|
1
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J and
Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 59:225–249.
2009. View Article : Google Scholar
|
|
2
|
Davies L and Welch HG: Increasing
incidence of thyroid cancer in the United States, 1973–2002. JAMA.
295:2164–2167. 2006.
|
|
3
|
Leenhardt L, Grosclaude P and
Cherie-Challine L: Increased incidence of thyroid carcinoma in
France: a true epidemic or thyroid nodule management effects?
Report from the French Thyroid Cancer Committee. Thyroid.
14:1056–1060. 2004. View Article : Google Scholar
|
|
4
|
Williams ED, Abrosimov A, Bogdanova T,
Demidchik EP, Ito M, LiVolsi V, Lushnikov E, Rosai J, Tronko MD,
Tsyb AF, Vowler SL and Thomas GA: Morphologic characteristics of
Chernobyl-related childhood papillary thyroid carcinomas are
independent of radiation exposure but vary with iodine intake.
Thyroid. 18:847–852. 2008. View Article : Google Scholar
|
|
5
|
Hunt JL: Radiation induced thyroid
diseases. Pathol Case Rev. 14:224–230. 2009. View Article : Google Scholar
|
|
6
|
Nakachi K, Hayashi T, Hamatani K, Eguchi H
and Kusunoki Y: Sixty years of follow-up of Hiroshima and Nagasaki
survivors: cancer progress in molecular epidemiology studies. Mutat
Res. 659:109–117. 2008.PubMed/NCBI
|
|
7
|
Williams D: Radiation carcinogenesis:
lessons from Chernobyl. Oncogene. 27:9–18. 2009. View Article : Google Scholar
|
|
8
|
Sherman SI, Angelos P, Ball DW, Beenken
SW, Byrd D, Clark OH, Daniels GH, Dilawari RA, Ehya H, Farrar WB,
et al: Thyroid carcinoma. J Natl Compr Canc Netw. 3:404–457.
2005.PubMed/NCBI
|
|
9
|
Cooper DS, Doherty GM, Haugen BR, Kloos
RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Sherman SI and
Tuttle RM: Management guidelines for patients with thyroid nodules
and differentiated thyroid cancer. Thyroid. 16:109–142. 2006.
View Article : Google Scholar
|
|
10
|
Mazzaferri EL: Long-term outcome of
patients with differentiated thyroid carcinoma: effect of therapy.
Endocr Pract. 6:469–476. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mazzaferri EL and Kloos RT: Clinical
review 128: current approaches to primary therapy for papillary and
follicular thyroid cancer. J Clin Endocrinol Metab. 86:1447–1463.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tanaka K, Sonoo H, Hirono M, Ohkubo S,
Nomura T, Ikeda M, Nakajima K and Kurebayashi J: Retrospective
analysis of predictive factors for recurrence after curatively
resected papillary thyroid carcinoma. Surg Today. 35:714–719. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chan JK: Papillary carcinoma of thyroid:
classical and variants. Histol Histopathol. 5:241–257.
1990.PubMed/NCBI
|
|
14
|
Lang BH, Lo CY, Chan WF, Lam AK and Wan
KY: Classical and follicular variant of papillary thyroid
carcinoma: a comparative study on clinicopathologic features and
long-term outcome. World J Surg. 30:752–758. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Keelawat S and Poumsuk U: Association
between different variants of papillary thyroid carcinoma and
risk-group according to AMES (age, metastasis, extent and size)
classification system. J Med Assoc Thai. 89:484–489. 2006.
|
|
16
|
Michels JJ, Jacques M, Henry-Amar M and
Bardet S: Prevalence and prognostic significance of tall cell
variant of papillary thyroid carcinoma. Hum Pathol. 38:212–219.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mazzaferri EL: Managing small thyroid
cancers. JAMA. 295:2179–2182. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mazzaferri EL and Jhiang SM: Long-term
impact of initial surgical and medical therapy on papillary and
follicular thyroid cancer. Am J Med. 97:418–428. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fagin JA: Minireview: branded from the
start-distinct oncogenic initiating events may determine tumor fate
in the thyroid. Mol Endocrinol. 16:903–911. 2002.PubMed/NCBI
|
|
20
|
Bongarzone I and Pierotti MA: The
molecular basis of thyroid epithelial tumorigenesis. Tumori.
