|
1
|
Yang S, Xu B, Zhuang Y, Zhang Q, Li J and
Fu X: Current research status and clinical applications of
noninvasive preimplantation genetic testing: A review. Medicine.
10(e39964)2024.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Volovsky M, Scott RT Jr and Seli E:
Non-invasive preimplantation genetic testing for aneuploidy: Is the
promise real? Hum Reprod. 39:1899–1908. 2024.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Tsai NC, Chang YC, Su YR, Lin YC, Weng PL,
Cheng YH, Li YL and Lan KC: Validation of non-invasive
preimplantation genetic screening using a routine IVF laboratory
workflow. Biomedicines. 10(1386)2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Chow JFC, Lam KKW, Cheng HHY, Lai SF,
Yeung WSB and Ng EHY: Optimizing non-invasive preimplantation
genetic testing: Investigating culture conditions, sample
collection, and IVF treatment for improved non-invasive PGT-A
results. J Assist Reprod Genet. 41:465–472. 2024.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Adriaenssens T, Wathlet S, Segers I,
Verheyen G, De Vos A, Van Der Elst J, Coucke W, Devroey P and Smitz
J: Cumulus cell gene expression is associated with oocyte
developmental quality and influenced by patient and treatment
characteristics. Hum Reprod. 25:1259–1270. 2010.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Uyar A, Torrealday S and Seli E: Cumulus
and granulosa cell markers of oocyte and embryo quality. Fertile
Steril. 99:979–997. 2013.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Kuznyetsov V, Madjunkova S, Abramov R,
Antes R, Ibarrientos Z, Motamedi G, Zaman A, Kuznyetsova I and
Librach CL: Minimally invasive cell-free human embryo aneuploidy
testing (miPGT-A) utilizing combined spent embryo culture medium
and blastocoel fluid-towards development of a clinical essay. Sci
Rep. 10(7244)2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Brouillet S, Martinez G, Coutton C and
Hamamah S: Is cell-free DNA in spent embryo culture medium an
alternative to embryo biopsy for preimplantation genetic testing? A
systematic review. Reprod Biomed Online. 40:779–796.
2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Alizadegan A, Dianat-Moghadam H, Shadman
N, Nouri M, Hamdi K, Ghasemzadeh A, Akbarzadeh M, Sarvarian P,
Mehdizadeh A, Dolati S and Yousefi M: Application of cell free DNA
in ART. Placenta. 24:18–24. 2022.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Abreu C, Thomas V, Knaggs P, Bunkheila A,
Cruz A, Teixeira SR, Alpuim P, Francis LW, Gebril A, Ibrahim A, et
al: Non-invasive molecular assessment of human embryo development
and implantation potential. Biosens Bioelectron.
157(112144)2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Massoud G, Spann M, Vaught KC, Das S, Dow
M, Cochran R, Baker V, Segars J and Singh B: Biomarkers assessing
the role of cumulus cells on IVF outcomes: A systematic review. J
Assist Reprod Genet. 41:253–275. 2024.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Aoyama N and Kato M: Trophectoderm biopsy
for preimplantation genetic test and technical tips: A review.
Reprod Med Biol. 19:222–231. 2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Scott Jr RS, Upham K, Forman E, Zhao T and
Treff NR: Cleavage-stage biopsy significantly impairs human
embryonic implantation potential while blastocyst biopsy does not:
A randomized and paired clinical trial. Fertil Steril. 100:624–630.
2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Yang H, DeWan AT, Desai MM and Vermund SH:
Preimplantation genetic testing for aneuploidy: Challenges in
clinical practice. Hum Genomics. 16(69)2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Bellassai N, Biricik A, Surdo M, Bianchi
V, D'Agata R, Breveglieri G, Gambari R, Spinella F and Spoto G:
Non-invasive preimplantation genetic testing: Cell-free DNA
detection in embryo culture media using a plasmonic biosensor. Anal
Chem. 97:19241–19248. 2025.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Battaglia R, Caponnetto A, Ferrara C,
Fazzio A, Barbagallo C, Stella M, Barbagallo D, Ragusa M, Vento ME,
Borzì P, et al: Up-regulated microRNAs in blastocoel fluid of human
implanted embryos could control circuits of pluripotency and be
related to embryo competence. J Assist Reprod Genet. 42:1635–1649.
2025.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Xing X, Wu S, Xu H, Ma Y, Bao N, Gao M,
Han X, Gao S, Zhang S, Zhao X, et al: Non-invasive prediction of
human embryonic ploidy using artificial intelligence: A systematic
review and meta-analysis. EClinicalMedicine.
