|
1
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H,
Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and
epidemiology of 2019 novel coronavirus: Implications for virus
origins and receptor binding. Lancet. 395:565–574. 2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
181:271–280.e8. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Rai P, Kumar BK, Deekshit VK and
Karunasagar I and Karunasagar I: Detection technologies and recent
developments in the diagnosis of COVID-19 infection. Appl Microbiol
Biotechnol. 105:441–455. 2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Sursal T, Gandhi CD, Clare K, Feldstein E,
Frid I, Kefina M, Galluzzo D, Kamal H, Nuoman R, Amuluru K, et al:
Significant mortality associated with COVID-19 and comorbid
cerebrovascular disease: A quantitative systematic review. Cardiol
Rev. 31:199–206. 2023.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Scholkmann F and May CA: COVID-19,
post-acute COVID-19 syndrome (PACS, ‘long COVID’) and post-COVID-19
vaccination syndrome (PCVS, ‘post-COVIDvac-syndrome’): Similarities
and differences. Pathol Res Pract. 246(154497)2023.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Radzikowska U, Ding M, Tan G, Zhakparov D,
Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, et
al: Distribution of ACE2, CD147, CD26, and other SARS-CoV-2
associated molecules in tissues and immune cells in health and in
asthma, COPD, obesity, hypertension, and COVID-19 risk factors.
Allergy. 75:2829–2845. 2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Adams LE, Dinnon III KH, Hou YJ, Sheahan
TP, Heise MT and Baric RS: Critical ACE2 determinants of SARS-CoV-2
and group 2B coronavirus infection and replication. mBio.
12:e03149–20. 2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Rodrigues TS, Caetano CCS, de Sá KSG,
Almeida L, Becerra A, Gonçalves AV, Lopes LS, Oliveira S,
Mascarenhas DPA, Batah SS, et al: CASP4/11 contributes to NLRP3
activation and COVID-19 exacerbation. J Infect Dis. 227:1364–1375.
2023.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zhao MM, Yang WL, Yang FY, Zhang L, Huang
WJ, Hou W, Fan CF, Jin RH, Feng YM, Wang YC and Yang JK: Cathepsin
L plays a key role in SARS-CoV-2 infection in humans and humanized
mice and is a promising target for new drug development. Signal
Transduct Target Ther. 6(134)2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Du Y, Shi R, Zhang Y, Duan X, Li L, Zhang
J, Wang F, Zhang R, Shen H, Wang Y, et al: A broadly neutralizing
humanized ACE2-targeting antibody against SARS-CoV-2 variants. Nat
Commun. 12(5000)2021.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Turan RD, Tastan C, Dilek Kancagi D,
Yurtsever B, Sir Karakus G, Ozer S, Abanuz S, Cakirsoy D,
Tumentemur G, Demir S, et al: Gamma-irradiated SARS-CoV-2 vaccine
candidate, OZG-38.61.3, confers protection from SARS-CoV-2
challenge in human ACEII-transgenic mice. Sci Rep.
11(15799)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Perumal R, Shunmugam L, Naidoo K, Abdool
Karim SS, Wilkins D, Garzino-Demo A, Brechot C, Parthasarathy S,
Vahlne A and Nikolich JŽ: Long COVID: A review and proposed
visualization of the complexity of long COVID. Front Immunol.
14(1117464)2023.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Yinda CK, Port JR, Bushmaker T, Offei
Owusu I, Purushotham JN, Avanzato VA, Fischer RJ, Schulz JE,
Holbrook MG, Hebner MJ, et al: K18-hACE2 mice develop respiratory
disease resembling severe COVID-19. PLoS Pathog.
17(e1009195)2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Snouwaert JN, Jania LA, Nguyen T, Martinez
DR, Schäfer A, Catanzaro NJ, Gully KL, Baric RS, Heise M, Ferris
MT, et al: Human ACE2 expression, a major tropism determinant for
SARS-CoV-2, is regulated by upstream and intragenic elements. PLoS
Pathog. 19(e1011168)2023.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Ge C, Salem AR, Elsharkawy A, Natekar J,
Guglani A, Doja J, Ogala O, Wang G, Griffin SH, Slivano OJ, et al:
Development and characterization of a fully humanized ACE2 mouse
model. BMC Biol. 23(194)2025.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Song IW, Washington M, Leynes C, Hsu J,
Rayavara K, Bae Y, Haelterman N, Chen Y, Jiang MM, Drelich A, et
al: Generation of a humanized mAce2 and a conditional hACE2 mouse
models permissive to SARS-COV-2 infection. Mamm Genome. 35:113–121.