89:514–516. 2003.PubMed/NCBI
|
|
21
|
Nikiforov YE: RET/PTC rearrangement in
thyroid tumors. Endocrine Pathology. 13:3–16. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tallini G: Molecular pathobiology of
thyroid neoplasms. Endocr Pathol. 13:271–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kroll TG, Sarraf P, Pecciarini L, Chen CJ,
Mueller E, Spiegelman BM and Fletcher JA: PAX8- PPARgamma1 fusion
oncogene in human thyroid carcinoma. Science. 289:1357–1360. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
McIver B, Grebe SK and Eberhardt NL: The
PAX8/PPARgamma fusion oncogene as a potential therapeutic target in
follicular thyroid carcinoma. Curr Drug Targets Immune Endocr
Metabol Disord. 4:221–234. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nikiforova MN and Nikiforov YE: Molecular
genetics of thyroid cancer: implications for diagnosis, treatment
and prognosis. Expert Rev Mol Diagn. 8:83–95. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Garnett MJ and Marais R: Guilty as
charged: B-RAF is a human oncogene. Cancer Cell. 6:313–319. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cohen Y, Xing M, Mambo E, Guo Z, Wu G,
Trink B, Beller U, Westra WH, Ladenson PW and Sidransky D: BRAF
mutation in papillary thyroid carcinoma. J Natl Cancer Inst.
95:625–627. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fukushima T, Suzuki S, Mashiko M, Ohtake
T, Endo Y, Takebayashi Y, Sekikawa K, Hagiwara K and Takenoshita S:
BRAF mutations in papillary carcinomas of the thyroid. Oncogene.
22:6455–6457. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA,
Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in
thyroid cancer: genetic evidence for constitutive activation of the
RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.
Cancer Res. 63:1454–1457. 2003.
|
|
30
|
Namba H, Nakashima M, Hayashi T, Hayashida
N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T and
Yamashita S: Clinical implication of hot spot BRAF mutation, V599E,
in papillary thyroid cancers. J Clin Endocrinol Metab.
88:4393–4397. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Soares P, Trovisco V, Rocha AS, Lima J,
Castro P, Preto A, Maximo V, Botelho T, Seruca R and
Sobrinho-Simões M: BRAF mutations and RET/PTC rearrangements are
alternative events in the etiopathogenesis of PTC. Oncogene.
22:4578–4580. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu X, Quiros RM, Gattuso P, Ain KB and
Prinz RA: High prevalence of BRAF gene mutation in papillary
thyroid carcinomas and thyroid tumor cell lines. Cancer Res.
63:4561–4567. 2003.PubMed/NCBI
|
|
33
|
Xing M: BRAF mutation in thyroid cancer.
Endocr Relat Cancer. 12:245–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pritchard C and McMahon M: Raf revealed in
life-or-death decisions. Nat Genet. 16:214–215. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
McCubrey JA, Steelman LS, Chappell WH,
Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M,
Tafuri A, et al: Roles of the Raf/MEK/ERK pathway in cell growth,
malignant transformation and drug resistance. Biochim Biophys Acta.
1773:1263–1284. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Steelman LS, Abrams SL, Shelton JG,
Chappell WH, Bäsecke J, Stivala F, Donia M, Nicoletti F, Libra M,
Martelli AM and McCubrey JA: Dominant roles of the Raf/MEK/ERK
pathway in cell cycle progression, prevention of apoptosis and
sensitivity to chemotherapeutic drugs. Cell Cycle. 9:1629–1638.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Steelman LS, Chappell WH, Abrams SL, Kempf
RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F,
Mazzarino MC, et al: Roles of the Raf/MEK/ERK and
PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity
to therapy-implications for cancer and aging. Aging (Albany NY).
3:192–222. 2011.PubMed/NCBI
|
|
38
|
Chappell WH, Steelman LS, Long JM, Kempf
RC, Abrams SL, Franklin RA, Bäsecke J, Stivala F, Donia M, Fagone
P, et al: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors:
rationale and importance to inhibiting these pathways in human
health. Oncotarget. 2:135–164. 2011.PubMed/NCBI
|
|
39
|
Hoshino R, Chatani Y, Yamori T, Tsuruo T,
Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J and Kohno
M: Constitutive activation of the 41-/43-kDa mitogen-activated
protein kinase signaling pathway in human tumors. Oncogene.
