Comp Eff Res. 14(e250076)2025.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Fernandez CJ, Lakshmi V, Kamrul-Hasan ABM
and Pappachan JM: Factors affecting disease control after pituitary
tumor resection in acromegaly: What is the current evidence? World
J Radiol. 17(106438)2025.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Grimberg A: Mechanisms by which IGF-I may
promote cancer. Cancer Biol Ther. 2:630–635. 2003.PubMed/NCBI
|
|
69
|
Guevara-Aguirre J, Peña G, Acosta W,
Pazmiño G, Saavedra J, Soto L, Lescano D, Guevara A and Gavilanes
AWD: Cancer in growth hormone excess and growth hormone deficit.
Endocr Relat Cancer. 30(e220402)2023.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Simpson A, Petnga W, Macaulay VM,
Weyer-Czernilofsky U and Bogenrieder T: Insulin-Like growth factor
(IGF) pathway targeting in cancer: Role of the IGF axis and
opportunities for future combination studies. Target Oncol.
12:571–597. 2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Khan MZ, Zugaza JL and Torres Aleman I:
The signaling landscape of insulin-like growth factor 1. J Biol
Chem. 301(108047)2025.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Villanova T, Gesmundo I, Audrito V, Vitale
N, Silvagno F, Musuraca C, Righi L, Libener R, Riganti C, Bironzo
P, et al: Antagonists of growth hormone-releasing hormone (GHRH)
inhibit the growth of human malignant pleural mesothelioma. Proc
Natl Acad Sci USA. 116:2226–2231. 2019.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Schally AV, Cai R, Zhang X, Sha W and
Wangpaichitr M: The development of growth hormone-releasing hormone
analogs: Therapeutic advances in cancer, regenerative medicine, and
metabolic disorders. Rev Endocr Metab Disord. 26:385–396.
2025.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Cui T, Jimenez JJ, Block NL, Badiavas EV,
Rodriguez-Menocal L, Vila Granda A, Cai R, Sha W, Zarandi M, Perez
R and Schally AV: Agonistic analogs of growth hormone releasing
hormone (GHRH) promote wound healing by stimulating the
proliferation and survival of human dermal fibroblasts through ERK
and AKT pathways. Oncotarget. 7:52661–52672. 2016.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Fakir S and Barabutis N: Protective
activities of growth hormone-releasing hormone antagonists against
toxin-induced endothelial injury. Endocrines. 5:116–123.
2024.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Zhang C, Cui T, Cai R, Wangpaichitr M,
Mirsaeidi M, Schally AV and Jackson RM: Growth hormone-releasing
hormone in lung physiology and pulmonary disease. Cells.
9(2331)2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Annunziata M, Grande C, Scarlatti F,
Deltetto F, Delpiano E, Camanni M, Ghigo E and Granata R: The
growth hormone-releasing hormone (GHRH) antagonist JV-1-36 inhibits
proliferation and survival of human ectopic endometriotic stromal
cells (ESCs) and the T HESC cell line. Fertil Steril. 94:841–849.
2010.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Zarandi M, Cai R, Kovacs M, Popovics P,
Szalontay L, Cui T, Sha W, Jaszberenyi M, Varga J, Zhang X, et al:
Synthesis and structure-activity studies on novel analogs of human
growth hormone releasing hormone (GHRH) with enhanced inhibitory
activities on tumor growth. Peptides. 89:60–70. 2017.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Granata R: Peripheral activities of growth
hormone-releasing hormone. J Endocrinol Invest. 39:721–727.
2016.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Siejka A, Lawnicka H, Fakir S and
Barabutis N: Growth hormone-releasing hormone in the immune system.
Rev Endocr Metab Disord. 26:457–466. 2025.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Barabutis N, Siejka A, Schally AV, Block
NL, Cai R and Varga JL: Activation of mitogen-activated protein
kinases by a splice variant of GHRH receptor. J Mol Endocrinol.