2024.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Li K, Verma A, Li P, Ortiz ME, Hawkins GM,
Schnicker NJ, Szachowicz PJ, Pezzulo AA, Wohlford-Lenane CL, Kicmal
T, et al: Adaptation of SARS-CoV-2 to ACE2H353K mice
reveals new spike residues that drive mouse infection. J Virol.
98(e0151023)2024.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Liu FL, Wu K, Sun J, Duan Z, Quan X, Kuang
J, Chu S, Pang W, Gao H, Xu L, et al: Rapid generation of ACE2
humanized inbred mouse model for COVID-19 with tetraploid
complementation. Natl Sci Rev. 8(nwaa285)2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zhang Y, Ma Y, Sun W, Zhou X, Wang R, Xie
P, Dai L, Gao Y and Li J: Exploring gut-lung axis crosstalk in
SARS-CoV-2 infection: Insights from a hACE2 mouse model. J Med
Virol. 96(e29336)2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Choi CY, Gadhave K, Villano J, Pekosz A,
Mao X and Jia H: Generation and characterization of a humanized
ACE2 mouse model to study long-term impacts of SARS-CoV-2
infection. J Med Virol. 96(e29349)2024.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Ma MT, Jiang Q, Chen CH, Badeti S, Wang X,
Zeng C, Evans D, Bodnar B, Marras SAE, Tyagi S, et al: S309-CAR-NK
cells bind the Omicron variants in vitro and reduce SARS-CoV-2
viral loads in humanized ACE2-NSG mice. J Virol.
98(e0003824)2024.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Verma SK, Ana-Sosa-Batiz F, Timis J,
Shafee N, Maule E, Pinto PBA, Conner C, Valentine KM, Cowley DO,
Miller R, et al: Influence of Th1 versus Th2 immune bias on viral,
pathological, and immunological dynamics in SARS-CoV-2
variant-infected human ACE2 knock-in mice. EBioMedicine.
108(105361)2024.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Tang AT, Buchholz DW, Szigety KM, Imbiakha
B, Gao S, Frankfurter M, Wang M, Yang J, Hewins P, Mericko-Ishizuka
P, et al: Cell-autonomous requirement for ACE2 across organs in
lethal mouse SARS-CoV-2 infection. PLoS Biol.
21(e3001989)2023.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Bruter AV, Korshunova DS, Kubekina MV,
Sergiev PV, Kalinina AA, Ilchuk LA, Silaeva YY, Korshunov EN,
Soldatov VO and Deykin AV: Novel transgenic mice with Cre-dependent
co-expression of GFP and human ACE2: A safe tool for study of
COVID-19 pathogenesis. Transgenic Res. 30:289–301. 2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
26
|
Tu Y, Fang Y, Zheng R, Lu D, Yang X, Zhang
L, Li D, Sun Y, Yu W, Luo D and Wang H: A murine model of DC-SIGN
humanization exhibits increased susceptibility against SARS-CoV-2.
Microbes Infect. 26(105344)2024.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Liao Z, Wang C, Tang X, Yang M, Duan Z,
Liu L, Lu S, Ma L, Cheng R, Wang G, et al: Human transferrin
receptor can mediate SARS-CoV-2 infection. Proc Natl Acad Sci USA.
121(e2317026121)2024.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Wu J, Chen L, Qin C, Huo F, Liang X, Yang
X, Zhang K, Lin P, Liu J, Feng Z, et al: CD147 contributes to
SARS-CoV-2-induced pulmonary fibrosis. Signal Transduct Target
Ther. 7(382)2022.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Brumeanu TD, Vir P, Karim AF, Kar S,
Benetiene D, Lok M, Greenhouse J, Putmon-Taylor T, Kitajewski C,
Chung KK, et al: Human-immune-system (HIS) humanized mouse model
(DRAGA: HLA-A2.HLA-DR4.Rag1KO.IL-2RγcKO.NOD) for COVID-19. Hum
Vaccin Immunother. 18(2048622)2022.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Brumeanu TD, Vir P, Karim AF, Kar S,
Benetiene D, Lok M, Greenhouse J, Putmon-Taylor T, Kitajewski C,
Chung KK, et al: A Human-Immune-System (HIS) humanized mouse model
(DRAGA: HLA-A2. HLA-DR4. Rag1 KO.IL-2Rγc KO. NOD) for COVID-19.