18:813–822. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ciampi R and Nikiforov YE: RET/PTC
rearrangements and BRAF mutations in thyroid tumorigenesis.
Endocrinology. 148:936–941. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Santoro M, Melillo RM and Fusco A: RET/PTC
activation in papillary thyroid carcinoma: European Journal of
Endocrinology Prize Lecture. Eur J Endocrinol. 155:645–653. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Russo AE, Torrisi E, Bevelacqua Y,
Perrotta R, Libra M, McCubrey JA, Spandidos DA, Stivala F and
Malaponte G: Melanoma: molecular pathogenesis and emerging target
therapies (Review). Int J Oncol. 34:1481–1489. 2009.PubMed/NCBI
|
|
43
|
Steelman LS, Navolanic PM, Franklin RA,
Bonati A, Libra M, Stivala F, Martelli AM and McCubrey JA:
Combining chemo-, hormonal and targeted therapies to treat breast
cancer (Review). Mol Med Report. 1:139–160. 2008.PubMed/NCBI
|
|
44
|
Davies H, Bignell GR, Cox C, et al:
Mutations of the BRAF gene in human cancer. Nature. 417:949–954.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dhillon AS and Kolch W: Oncogenic B-Raf
mutations: crystal clear at last. Cancer Cell. 5:303–304. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hubbard SR: Oncogenic mutations in B-Raf:
some losses yield gains. Cell. 116:764–766. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
McCubrey JA, Steelman LS, Kempf CR,
Chappell WH, Abrams SL, Stivala F, Malaponte G, Nicoletti F, Libra
M, Bäsecke J, et al: Therapeutic resistance resulting from
mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways.
J Cell Physiol. 226:2762–2781. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lima J, Trovisco V, Soares P, Máximo V,
Magalhães J, Salvatore G, Santoro M, Bogdanova T, Tronko M,
Abrosimov A, et al: BRAF mutations are not a major event in
post-Chernobyl childhood thyroid carcinomas. J Clin Endocrinol
Metab. 89:4267–4271. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Trovisco V, Vieira de Castro I, Soares P,
Maximo V, Silva P, Magalhaes J, Abrosimov A, Guiu XM and
Sobrinho-Simões M: BRAF mutations are associated with some
histological types of papillary thyroid carcinoma. J Pathol.
202:247–251. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Frattini M, Ferrario C, Bressan P,
Balestra D, De Cecco L, Mondellini P, Bongarzone I, Collini P,
Gariboldi M, Pilotti S, Pierotti MA and Greco A: Alternative
mutations of BRAF, RET and NTRK1 are associated with similar but
distinct gene expression patterns in papillary thyroid cancer.
Oncogene. 23:7436–7740. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Perren A, Schmid S, Locher T, Saremaslani
P, Bonvin C, Heitz PU and Komminoth P: BRAF and endocrine tumors:
mutations are frequent in papillary thyroid carcinomas, rare in
endocrine tumors of the gastrointestinal tract and not detected in
other endocrine tumors. Endocr Relat Cancer. 11:855–860. 2004.
View Article : Google Scholar
|
|
52
|
Puxeddu E, Moretti S, Elisei R, Romei C,
Pascucci R, Martinelli M, Marino C, Avenia N, Rossi ED, Fadda G, et
al: BRAF(V599E) mutation is the leading genetic event in adult
sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab.
89:2414–2420. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ciampi R, Knauf JA, Kerler R, Gandhi M,
Zhu Z, Nikiforova MN, Rabes HM, Fagin JA and Nikiforov YE:
Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway
activation in thyroid cancer. J Clin Invest. 115:94–101. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Fusco A, Viglietto G and Santoro M: A new
mechanism of BRAF activation in human thyroid papillary carcinomas.