44:127–134. 2010.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Barabutis N, Akhter MS, Kubra KT and
Jackson K: Growth hormone-releasing hormone in endothelial
inflammation. Endocrinology. 164(bqac209)2022.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Siejka A, Schally AV and Barabutis N:
Activation of Janus kinase/signal transducer and activator of
transcription 3 pathway by growth hormone-releasing hormone. Cell
Mol Life Sci. 67:959–964. 2010.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Fakir S, Kubra KT, Akhter MS, Uddin MA,
Sarker MMR, Siejka A and Barabutis N: Unfolded protein response
modulates the effects of GHRH antagonists in experimental models of
in vivo and in vitro lung injury. Tissue Barriers.
13(2438974)2025.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Kubra KT, Akhter MS, Apperley K and
Barabutis N: Growth hormone-releasing hormone antagonist JV-1-36
suppresses reactive oxygen species generation in A549 lung cancer
cells. Endocrines. 3:813–820. 2022.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Granata R, Leone S, Zhang X, Gesmundo I,
Steenblock C, Cai R, Sha W, Ghigo E, Hare JM, Bornstein SR and
Schally AV: Growth hormone-releasing hormone and its analogues in
health and disease. Nat Rev Endocrinol. 21:180–195. 2025.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Akhter MS and Barabutis N: Suppression of
reactive oxygen species in endothelial cells by an antagonist of
growth hormone-releasing hormone. J Biochem Mol Toxicol.
35(e22879)2021.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Populo H, Nunes B, Sampaio C, Batista R,
Pinto MT, Gaspar TB, Miranda-Alves L, Cai RZ, Zhang XY, Schally AV,
et al: Inhibitory effects of antagonists of growth
hormone-releasing hormone (GHRH) in thyroid cancer. Horm Cancer.
8:314–324. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Rick FG, Schally AV, Szalontay L, Block
NL, Szepeshazi K, Nadji M, Zarandi M, Hohla F, Buchholz S and Seitz
S: Antagonists of growth hormone-releasing hormone inhibit growth
of androgen-independent prostate cancer through inactivation of ERK
and Akt kinases. Proc Natl Acad Sci USA. 109:1655–1660.
2012.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Perez R, Schally AV, Popovics P, Cai R,
Sha W, Rincon R and Rick FG: Antagonistic analogs of growth
hormone-releasing hormone increase the efficacy of treatment of
triple negative breast cancer in nude mice with doxorubicin; A
preclinical study. Oncoscience. 1:665–673. 2014.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Recinella L, Chiavaroli A, Veschi S, Di
Valerio V, Lattanzio R, Orlando G, Ferrante C, Gesmundo I, Granata
R, Cai R, et al: Antagonist of growth hormone-releasing hormone
MIA-690 attenuates the progression and inhibits growth of
colorectal cancer in mice. Biomed Pharmacother.
146(112554)2022.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Kineman RD: Antitumorigenic actions of
growth hormone-releasing hormone antagonists. Proc Natl Acad Sci
USA. 97:532–534. 2000.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Letsch M, Schally AV, Busto R, Bajo AM and
Varga JL: Growth hormone-releasing hormone (GHRH) antagonists
inhibit the proliferation of androgen-dependent and -independent
prostate cancers. Proc Natl Acad Sci USA. 100:1250–1255.
2003.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Gao FY, Li XT, Xu K, Wang RT and Guan XX:
c-MYC mediates the crosstalk between breast cancer cells and tumor
microenvironment. Cell Commun Signal. 21(28)2023.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Wu HM, Schally AV, Cheng JC, Zarandi M,
Varga J and Leung PC: Growth hormone-releasing hormone antagonist
induces apoptosis of human endometrial cancer cells through
PKCδ-mediated activation of p53/p21. Cancer Lett. 298:16–25.
2010.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Chu WK, Law KS, Chan SO, Yam JC, Chen LJ,
Zhang H, Cheung HS, Block NL, Schally AV and Pang CP: Antagonists
of growth hormone-releasing hormone receptor induce apoptosis
specifically in retinoblastoma cells. Proc Natl Acad Sci USA.