bioRxiv [Preprint]: 2020.08.19.251249, 2021.
|
|
31
|
Prakash S, Srivastava R, Coulon PG,
Dhanushkodi NR, Chentoufi AA, Tifrea DF, Edwards RA, Figueroa CJ,
Schubl SD, Hsieh L, et al: Genome-wide asymptomatic B-Cell, CD4
+ and CD8 + T-cell epitopes, that are highly
conserved between human and animal coronaviruses, identified from
SARS-CoV-2 as immune targets for pre-emptive pan-coronavirus
vaccines. bioRxiv [Preprint]: 2020.09.27.316018, 2020.
|
|
32
|
Li S, Han X, Hu R, Sun K, Li M, Wang Y,
Zhao G, Li M, Fan H and Yin Q: Transcriptomic profiling reveals
SARS-CoV-2-infected humanized MHC mice recapitulate human post
vaccination immune responses. Front Cell Infect Microbiol.
15(1634577)2025.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Fu W, Wang W, Yuan L, Lin Y, Huang X, Chen
R, Cai M, Liu C, Chen L, Zhou M, et al: A SCID mouse-human lung
xenograft model of SARS-CoV-2 infection. Theranostics.
11:6607–6615. 2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Sun R, Zhao Z, Fu C, Wang Y, Guo Z, Zhang
C, Liu L, Zhang C, Shu C, He J, et al: Humanized mice for
investigating SARS-CoV-2 lung infection and associated human immune
responses. Eur J Immunol. 52:1640–1647. 2022.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Sefik E, Israelow B, Zhao J, Qu R, Song E,
Mirza H, Kaffe E, Halene S, Meffre E, Kluger Y, et al: A humanized
mouse model of chronic COVID-19 to evaluate disease mechanisms and
treatment options. Res Sq [Preprint]: rs.3.rs-279341, 2021.
|
|
36
|
Sefik E, Israelow B, Mirza H, Zhao J, Qu
R, Kaffe E, Song E, Halene S, Meffre E, Kluger Y, et al: A
humanized mouse model of chronic COVID-19. Nat Biotechnol.
40:906–920. 2022.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Sefik E, Qu R, Junqueira C, Kaffe E, Mirza
H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B, et al:
Inflammasome activation in infected macrophages drives COVID-19
pathology. Nature. 606:585–593. 2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Yong KSM, Anderson DE, Zheng AKE, Liu M,
Tan SY, Tan WWS, Chen Q and Wang LF: Comparison of infection and
human immune responses of two SARS-CoV-2 strains in a humanized
hACE2 NIKO mouse model. Sci Rep. 13(12484)2023.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Le Chevalier F, Authié P, Chardenoux S,
Bourgine M, Vesin B, Cussigh D, Sassier Y, Fert I, Noirat A,
Nemirov K, et al: Mice humanized for MHC and hACE2 with high
permissiveness to SARS-CoV-2 omicron replication. Microbes Infect.
25(105142)2023.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Di Y, Lew J, Goncin U, Radomska A, Rout
SS, Gray BET, Machtaler S, Falzarano D and Lavender KJ: SARS-CoV-2
variant-specific infectivity and immune profiles Are detectable in
a humanized lung mouse model. Viruses. 14(2272)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Kenney DJ, O'Connell AK, Turcinovic J,
Montanaro P, Hekman RM, Tamura T, Berneshawi AR, Cafiero TR, Al
Abdullatif S, Blum B, et al: Humanized mice reveal a
macrophage-enriched gene signature defining human lung tissue
protection during SARS-CoV-2 infection. Cell Rep.
39(110714)2022.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Jarnagin K, Alvarez O, Shresta S and Webb
DR: Animal models for SARS-Cov2/Covid19 research-A commentary.
Biochem Pharmacol. 188(114543)2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ye Q, Zhou J, He Q, Li RT, Yang G, Zhang
Y, Wu SJ, Chen Q, Shi JH, Zhang RR, et al: SARS-CoV-2 infection in
the mouse olfactory system. Cell Discov. 7(49)2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Cao JB, Zhu ST, Huang XS, Wang XY, Wu ML,
Li X, Liu FL, Chen L, Zheng YT and Wang JH: Mast cell
degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial
epithelial inflammation and injury. Virol Sin. 39:309–318.