J Clin Invest. 115:20–23. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Knauf JA, Ma X, Smith EP, Zhang L,
Mitsutake N, Liao XH, Refetoff S, Nikiforov YE and Fagin JA:
Targeted expression of BRAFV600E in thyroid cells of transgenic
mice results in papillary thyroid cancers that undergo
dedifferentiation. Cancer Res. 65:4238–4245. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mesa C Jr, Mirza M, Mitsutake N, Sartor M,
Medvedovic M, Tomlinson C, Knauf JA, Weber GF and Fagin JA:
Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells
is associated with gene expression profiles that predict a
preferential role of BRAF in extracellular matrix remodeling.
Cancer Res. 66:6521–6529. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ouyang B, Knauf JA, Smith EP, Zhang L,
Ramsey T, Yusuff N, Batt D and Fagin JA: Inhibitors of Raf kinase
activity block growth of thyroid cancer cells with RET/PTC or BRAF
mutations in vitro and in vivo. Clin Cancer Res. 12:1785–1793.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu D, Liu Z, Condouris S and Xing M: BRAF
V600E maintains proliferation, transformation, and tumorigenicity
of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol
Metab. 92:2264–2271. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Salvatore G, Falco V, Salerno P, Nappi T,
Pepe S, Troncone G, Carlomagno F, Melillo R, Wilhelm SM and Santoro
M: BRAF is a therapeutic target in aggressive thyroid carcinoma.
Clin Cancer Res. 12:1623–1629. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mitsutake N, Knauf JA, Mitsutake S, Mesa C
Jr, Zhang L and Fagin JA: Conditional BRAFV600E expression induces
DNA synthesis, apoptosis, dedifferentiation, and chromosomal
instability in thyroid PCCL3 cells. Cancer Res. 65:2465–2473. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Melillo RM, Castellone MD, Guarino V, De
Falco V, Cirafici AM, Salvatore G, Caiazzo F, Basolo F, Giannini R,
Kruhoffer M, et al: The RET/PTC-RAS-BRAF linear signaling cascade
mediates the motile and mitogenic phenotype of thyroid cancer
cells. J Clin Invest. 115:1068–1081. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Giordano TJ, Kuick R, Thomas DG, Misek DE,
Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, et al:
Molecular classification of papillary thyroid carcinoma: distinct
BRAF, RAS, and RET/PTC mutation-specific gene expression profiles
discovered by DNA microarray analysis. Oncogene. 24:6646–6656.
2005. View Article : Google Scholar
|
|
63
|
Hoque MO, Rosenbaum E, Westra WH, Xing M,
Ladenson P, Zeiger MA, Sidransky D and Umbricht CB: Quantitative
assessment of promoter methylation profiles in thyroid neoplasms. J
Clin Endocrinol Metab. 90:4011–4018. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hu S, Liu DX, Tufano RP, Carson KA,
Rosenbaum E, Cohen Y, Holt EH, Kiseljak-Vassiliades K, Rhoden KJ,
Tolaney S, et al: Association of aberrant methylation of tumor
suppressor genes with tumor aggressiveness and BRAF mutation in
papillary thyroid cancer. Int J Cancer. 119:2322–2329. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hou P, Liu D and Xing M: Genome-wide
alterations in gene methylation by the BRAF V600E mutation in
papillary thyroid cancer cells. Endocr Relat Cancer. 18:687–697.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Porra V, Ferraro-Peyret C, Durand C,
Selmi-Ruby S, Giroud H, Berger-Dutrieux N, Decaussin M, Peix JL,
Bournaud C, Orgiazzi J, et al: Silencing of the tumor suppressor
gene SLC5A8 is associated with BRAF mutations in classical
papillary thyroid carcinomas. J Clin Endocrinol Metab.