113:14396–14401. 2016.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Buchholz S, Schally AV, Engel JB, Hohla F,
Heinrich E, Koester F, Varga JL and Halmos G: Potentiation of
mammary cancer inhibition by combination of antagonists of growth
hormone-releasing hormone with docetaxel. Proc Natl Acad Sci USA.
104:1943–1946. 2007.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Siejka A, Barabutis N and Schally AV: GHRH
antagonist inhibits focal adhesion kinase (FAK) and decreases
expression of vascular endothelial growth factor (VEGF) in human
lung cancer cells in vitro. Peptides. 37:63–68. 2012.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Rick FG, Seitz S, Schally AV, Szalontay L,
Krishan A, Datz C, Stadlmayr A, Buchholz S, Block NL and Hohla F:
GHRH antagonist when combined with cytotoxic agents induces S-phase
arrest and additive growth inhibition of human colon cancer. Cell
Cycle. 11:4203–4210. 2012.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Yeste J, Illa X, Alvarez M and Villa R:
Engineering and monitoring cellular barrier models. J Biol Eng.
12(18)2018.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Su Y, Lucas R, Fulton DJR and Verin AD:
Mechanisms of pulmonary endothelial barrier dysfunction in acute
lung injury and acute respiratory distress syndrome. Chin Med J
Pulm Crit Care Med. 2:80–87. 2024.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Sapru A, Flori H, Quasney MW and Dahmer
MK: Pediatric Acute Lung Injury Consensus Conference Group.
Pathobiology of acute respiratory distress syndrome. Pediatr Crit
Care Med. 16 (5 Suppl 1):S6–S22. 2015.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Uddin MA, Akhter MS, Singh SS, Kubra KT,
Schally AV, Jois S and Barabutis N: GHRH antagonists support lung
endothelial barrier function. Tissue Barriers.
7(1669989)2019.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Granato G, Gesmundo I, Pedrolli F, Kasarla
R, Begani L, Banfi D, Bruno S, Lopatina T, Brizzi MF, Cai R, et al:
Growth hormone-releasing hormone antagonist MIA-602 inhibits
inflammation induced by SARS-CoV-2 spike protein and bacterial
lipopolysaccharide synergism in macrophages and human peripheral
blood mononuclear cells. Front Immunol. 14(1231363)2023.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Akhter MS, Kubra KT and Barabutis N:
Protective effects of GHRH antagonists against hydrogen
peroxide-induced lung endothelial barrier disruption. Endocrine.
79:587–592. 2023.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Wilson MS and Wynn TA: Pulmonary fibrosis:
Pathogenesis, etiology and regulation. Mucosal Immunol. 2:103–121.
2009.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Midgley AC, Rogers M, Hallett MB, Clayton
A, Bowen T, Phillips AO and Steadman R: Transforming growth
factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast
differentiation is mediated by hyaluronan (HA)-facilitated
epidermal growth factor receptor (EGFR) and CD44 co-localization in
lipid rafts. J Biol Chem. 288:14824–14838. 2013.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Zhang C, Cai R, Lazerson A, Delcroix G,
Wangpaichitr M, Mirsaeidi M, Griswold AJ, Schally AV and Jackson
RM: Growth hormone-releasing hormone receptor antagonist modulates
lung inflammation and fibrosis due to bleomycin. Lung. 197:541–549.
2019.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Gesmundo I, Pedrolli F, Vitale N, Bertoldo
A, Orlando G, Banfi D, Granato G, Kasarla R, Balzola F, Deaglio S,
et al: Antagonist of growth hormone-releasing hormone potentiates
the antitumor effect of pemetrexed and cisplatin in pleural
mesothelioma. Int J Mol Sci. 23(11248)2022.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Condor Capcha JM, Robleto E, Saad AG, Cui
T, Wong A, Villano J, Zhong W, Pekosz A, Medina E, Cai R, et al:
Growth hormone-releasing hormone receptor antagonist MIA-602
attenuates cardiopulmonary injury induced by BSL-2 rVSV-SARS-CoV-2
in hACE2 mice. Proc Natl Acad Sci USA.