2024.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Wu ML, Liu FL, Sun J, Li X, He XY, Zheng
HY, Zhou YH, Yan Q, Chen L, Yu GY, et al: SARS-CoV-2-triggered mast
cell rapid degranulation induces alveolar epithelial inflammation
and lung injury. Signal Transduct Target Ther.
6(428)2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Dos Ramos Almeida CJL, Veras FP, Paiva IM,
Schneider AH, da Costa Silva J, Gomes GF, Costa VF, Silva BMS,
Caetite DB, Silva CMS, et al: Neutrophil virucidal activity against
SARS-CoV-2 is mediated by neutrophil extracellular traps. J Infect
Dis. 229:1352–1365. 2024.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Chuang HC, Hsueh CH, Hsu PM, Huang RH,
Tsai CY, Chung NH, Chow YH and Tan TH: SARS-CoV-2 spike protein
enhances MAP4K3/GLK-induced ACE2 stability in COVID-19. EMBO Mol
Med. 14(e15904)2022.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Bello-Perez M, Hurtado-Tamayo J, Mykytyn
AZ, Lamers MM, Requena-Platek R, Schipper D, Muñoz-Santos D,
Ripoll-Gómez J, Esteban A, Sánchez-Cordón PJ, et al: SARS-CoV-2
ORF8 accessory protein is a virulence factor. mBio.
14(e0045123)2023.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Park U, Lee JH, Kim U, Jeon K, Kim Y, Kim
H, Kang JI, Park MY, Park SH, Cha JS, et al: A humanized ACE2 mouse
model recapitulating age- and sex-dependent immunopathogenesis of
COVID-19. J Med Virol. 96(e29915)2024.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Subramaniam S, Kenney D, Jayaraman A,
O'Connell AK, Walachowski S, Montanaro P, Reinhardt C, Colucci G,
Crossland NA, Douam F and Bosmann M: Aging is associated with an
insufficient early inflammatory response of lung endothelial cells
in SARS-CoV-2 infection. Front Immunol. 15(1397990)2024.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Haoyu W, Meiqin L, Jiaoyang S, Guangliang
H, Haofeng L, Pan C, Xiongzhi Q, Kaixin W, Mingli H, Xuejie Y, et
al: Premature aging effects on COVID-19 pathogenesis: New insights
from mouse models. Sci Rep. 14(19703)2024.PubMed/NCBI View Article : Google Scholar
|
|
52
|
García-Ayllón MS, Moreno-Pérez O,
García-Arriaza J, Ramos-Rincón JM, Cortés-Gómez M, Brinkmalm G,
Andrés M, León-Ramírez JM, Boix V, Gil J, et al: Plasma ACE2
species are differentially altered in COVID-19 patients. FASEB J.
35(e21745)2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Lu T, Zhang C, Li Z, Wei Y, Sadewasser A,
Yan Y, Sun L, Li J, Wen Y, Lai S, et al: Human
angiotensin-converting enzyme 2-specific antisense oligonucleotides
reduce infection with SARS-CoV-2 variants. J Allergy Clin Immunol.
154:1044–1059. 2024.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Ikemura N, Taminishi S, Inaba T, Arimori
T, Motooka D, Katoh K, Kirita Y, Higuchi Y, Li S, Suzuki T, et al:
An engineered ACE2 decoy neutralizes the SARS-CoV-2 Omicron variant
and confers protection against infection in vivo. Sci Transl Med.
14(eabn7737)2022.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Zhang L, Dutta S, Xiong S, Chan M, Chan
KK, Fan TM, Bailey KL, Lindeblad M, Cooper LM, Rong L, et al:
Engineered ACE2 decoy mitigates lung injury and death induced by
SARS-CoV-2 variants. Nat Chem Biol. 18:342–351. 2022.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Zhang L, Dutta S, Xiong S, Chan M, Chan
KK, Fan TM, Bailey KL, Lindeblad M, Cooper LM, Rong L, et al:
Engineered high-affinity ACE2 peptide mitigates ARDS and death
induced by multiple SARS-CoV-2 variants. bioRxiv [Preprint]:
2021.12.21.473668, 2021.
|
|
57
|
Hwang J, Kim BK, Moon S, Park W, Kim KW,
Yoon JH, Oh H, Jung S, Park Y, Kim S, et al: Conversion of host
cell receptor into virus destructor by immunodisc to neutralize
diverse SARS-CoV-2 variants. Adv Healthc Mater.