90:3028–3035. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Anand-Apte B, Bao L, Smith R, Iwata K,
Olsen BR, Zetter B and Apte SS: A review of tissue inhibitor of
metalloproteinases-3 (TIMP-3) and experimental analysis of its
effect on primary tumor growth. Biochem Cell Biol. 74:853–862.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Qi JH, Ebrahem Q, Moore N, Murphy G,
Claesson-Welsh L, Bond M, Baker A and Anand-Apte B: A novel
function for tissue inhibitor of metalloproteinases-3 (TIMP3):
inhibition of angiogenesis by blockage of VEGF binding to VEGF
receptor-2. Nat Med. 9:407–415. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chou CK, Chen RF, Chou FF, Chang HW, Chen
YJ, Lee YF, Yang KD, Cheng JT, Huang CC and Liu RT: miR-146b is
highly expressed in adult papillary thyroid carcinomas with high
risk features including extrathyroidal invasion and the BRAF(V600E)
mutation. Thyroid. 20:489–494. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cahill S, Smyth P, Denning K, Flavin R, Li
J, Potratz A, Guenther SM, Henfrey R, O’Leary JJ and Sheils O:
Effect of BRAFV600E mutation on transcription and
post-transcriptional regulation in a papillary thyroid carcinoma
model. Mol Cancer. 6:212007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yoon H, He H, Nagy R, Davuluri R, Suster
S, Schoenberg D, Pellegata N and Chapelle AL: Identification of a
novel noncoding RNA gene, NAMA, that is downregulated in papillary
thyroid carcinoma with BRAF mutation and associated with growth
arrest. Int J Cancer. 121:767–775. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Palona I, Namba H, Mitsutake N, Starenki
D, Podtcheko A, Sedliarou I, Ohtsuru A, Saenko V, Nagayama Y,
Umezawa K and Yamashita S: BRAFV600E promotes invasiveness of
thyroid cancer cells through nuclear factor kB activation.
Endocrinology. 147:5699–5707. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Karin M: Nuclear factor-kB in cancer
development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Deryugina EI and Quigley JP: Matrix
metalloproteinases and tumor metastasis. Cancer Metastasis Rev.
25:9–34. 2006. View Article : Google Scholar
|
|
75
|
Jo YS, Li S, Song JH, Kwon KH, Lee JC, Rha
SY, Lee HJ, Sul JY, Kweon GR, Ro HK, Kim JM and Shong M: Influence
of the BRAF V600E mutation on expression of vascular endothelial
growth factor in papillary thyroid cancer. J Clin Endocrinol Metab.
91:3667–3670. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Grabellus F, Worm K, Schmid KW and
Sheu-Grabellus SY: The BRAF V600E mutation in papillary thyroid
carcinomas is associated with glucose transporter 1 (GLUT1)
overexpression. Thyroid. 22:377–382. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Nilsson M: Iodide handling by the thyroid
epithelial cell. Exp Clin Endocrinol Diabetes. 109:13–17. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Arturi F, Russo D, Bidart JM, Scarpelli D,
Schlumberger M and Filetti S: Expression pattern of the pendrin and
sodium/iodide symporter genes in human thyroid carcinoma cell lines
and human thyroid tumors. Eur J Endocrinol. 145:129–135. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ringel MD, Anderson J, Souza SL, Burch HB,
Tambascia M, Shriver CD and Tuttle RM: Expression of the sodium
iodide symporter and thyroglobulin genes are reduced in papillary
thyroid cancer. Mod Pathol. 14:289–296. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Durante C, Puxeddu E, Ferretti E, Morisi
R, Moretti S, Bruno R, Barbi F, Avenia N, Scipioni A, Verrienti A,
et al: BRAF mutations in papillary thyroid carcinomas inhibit genes
involved in iodine metabolism. J Clin Endocrinol Metab.
92:2840–2843. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mian C, Barollo S, Pennelli G, Pavan N,
Rugge M, Pelizzo MR, Mazzarotto R, Casara D, Nacamulli D, Mantero
F, et al: Molecular characteristics in papillary thyroid cancers
(PTCs) with no (131)I uptake. Clin Endocrinol. 68:108–116. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Di Cristofaro J, Silvy M, Lanteaume A,
Marcy M, Carayon P and De Micco C: Expression of tpo mRNA in
thyroid tumors: quantitative PCR analysis and correlation with
alterations of ret, Braf, ras and pax8 genes. Endocr Relat Cancer.