120(e2308342120)2023.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Dotiwala AK, McCausland C and Samra NS:
Anatomy, Head and Neck: Blood Brain Barrier. In: StatPearls
[Internet]. StatPearls Publishing, Treasure Island, FL, 2025.
|
|
112
|
Takata F, Nakagawa S, Matsumoto J and
Dohgu S: Blood-brain barrier dysfunction amplifies the development
of neuroinflammation: Understanding of cellular events in brain
microvascular endothelial cells for prevention and treatment of BBB
dysfunction. Front Cell Neurosci. 15(661838)2021.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Galea I: The blood-brain barrier in
systemic infection and inflammation. Cell Mol Immunol.
18:2489–2501. 2021.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Jaeger LB, Banks WA, Varga JL and Schally
AV: Antagonists of growth hormone-releasing hormone cross the
blood-brain barrier: A potential applicability to treatment of
brain tumors. Proc Natl Acad Sci USA. 102:12495–12500.
2005.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Barabutis N: Insights on supporting the
aging brain microvascular endothelium. Aging Brain.
1(100009)2021.PubMed/NCBI View Article : Google Scholar
|
|
116
|
O'Toole TJ and Sharma S: Physiology,
Somatostatin. In: StatPearls [Internet]. StatPearls Publishing,
Treasure Island, FL, 2025.
|
|
117
|
Reubi JC and Schonbrunn A: Illuminating
somatostatin analog action at neuroendocrine tumor receptors.
Trends Pharmacol Sci. 34:676–688. 2013.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Shahid Z, Asuka E and Singh G: Physiology,
Hypothalamus. In: StatPearls [Internet]. StatPearls Publishing,
Treasure Island, FL, 2025.
|
|
119
|
Olarescu NC, Gunawardane K, Hanson TK,
Møller N and Jørgensen JOL: Normal Physiology of Growth Hormone in
Normal Adults. In: Endotext [Internet]. Feingold KR, Ahmed SF,
Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder
WW, Dhatariya K, Dungan K, et al (eds). MDText.com, Inc.,
South Dartmouth, MA, 2000.
|
|
120
|
Adigun OO, Nguyen M, Fox TJ and
Anastasopoulou C: Acromegaly. In: StatPearls [Internet]. StatPearls
Publishing, Treasure Island, FL, 2023.
|
|
121
|
Liu W, Xie L, He M, Shen M, Zhu J, Yang Y,
Wang M, Hu J, Ye H, Li Y, et al: Expression of somatostatin
receptor 2 in somatotropinoma correlated with the short-term
efficacy of somatostatin analogues. Int J Endocrinol.
2017(9606985)2017.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Debnath D and Cheriyath P: Octreotide. In:
StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL,
2023.
|
|
123
|
Roelfsema F, Biermasz NR, Pereira AM and
Romijn JA: Therapeutic options in the management of acromegaly:
Focus on lanreotide Autogel. Biologics. 2:463–479. 2008.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Velija-Asimi Z: The efficacy of octreotide
LAR in acromegalic patients as primary or secondary therapy. Ther
Adv Endocrinol Metab. 3:3–9. 2012.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Giustina A, Mazziotti G, Torri V, Spinello
M, Floriani I and Melmed S: Meta-analysis on the effects of
octreotide on tumor mass in acromegaly. PLoS One.
7(e36411)2012.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Ferrante E, Pellegrini C, Bondioni S,
Peverelli E, Locatelli M, Gelmini P, Luciani P, Peri A, Mantovani
G, Bosari S, et al: Octreotide promotes apoptosis in human
somatotroph tumor cells by activating somatostatin receptor type 2.
Endocr Relat Cancer. 13:955–962. 2006.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Fakir S and Barabutis N: Involvement of
ATF6 in octreotide-induced endothelial barrier enhancement.