13(e2302803)2024.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Dong W, Wang J, Tian L, Zhang J, Mead H,
Jaramillo SA, Li A, Zumwalt RE, Whelan SPJ, Settles EW, et al: FXa
cleaves the SARS-CoV-2 spike protein and blocks cell entry to
protect against infection with inferior effects in B.1.1.7 variant.
bioRxiv [Preprint]: 2021.06.07.447437, 2021.
|
|
59
|
Yu F, Liu X, Ou H, Li X, Liu R, Lv X, Xiao
S, Hu M, Liang T, Chen T, et al: The histamine receptor H1 acts as
an alternative receptor for SARS-CoV-2. mBio.
15(e0108824)2024.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Chan CC, Guo Q, Chan JF, Tang K, Cai JP,
Chik KK, Huang Y, Dai M, Qin B, Ong CP, et al: Identification of
novel small-molecule inhibitors of SARS-CoV-2 by chemical genetics.
Acta Pharm Sin B. 14:4028–4044. 2024.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Mercado-Gómez M, Prieto-Fernández E,
Goikoetxea-Usandizaga N, Vila-Vecilla L, Azkargorta M, Bravo M,
Serrano-Maciá M, Egia-Mendikute L, Rodríguez-Agudo R,
Lachiondo-Ortega S, et al: The spike of SARS-CoV-2 promotes
metabolic rewiring in hepatocytes. Commun Biol.
5(827)2022.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Frasson I, Diamante L, Zangrossi M,
Carbognin E, Pietà AD, Penna A, Rosato A, Verin R, Torrigiani F,
Salata C, et al: Identification of druggable host dependency
factors shared by multiple SARS-CoV-2 variants of concern. J Mol
Cell Biol. 16(mjae004)2024.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Deshpande K, Lange KR, Stone WB, Yohn C,
Schlesinger N, Kagan L, Auguste AJ, Firestein BL and Brunetti L:
The influence of SARS-CoV-2 infection on expression of
drug-metabolizing enzymes and transporters in a hACE2 murine model.
Pharmacol Res Perspect. 11(e01071)2023.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Mazzarella L, Santoro F, Ravasio R,
Fumagalli V, Massa PE, Rodighiero S, Gavilán E, Romanenghi M, Duso
BA, Bonetti E, et al: Inhibition of the lysine demethylase LSD1
modulates the balance between inflammatory and antiviral responses
against coronaviruses. Sci Signal. 16(eade0326)2023.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Xiong S, Zhang L, Richner JM, Class J,
Rehman J and Malik AB: Interleukin-1RA mitigates SARS-CoV-2-induced
inflammatory lung vascular leakage and mortality in humanized
K18-hACE-2 mice. Arterioscler Thromb Vasc Biol. 41:2773–2785.
2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Botella-Asunción P, Rivero-Buceta EM,
Vidaurre-Agut C, Lama R, Rey-Campos M, Moreno A, Mendoza L,
Mingo-Casas P, Escribano-Romero E, Gutierrez-Adan A, et al: AG5 is
a potent non-steroidal anti-inflammatory and immune regulator that
preserves innate immunity. Biomed Pharmacother.
169(115882)2023.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Weiss CM, Liu H, Ball EE, Hoover AR, Wong
TS, Wong CF, Lam S, Hode T, Keel MK, Levenson RM, et al:
N-dihydrogalactochitosan reduces mortality in a lethal mouse model
of SARS-CoV-2. PLoS One. 18(e0289139)2023.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Yeung ST, Premeaux TA, Du L, Niki T,
Pillai SK, Khanna KM and Ndhlovu LC: Galectin-9 protects
humanized-ACE2 immunocompetent mice from SARS-CoV-2 infection.
Front Immunol. 13(1011185)2022.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Meier M, Becker S, Levine E, DuFresne O,
Foster K, Moore J, Burnett FN, Hermanns VC, Heath SP, Abdelsaid M
and Coucha M: Timing matters in the use of renin-angiotensin system
modulators and COVID-related cognitive and cerebrovascular
dysfunction. PLoS One. 19(e0304135)2024.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Silva-Santos Y, Pagni RL, Gamon THM, de
Azevedo MSP, Bielavsky M, Darido MLG, de Oliveira DBL, de Souza EE,
Wrenger C, Durigon EL, et al: Lisinopril increases lung ACE2 levels
and SARS-CoV-2 viral load and decreases inflammation but not
disease severity in experimental COVID-19. Front Pharmacol.