13:485–495. 2006.PubMed/NCBI
|
|
83
|
Riesco-Eizaguirre G, Gutierrez-Martinez P,
Garcia-Cabezas MA, Nistal M and Santisteban P: The oncogene BRAF
V600E is associated with a high risk of recurrence and less
differentiated papillary thyroid carcinoma due to the impairment of
Na+/I−targeting to the membrane. Endocr Relat
Cancer. 13:257–269. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu D, Hu S, Hou P, Jiang D, Condouris S
and Xing M: Suppression of BRAF/MEK/MAP kinase pathway restores
expression of iodide-metabolizing genes in thyroid cells expressing
the V600E BRAF mutant. Clin Cancer Res. 13:1341–1349. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ikuyama S, Niller HH, Shimura H, Akamizu T
and Kohn LD: Characterization of the 5-flanking region of the rat
thyrotropin receptor gene. Mol Endocrinol. 6:793–804.
1992.PubMed/NCBI
|
|
86
|
Yokomori N, Tawata M, Saito T, Shimura H
and Onaya T: Regulation of the rat thyrotropin receptor gene by the
methylationsensitive transcription factor GA-binding protein. Mol
Endocrinol. 12:1241–1249. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Xing M, Usadel H, Cohen Y, Tokumaru Y, Guo
Z, Westra WB, Tong BC, Tallini G, Udelsman R, Califano JA, Ladenson
PW and Sidransky D: Methylation of the thyroid-stimulating hormone
receptor gene in epithelial thyroid tumors: a marker of malignancy
and a cause of gene silencing. Cancer Res. 63:2316–2321.
2003.PubMed/NCBI
|
|
88
|
Schagdarsurengin U, Gimm O, Dralle H,
Hoang-Vu C and Dammann R: CpG island methylation of tumor-related
promoters occurs preferentially in undifferentiated carcinoma.
Thyroid. 16:633–642. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Xing M: BRAF mutation in papillary thyroid
cancer: pathogenic role, molecular bases, and clinical
implications. Endocr Rev. 28:742–762. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Abrosimov A, Saenko V, Rogounovitch T,
Namba H, Lushnikov E, Mitsutake N and Yamashita S: Different
structural components of conventional papillary thyroid carcinoma
display mostly identical BRAF status. Int J Cancer. 120:196–200.
2007. View Article : Google Scholar
|
|
91
|
Adeniran AJ, Zhu Z, Gandhi M, Steward DL,
Fidler JP, Giordano TJ, Biddinger PW and Nikiforov YE: Correlation
between genetic alterations and microscopic features, clinical
manifestations, and prognostic characteristics of thyroid papillary
carcinomas. Am J Surg Pathol. 30:216–222. 2006. View Article : Google Scholar
|
|
92
|
Fugazzola L, Mannavola D, Cirello V,
Vannucchi G, Muzza M, Vicentini L and Beck-Peccoz P: BRAF mutations
in an Italian cohort of thyroid cancers. Clin Endocrinol.
61:239–243. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Fugazzola L, Puxeddu E, Avenia N, Romei C,
Cirello V, Cavaliere A, Faviana P, Mannavola D, Moretti S, Rossi S,
et al: Correlation between B-RAFV600E mutation and
clinico-pathologic parameters in papillary thyroid carcinoma: data
from a multicentric Italian study and review of the literature.
Endocr Relat Cancer. 13:455–464. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jin L, Sebo TJ, Nakamura N, Qian X,
Oliveira A, Majerus JA, Johnson MR and Lloyd RV: BRAF mutation
analysis in fine needle aspiration (FNA) cytology of the thyroid.
Diagn Mol Pathol. 15:136–143. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kebebew E, Weng J, Bauer J, Ranvier G,
Clark OH, Duh QY, Shibru D, Bastian B and Griffin A: The prevalence
and prognostic value of BRAF mutation in thyroid cancer. Ann Surg.
246:466–471. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kim KH, Kang DW, Kim SH, Seong IO and Kang
DY: Mutations of the BRAF gene in papillary thyroid carcinoma in a
Korean population. Yonsei Med J. 45:818–821. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kim KH, Suh KS, Kang DW and Kang DY:
Mutations of the BRAF gene in papillary thyroid carcinoma and in
Hashimoto’s thyroiditis. Pathol Int. 55:540–545. 2005.
|
|
98
|
Kim TY, Kim WB, Song JY, Rhee YS, Gong G,
Cho YM, Kim SY, Kim SC, Hong SJ and Shong YK: The BRAF mutation is
not associated with poor prognostic factors in Korean patients with
conventional papillary thyroid microcarcinoma. Clin Endocrinol
(Oxf). 63:588–593. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kim TY, Kim WB, Rhee YS, Song JY, Kim JM,
Gong G, Lee S, Kim SY, Kim SC, Hong SJ and Shong YK: The BRAF
mutation is useful for prediction of clinical recurrence in
low-risk patients with conventional papillary thyroid carcinoma.