24(102897)2024.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Ersoy Z, Ozdemirkan ZA, Zeyneloglu P,
Cekmen N, Torgay A, Kayhan Z and Haberal M: Pulse contour cardiac
output system monitoring in pediatric patients undergoing
orthotopic liver transplantation. Int J Innov Res Med Sci.
7(11)2022.
|
|
19
|
Njoku K, Chiasserini D, Jones ER, Barr CE,
O'Flynn H, Whetton AD and Crosbie EJ: Urinary biomarkers and their
potential for the non-invasive detection of endometrial cancer.
Front Oncol. 10(559016)2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Tran BQ, Miller PR, Taylor RM, Boyd G,
Mach PM, Rosenzweig CN, Baca JT, Polsky R and Glaros T: Proteomic
characterization of dermal interstitial fluid extracted using a
novel microneedle-assisted technique. J Proteome Res. 17:479–485.
2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Woźniak M, Paluszkiewicz C and Kwiatek WM:
Saliva as a non-invasive material for early diagnosis. Acta Biochim
Pol. 66:383–388. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Zeng H, He B, Yi C and Peng J: Liquid
biopsies: DNA methylation analyses in circulating cell-free DNA. J
Genet Genomics. 45:185–192. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Schwarzenbach H, Hoon DSB and Pantel K:
Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev
Cancer. 11:426–437. 2011.PubMed/NCBI View
Article : Google Scholar
|
|
24
|
Assou S, Aït-Ahmed O, El Messaoudi S,
Thierry AR and Hamamah S: Non-invasive pre-implantation genetic
diagnosis of X-linked disorders. Med Hypotheses. 83:506–508.
2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Stigliani S, Anserini P, Venturini PL and
Scaruffi P: Mitochondrial DNA content in embryo culture medium is
significantly associated with human embryo fragmentation. Hum
Reprod. 28:2652–2660. 2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Caamaño D, Cabezas J, Aguilera C, Martinez
I, Wong YS, Sagredo DS, Ibañez B, Rodriguez S, Castro FO and
Rodriguez-Alvarez L: DNA content in embryonic extracellular
vesicles is independent of the apoptotic rate in bovine embryos
produced in vitro. Animals (Basel). 14(1041)2024.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zhang WL, Liu Y, Jiang J, Tang YJ, Tang YL
and Liang XH: Extracellular vesicle long non-coding RNA-mediated
crosstalk in the tumor microenvironment: Tiny molecules, huge
roles. Cancer Sci. 111:2726–2735. 2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Birjandi AA and Sharpe P: Potential of
extracellular space for tissue regeneration in dentistry. Front
Physiol. 13(1034603)2022.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Mishra A, Ashary N, Sharma R and Modi D:
Extracellular vesicles in embryo implantation and disorders of the
endometrium. Am J Reprod Immunol. 85(e13360)2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Ng YH, Rome S, Jalabert A, Forterre A,
Singh H, Hincks CL and Salamonsen LA: Endometrial
exosomes/microvesicles in the uterine microenvironment: A new
paradigm for embryo-endometrial cross talk at implantation. PLoS
One. 8(e0058502)2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Vilella F, Moreno-Moya JM, Balaguer N,
Grasso A, Herrero M, Martínez S, Marcilla A and Simón C:
Hsa-miR-30d, secreted by the human endometrium, is taken up by the
pre-implantation embryo and might modify its transcriptome.
Development. 142:3210–3221. 2015.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Greening DW, Nguyen HPT, Elgass K, Simpson
RJ and Salamonsen LA: Human endometrial exosomes contain
hormone-specific cargo modulating trophoblast adhesive capacity:
Insights into endometrial-embryo interactions. Biol Reprod.
94(38)2016.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Bedrick BS, Tipping AD, Nickel KB, Riley
JK, Jain T and Jungheim ES: State-mandated insurance coverage and
preimplantation genetic testing in the United States. Obstet
Gynecol. 139:500–508. 2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Snoek R, Stokman MF, Lichtenbelt KD, van
Tilborg TC, Simcox CE, Paulussen ADC, Dreesen JCMF, van Reekum F,
Lely AT, Knoers NVAM, et al: Preimplantation genetic testing for
monogenic kidney disease. Clin J Am Soc Nephrol. 15:1279–1286.
2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
de Albornoz EC, Arroyo JAD, Iriarte YF,
Vendrell X, Vidal VM and Roig MC: Non invasive preimplantation
testing for aneuploidies in assisted reproduction: A SWOT Analysis.