15(1414406)2024.PubMed/NCBI View Article : Google Scholar
|
|
71
|
da Silva-Santos Y, Pagni RL, Gamon THM, de
Azevedo MSP, Darido MLG, de Oliveira DBL, Durigon EL, Luvizotto
MCR, Ackerman HC, Marinho CRF, et al: Angiotensin-converting enzyme
inhibition and/or angiotensin receptor blockade modulate cytokine
profiles and improve clinical outcomes in experimental COVID-19
infection. Int J Mol Sci. 26(7663)2025.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Corti D, Purcell LA, Snell G and Veesler
D: Tackling COVID-19 with neutralizing monoclonal antibodies. Cell.
184:3086–3108. 2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Sun CP, Chiu CW, Wu PY, Tsung SI, Lee IJ,
Hu CW, Hsu MF, Kuo TJ, Lan YH, Chen LY, et al: Development of
AAV-delivered broadly neutralizing anti-human ACE2 antibodies
against SARS-CoV-2 variants. Mol Ther. 31:3322–3336.
2023.PubMed/NCBI View Article : Google Scholar
|
|
74
|
de Campos-Mata L, Trinité B, Modrego A,
Tejedor Vaquero S, Pradenas E, Pons-Grífols A, Rodrigo Melero N,
Carlero D, Marfil S, Santiago C, et al: A monoclonal antibody
targeting a large surface of the receptor binding motif shows
pan-neutralizing SARS-CoV-2 activity. Nat Commun.
15(1051)2024.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Onodera T, Kita S, Adachi Y, Moriyama S,
Sato A, Nomura T, Sakakibara S, Inoue T, Tadokoro T, Anraku Y, et
al: A SARS-CoV-2 antibody broadly neutralizes SARS-related
coronaviruses and variants by coordinated recognition of a
virus-vulnerable site. Immunity. 54:2385–2398.e10. 2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Vanhove B, Marot S, So RT, Gaborit B,
Evanno G, Malet I, Lafrogne G, Mevel E, Ciron C, Royer PJ, et al:
XAV-19, a swine glyco-humanized polyclonal antibody against
SARS-CoV-2 spike receptor-binding domain, targets multiple epitopes
and broadly neutralizes variants. Front Immunol.
12(761250)2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Fu D, Zhang G, Wang Y, Zhang Z, Hu H, Shen
S, Wu J, Li B, Li X, Fang Y, et al: Structural basis for SARS-CoV-2
neutralizing antibodies with novel binding epitopes. PLoS Biol.
19(e3001209)2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Hansen J, Baum A, Pascal KE, Russo V,
Giordano S, Wloga E, Fulton BO, Yan Y, Koon K, Patel K, et al:
Studies in humanized mice and convalescent humans yield a
SARS-CoV-2 antibody cocktail. Science. 369:1010–1014.
2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Wang F, Li L, Dou Y, Shi R, Duan X, Liu H,
Zhang J, Liu D, Wu J, He Y, et al: Etesevimab in combination with
JS026 neutralizing SARS-CoV-2 and its variants. Emerg Microbes
Infect. 11:548–551. 2022.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Li F, Xu W, Zhang X, Wang W, Su S, Han P,
Wang H, Xu Y, Li M, Fan L, et al: A spike-targeting bispecific T
cell engager strategy provides dual layer protection against
SARS-CoV-2 infection in vivo. Commun Biol. 6(592)2023.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Casasnovas JM, Margolles Y, Noriega MA,
Guzmán M, Arranz R, Melero R, Casanova M, Corbera JA,
Jiménez-de-Oya N, Gastaminza P, et al: Nanobodies protecting from
lethal SARS-CoV-2 infection target receptor binding epitopes
preserved in virus variants other than omicron. Front Immunol.