Pharmaceuticals (Basel). 17(1604)2024.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Fakir S, Sigdel M, Sarker MMR, Folahan JT
and Barabutis N: Ceapin-A7 suppresses the protective effects of
Octreotide in human and bovine lung endothelial cells. Cell Stress
Chaperones. 30:1–8. 2025.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Zeng Z, Liao Q, Gan S, Li X, Xiong T, Xu
L, Li D, Jiang Y, Chen J, Ye R, et al: Structural insights into the
binding modes of lanreotide and pasireotide with somatostatin
receptor 1. Acta Pharm Sin B. 15:2468–2479. 2025.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Li ZQ, Quan Z, Tian HL and Cheng M:
Preoperative lanreotide treatment improves outcome in patients with
acromegaly resulting from invasive pituitary macroadenoma. J Int
Med Res. 40:517–524. 2012.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Caron PJ, Bevan JS, Petersenn S, Houchard
A, Sert C and Webb SM: PRIMARYS Investigators Group. Effects of
lanreotide Autogel primary therapy on symptoms and quality-of-life
in acromegaly: data from the PRIMARYS study. Pituitary. 19:149–157.
2016.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Carmichael JD: Lanreotide depot deep
subcutaneous injection: A new method of delivery and its associated
benefits. Patient Prefer Adherence. 6:73–82. 2012.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Gross CM, Kellner M, Wang T, Lu Q, Sun X,
Zemskov EA, Noonepalle S, Kangath A, Kumar S, Gonzalez-Garay M, et
al: LPS-induced Acute Lung Injury Involves NF-ĸB-mediated
Downregulation of SOX18. Am J Respir Cell Mol Biol. 58:614–624.
2018.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Sarker MMR, Fakir S, Kubra KT, Sigdel M,
Siejka A, Stepien H and Barabutis N: Lanreotide protects against
LPS-induced inflammation in endothelial cells and mouse lungs.
Tissue Barriers: Apr 17, 2025 (Epub ahead of print).
|
|
135
|
Bolanowski M, Kałużny M, Witek P and
Jawiarczyk-Przybyłowska A: Pasireotide-a novel somatostatin
receptor ligand after 20 years of use. Rev Endocr Metab Disord.
23:601–620. 2022.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Zatelli MC, Piccin D, Vignali C, Tagliati
F, Ambrosio MR, Bondanelli M, Cimino V, Bianchi A, Schmid HA,
Scanarini M, et al: Pasireotide, a multiple somatostatin receptor
subtypes ligand, reduces cell viability in non-functioning
pituitary adenomas by inhibiting vascular endothelial growth factor
secretion. Endocr Relat Cancer. 14:91–102. 2007.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Olarescu NC, Jørgensen AP, Atai S,
Wiedmann MKH, Dahlberg D, Bollerslev J and Heck A: Pasireotide as
first line medical therapy for selected patients with acromegaly.
Pituitary. 28(48)2025.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Cuevas-Ramos D and Fleseriu M:
Pasireotide: A novel treatment for patients with acromegaly. Drug
Des Devel Ther. 10:227–239. 2016.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Witek P, Bolanowski M, Krętowski A and
Głowińska A: Pasireotide-induced hyperglycemia in Cushing's disease
and Acromegaly: A clinical perspective and algorithms proposal.
Front Endocrinol (Lausanne). 15(1455465)2024.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Chinezu L, Gliga MC, Borz MB, Gliga C and
Pascanu IM: Clinical implications of molecular and genetic
biomarkers in Cushing's disease: A literature review. J Clin Med.
14(3000)2025.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Fakir S, Sarker MMR, Sigdel M and
Barabutis N: Protective effects of pasireotide in LPS-induced acute
lung injury. Pharmaceuticals (Basel). 18(942)2025.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Johnsson M, Pedroncelli AM, Hansson A and
Tiberg F: Pharmacokinetics and pharmacodynamics of a pasireotide
subcutaneous depot (CAM4071) and comparison with immediate and
long-acting release pasireotide. Endocrine. 84:1125–1134.
2024.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Gomes-Porras M, Cárdenas-Salas J and
Álvarez-Escolá C: Somatostatin analogs in clinical practice: A
review. Int J Mol Sci. 21(1682)2020.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Aversa LS, Cuboni D, Grottoli S, Ghigo E
and Gasco V: A 2024 update on growth hormone deficiency syndrome in
adults: From guidelines to real life. J Clin Med.
13(6079)2024.PubMed/NCBI View Article : Google Scholar
|