Reprod Sci. 32:1–14. 2025.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Hawke DC, Watson AJ and Betts DH:
Extracellular vesicles, microRNA and the preimplantation embryo:
Non-invasive clues of embryo well-being. Reprod Biomed Online.
42:39–54. 2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Scalici E, Traver S, Molinari N, Mullet T,
Monforte M, Vintejoux E and Hamamah S: Cell-free DNA in human
follicular fluid as a biomarker of embryo quality. Hum Reprod.
29:2661–2669. 2014.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Stigliani S, Persico L, Lagazio C,
Anserini P, Venturini PL and Scaruffi P: Mitochondrial DNA in day 3
embryo culture medium is a novel, non-invasive biomarker of
blastocyst potential and implantation outcome. Mol Hum Reprod.
20:1238–1246. 2014.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Dompe C, Kulus M, Stefańska K, Kranc W,
Chermuła B, Bryl R, Pieńkowski W, Nawrocki MJ, Petitte JN, Stelmach
B, et al: Human granulosa cells-stemness properties, molecular
cross-talk and follicular angiogenesis. Cells.
10(1396)2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Nakano R, Radaelli MRM, Fujihara LS,
Yoshinaga F, Nakano E and Almodin CG: Efficacy of a modified
transvaginal ultrasound-guided fresh embryo transfer procedure.
JBRA Assist Reprod. 26:78–83. 2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Ben-Meir A, Kim K, McQuaid R, Esfandiari
N, Bentov Y, Casper RF and Jurisicova A: Co-enzyme Q10
supplementation rescues cumulus cells dysfunction in a maternal
aging model. Antioxidants (Basel). 8(58)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Kansaku K, Munakata Y, Itami N, Shirasuna
K, Kuwayama T and Iwata H: Mitochondrial dysfunction in
cumulus-oocyte complexes increases cell-free mitochondrial DNA. J
Reprod Dev. 64:261–266. 2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Lukaszuk K and Podolak A: Does
trophectoderm mitochondrial DNA content affect embryo developmental
and implantation potential? Int J Mol Sci. 23(5976)2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Hashimoto S and Morimoto Y: Mitochondrial
function of human embryo: Decline in their quality with maternal
aging. Reprod Med Biol. 21(e12491)2022.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Van Blerkom J: Mitochondrial function in
the human oocyte and embryo and their role in developmental
competence. Mitochondrion. 11:797–813. 2011.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Guo H, Li T and Sun X: LncRNA HOTAIRM1,
miR-433-5p and PIK3CD function as a ceRNA network to exacerbate the
development of PCOS. J Ovarian Res. 14(19)2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Tajima K, Orisaka M, Yata H, Goto K,
Hosokawa K and Kotsuji F: Role of granulosa and theca cell
interactions in ovarian follicular maturation. Microsc Res Tech.
69:450–458. 2006.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Kato N, Uchigasaki S, Fukase M and Kurose
A: Expression of P450 aromatase in granulosa cell tumors and
sertoli-stromal cell tumors of the ovary: Which cells are
responsible for estrogenesis? Int J Gynecol Pathol. 35:41–47.
2016.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Sciorio R and Rinaudo R: Culture
conditions in the IVF laboratory: State of the ART and possible new
directions. J Assist Reprod Genet. 40:2591–2607. 2023.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Liu X, Mai H, Chen P, Zhang Z, Wu T, Chen
J, Sun P, Zhou C, Liang X and Huang R: Comparative analyses in
transcriptome of human granulosa cells and follicular fluid
micro-environment between poor ovarian responders with conventional
controlled. Reprod Biol Endocrinol. 20(54)2022.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Zamah AM, Hassis ME, Albertolle ME and
Williams KE: Proteomic analysis of human follicular fluid from
fertile women. Clin Proteomics. 12(5)2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Al-Saleh I, Coskun S, Al-Rouqi R,
Al-Rajudi T, Eltabache C, Abduljabbar M and Al-Hassan S: Oxidative
stress and DNA damage status in couples undergoing in vitro
fertilization treatment. Reprod Fertil. 2:117–139. 2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Reiter RJ, Sharma R, Romero A, Manucha W,
Tan DX, de Campos Zuccari DAP and Chuffa LGA: Aging-related ovarian
failure and infertility: Melatonin to the rescue. Antioxidants
(Basel). 12(695)2023.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Tamura H, Jozaki M, Tanabe M, Shirafuta Y,
Mihara Y, Shinagawa M, Tamura I, Maekawa R, Sato S, Taketani T, et
al: Importance of melatonin in assisted reproductive technology and
ovarian aging. Int J Mol Sci. 21(1135)2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Drejza MA, Rylewicz K, Majcherek E,
Gross-Tyrkin K, Mizgier M, Plagens-Rotman K, Wójcik M,
Panecka-Mysza K, Pisarska-Krawczyk M, Kędzia W and
Jarząbek-Bielecka G: Markers of oxidative stress in obstetrics and
Gynaecology-a systematic literature review. Antioxidants (Basel).