13(863831)2022.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Chi H, Wang L, Liu C, Cheng X, Zheng H, Lv
L, Tan Y, Zhang N, Zhao S, Wu M, et al: An engineered IgG-VHH
bispecific antibody against SARS-CoV-2 and its variants. Small
Methods. 6(e2200932)2022.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Titong A, Gallolu Kankanamalage S, Dong J,
Huang B, Spadoni N, Wang B, Wright M, Pham KLJ, Le AH and Liu Y:
First-in-class trispecific VHH-Fc based antibody with potent
prophylactic and therapeutic efficacy against SARS-CoV-2 and
variants. Sci Rep. 12(4163)2022.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Yang Z, Wang Y, Jin Y, Zhu Y, Wu Y, Li C,
Kong Y, Song W, Tian X, Zhan W, et al: A non-ACE2 competing human
single-domain antibody confers broad neutralization against
SARS-CoV-2 and circulating variants. Signal Transduct Target Ther.
6(378)2021.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Luo S, Zhang J, Kreutzberger AJB, Eaton A,
Edwards RJ, Jing C, Dai HQ, Sempowski GD, Cronin K, Parks R, et al:
An antibody from single human VH-rearranging mouse
neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting
membrane fusion. Sci Immunol. 7(eadd5446)2022.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Geng J, Chen L, Yuan Y, Wang K, Wang Y,
Qin C, Wu G, Chen R, Zhang Z, Wei D, et al: CD147 antibody
specifically and effectively inhibits infection and cytokine storm
of SARS-CoV-2 and its variants delta, alpha, beta, and gamma.
Signal Transduct Target Ther. 6(347)2021.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Tai W, Feng S, Chai B, Lu S, Zhao G, Chen
D, Yu W, Ren L, Shi H, Lu J, et al: An mRNA-based T-cell-inducing
antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants.
Nat Commun. 14(2962)2023.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Freitag TL, Fagerlund R, Karam NL,
Leppänen VM, Ugurlu H, Kant R, Mäkinen P, Tawfek A, Jha SK,
Strandin T, et al: Intranasal administration of adenoviral vaccines
expressing SARS-CoV-2 spike protein improves vaccine immunity in
mouse models. Vaccine. 41:3233–3246. 2023.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Gu S, Chen Z, Meng X, Liu G, Xu H, Huang
L, Wu L, Gong J, Chen D, Xue B, et al: Spike-based adenovirus
vectored COVID-19 vaccine does not aggravate heart damage after
ischemic injury in mice. Commun Biol. 5(902)2022.PubMed/NCBI View Article : Google Scholar
|
|
90
|
García-Arriaza J, Garaigorta U, Pérez P,
Lázaro-Frías A, Zamora C, Gastaminza P, Del Fresno C, Casasnovas
JM, Sorzano CÓ S, Sancho D and Esteban M: COVID-19 vaccine
candidates based on modified vaccinia virus Ankara expressing the
SARS-CoV-2 spike induce robust T- and B-cell immune responses and
full efficacy in mice. J Virol. 95:e02260–20. 2021.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Phoolcharoen W, Shanmugaraj B,
Khorattanakulchai N, Sunyakumthorn P, Pichyangkul S, Taepavarapruk
P, Praserthsee W, Malaivijitnond S, Manopwisedjaroen S,
Thitithanyanont A, et al: Preclinical evaluation of immunogenicity,
efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD
vaccine formulated with 3M-052-Alum adjuvant. Vaccine.
41:2781–2792. 2023.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Marlin R, Godot V, Cardinaud S, Galhaut M,
Coleon S, Zurawski S, Dereuddre-Bosquet N, Cavarelli M, Gallouët
AS, Maisonnasse P, et al: Targeting SARS-CoV-2 receptor-binding
domain to cells expressing CD40 improves protection to infection in
convalescent macaques. Nat Commun. 12(5215)2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Zhang T, Magazine N, McGee MC, Carossino
M, Veggiani G, Kousoulas KG, August A and Huang W: Th2 and
Th17-associated immunopathology following SARS-CoV-2 breakthrough
infection in Spike-vaccinated ACE2-humanized mice. J Med Virol.
96(e29408)2024.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Zhang J, Fang F, Zhang Y, Han X, Wang Y,
Yin Q, Sun K, Zhou H, Qin H, Zhao D, et al: Humanized major
histocompatibility complex transgenic mouse model can play a potent
role in SARS-CoV-2 human leukocyte antigen-restricted T cell
epitope screening. Vaccines (Basel). 13(416)2025.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Weingarten-Gabbay S, Klaeger S, Sarkizova
S, Pearlman LR, Chen DY, Gallagher KME, Bauer MR, Taylor HB, Dunn
WA, Tarr C, et al: Profiling SARS-CoV-2 HLA-I peptidome reveals T
cell epitopes from out-of-frame ORFs. Cell. 184:3962–3980.e17.