11(1477)2022.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Huang J, Feng Q, Zou L, Liu Y, Bao M, Xia
W and Zhu C: Humanin exerts a protective effect against
D-galactose-induced primary ovarian insufficiency in mice.
Reproductive BioMedicine Online. 48(103330)2025.
|
|
57
|
Dong L, Teh DBL, Kennedy BK and Huang Z:
Unraveling female reproductive senescence to enhance healthy
longevity. Cell Res. 33:11–29. 2023.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wigglesworth K, Lee KB, Emori C, Sugiura K
and Eppig JJ: Transcriptomic diversification of developing cumulus
and mural granulosa cells in mouse ovarian follicles. Biol Reprod.
92(23)2015.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Demiray SB, Goker ENT, Tavmergen E, Yilmaz
O, Calimlioglu N, Soykam HO, Oktem G and Sezerman U: Differential
gene expression analysis of human cumulus cells. Clin Exp Reprod
Med. 46:76–86. 2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Su YQ, Sugiura K and Eppig JJ: Mouse
oocyte control of granulosa cell development and function:
Paracrine regulation of cumulus cell metabolism. Semin Reprod Med.
27:32–42. 2009.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Hsieh M, Lee D, Panigone S, Horner K, Chen
R, Theologis A, Lee DC, Threadgill DW and Conti M: Luteinizing
hormone-dependent activation of the epidermal growth factor network
is essential for ovulation. Mol Cell Biol. 27:1914–1924.
2007.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Biase FH and Kimble KM: Functional
signaling and gene regulatory networks between the oocyte and the
surrounding cumulus cells. BMC Genomics. 19(351)2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Akino R, Matsui D, Kawahara-Miki R, Amita
M, Tatsumi K, Ishida E, Kang W, Takada S, Miyado K and Sekizawea A:
Next-generation sequencing reveals downregulation of the Wnt
signaling pathway in human dysmature cumulus cells as a hallmark
for evaluating oocyte. Reprod Med. 1:205–215. 2020.
|
|
64
|
Vigone G, Merico V, Prigione A, Mulas F,
Sacchi L, Gabetta M, Bellazzi R, Redi CA, Mazzini G, Adjaye J, et
al: Transcriptome based identification of mouse cumulus cell
markers that predict the developmental competence of their enclosed
antral oocytes. BMC Genomics. 14(380)2013.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Salustri A, Garlanda C, Hirsch E, De
Acetis M, Maccagno A, Bottazi B, Doni A, Bastone A, Mantovani G,
Peccoz PB, et al: PTX3 plays a key role in the organization of the
cumulus oophorus extracellular matrix and in in vivo fertilization.
Development. 131:1577–1586. 2004.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Scarchilli L, Camaioni A, Bottazzi B,
Negri V, Doni A, Deban L, Bastone A, Salvatori G, Mantovani A,
Siracusa G and Salustri A: PTX3 Interacts with Inter-α-trypsin
Inhibitor: IMPLICATIONS FOR HYALURONAN ORGANIZATION AND CUMULUS
OOPHORUS EXPANSION. J Biol Chem. 12(41)2007.
|
|
67
|
Sun XL, Jiang H, Han DX, Fu Y, Liu JB, Gao
Y, Hu SM, Yuan B and Zhang JB: The activated DNA double-strand
break repair pathway in cumulus cells from aging patients may be
used as a convincing predictor of poor outcomes after in vitro
fertilization-embryo transfer treatment. PLoS One.
13(e0204524)2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Fatehi AN, Roelen BAJ, Colenbrander B,
Schoevers EJ, Gadella BM, Bevers MM and van den Hurk R: Presence of
cumulus cells during in vitro fertilization protects the bovine
oocyte against oxidative stress and improves first cleavage but
does not affect further. Zygote. 13:177–185. 2005.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Chua SC, Yovich SJ, Hinchliffe PM and
Yovich JL: How well do semen analysis parameters correlate with
sperm DNA fragmentation? A retrospective study from 2567 semen
samples analyzed by the. J Pers Med. 13(518)2023.PubMed/NCBI View Article : Google Scholar
|