2021.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Zayou L, Prakash S, Vahed H, Dhanushkodi
NR, Quadiri A, Belmouden A, Lemkhente Z, Chentoufi A, Gil D, Ulmer
JB and BenMohamed L: Dynamics of spike-specific neutralizing
antibodies across five-year emerging SARS-CoV-2 variants of concern
reveal conserved epitopes that protect against severe COVID-19.
Front Immunol. 16(1503954)2025.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Klein J, Wood J, Jaycox JR, Dhodapkar RM,
Lu P, Gehlhausen JR, Tabachnikova A, Greene K, Tabacof L, Malik AA,
et al: Distinguishing features of long COVID identified through
immune profiling. Nature. 623:139–148. 2023.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Cui L, Fang Z, De Souza CM, Lerbs T, Guan
Y, Li I, Charu V, Chen SY, Weissman I and Wernig G: Innate immune
cell activation causes lung fibrosis in a humanized model of long
COVID. Proc Natl Acad Sci USA. 120(e2217199120)2023.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Heath SP, Hermanns VC, Coucha M and
Abdelsaid M: SARS-CoV-2 spike protein exacerbates thromboembolic
cerebrovascular complications in humanized ACE2 mouse model. Transl
Stroke Res. 16:1214–1228. 2025.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Burnett FN, Coucha M, Bolduc DR, Hermanns
VC, Heath SP, Abdelghani M, Macias-Moriarity LZ and Abdelsaid M:
SARS-CoV-2 spike protein intensifies cerebrovascular complications
in diabetic hACE2 Mice through RAAS and TLR signaling activation.
Int J Mol Sci. 24(16394)2023.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Haudenschild AK, Christiansen BA, Orr S,
Ball EE, Weiss CM, Liu H, Fyhrie DP, Yik JHN, Coffey LL and
Haudenschild DR: Acute bone loss following SARS-CoV-2 infection in
mice. J Orthop Res. 41:1945–1952. 2023.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Upadhyay V, Suryawanshi RK, Tasoff P,
McCavitt-Malvido M, Kumar RG, Murray VW, Noecker C, Bisanz JE,
Hswen Y, Ha CWY, et al: Mild SARS-CoV-2 infection results in
long-lasting microbiota instability. mBio.
14(e0088923)2023.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Edwinson A, Yang L, Chen J and Grover M:
Colonic expression of Ace2, the SARS-CoV-2 entry receptor, is
suppressed by commensal human microbiota. Gut Microbes.
13(1984105)2021.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Zhu H, Sharma AK, Aguilar K, Boghani F,
Sarcan S, George M, Ramesh J, Van Der Eerden J, Panda CS, Lopez A,
et al: Simple virus-free mouse models of COVID-19 pathologies and
oral therapeutic intervention. iScience. 27(109191)2024.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Pujhari S and Rasgon JL: Mice with
humanized-lungs and immune system-an idealized model for COVID-19
and other respiratory illness. Virulence. 11:486–488.
2020.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Lamers MM, van der Vaart J, Knoops K,
Riesebosch S, Breugem TI, Mykytyn AZ, Beumer J, Schipper D,
Bezstarosti K, Koopman CD, et al: An organoid-derived
bronchioalveolar model for SARS-CoV-2 infection of human alveolar
type II-like cells. EMBO J. 40(e105912)2021.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Ahmadipour M, Prado JC, Hakak-Zargar B,
Mahmood MQ and Rogers IM: Using ex vivo bioengineered lungs to
model pathologies and screening therapeutics: A proof-of-concept
study. Biotechnol Bioeng. 121:3020–3033. 2024.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Parker MFL, Blecha J, Rosenberg O, Ohliger
M, Flavell RR and Wilson DM: Cyclic 68Ga-labeled
peptides for specific detection of human angiotensin-converting
enzyme 2. J Nucl Med. 62:1631–1637. 2021.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Li D, Xiong L, Pan G, Wang T, Li R, Zhu L,
Tong Q, Yang Q, Peng Y, Zuo C, et al: Molecular imaging on
ACE2-dependent transocular infection of coronavirus. J Med Virol.
94:4878–4889. 2022.PubMed/NCBI View Article : Google Scholar
|