Clin Endocrinol (Oxf). 65:364–368. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kim J, Giuliano AE, Turner RR, Gaffney RE,
Umetani N, Kitago M, Elashoff D and Hoon DS: Lymphatic mapping
establishes the role of BRAF gene mutation in papillary thyroid
carcinoma. Ann Surg. 244:799–804. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu RT, Chen YJ, Chou FF, Li CL, Wu WL,
Tsai PC, Huang CC and Cheng JT: No correlation between BRAFV600E
mutation and clinicopathological features of papillary thyroid
carcinomas in Taiwan. Clin Endocrinol (Oxf). 63:461–466. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lupi C, Giannini R, Ugolini C, Proietti A,
Berti P, Minuto M, Materazzi G, Elisei R, Santoro M, Miccoli P and
Basolo F: Association of BRAF V600E mutation with poor
clinicopathologic outcomes in 500 consecutive cases of papillary
thyroid carcinoma. J Clin Endocrinol Metab. 92:4085–4090. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lee JH, Lee ES, Kim YS, Won NH and Chae
YS: BRAF mutation and AKAP9 expression in sporadic papillary
thyroid carcinomas. Pathology. 38:201–204. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mitsiades CS, Negri J, McMullan C,
McMillin DW, Sozopoulos E, Fanourakis G, Voutsinas G,
Tseleni-Balafouta S, Poulaki V, Batt D and Mitsiades N: Targeting
BRAFV600E in thyroid carcinoma: therapeutic implications. Mol
Cancer Ther. 6:1070–1078. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Nikiforova MN, Kimura ET, Gandhi M,
Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G,
Fusco A, et al: BRAF mutations in thyroid tumors are restricted to
papillary carcinomas and anaplastic or poorly differentiated
carcinomas arising from papillary carcinomas. J Clin Endocrinol
Metab. 88:5399–5404. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Park SY, Park YJ, Lee YJ, Lee HS, Choi SH,
Choe G, Jang HC, Park SH, Park do J and Cho BY: Analysis of
differential BRAF (V600E) mutational status in multifocal papillary
thyroid carcinoma: evidence of independent clonal origin in
distinct tumor foci. Cancer. 107:1831–1838. 2006. View Article : Google Scholar
|
|
107
|
Rodolico V, Cabibi D, Pizzolanti G,
Richiusa P, Gebbia N, Martorana A, Russo A, Amato MC, Galluzzo A
and Giordano C: BRAF(V600E) mutation and p27(kip1) expression in
papillary carcinomas of the thyroid ≤1 cm and their paired lymph
node metastases. Cancer. 110:1218–1226. 2007.PubMed/NCBI
|
|
108
|
Sedliarou I, Saenko V, Lantsov D,
Rogounovitch T, Namba H, Abrosimov A, Lushnikov E, Kumagai A,
Nakashima M, Meirmanov S, et al: The BRAFT1796A transversion is a
prevalent mutational event in human thyroid microcarcinoma. Int J
Oncol. 25:1729–1735. 2004.PubMed/NCBI
|
|
109
|
Trovisco V, Soares P, Preto A, de Castro
IV, Lima J, Castro P, Maximo V, Botelho T, Moreira S, Meireles AM,
et al: Type and prevalence of BRAF mutations are closely associated
with papillary thyroid carcinoma histotype and patients’ age but
not with tumour aggressiveness. Virchows Arch. 446:589–595.
2005.PubMed/NCBI
|
|
110
|
Xing M, Westra WH, Tufano RP, et al: BRAF
mutation predicts a poorer clinical prognosis for papillary thyroid
cancer. J Clin Endocrinol Metab. 90:6373–6379. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Powell N, Jeremiah S, Morishita M, Dudley
E, Bethel J, Bogdanova T, Tronko M and Thomas G: Frequency of BRAF
T1796A mutation in papillary thyroid carcinoma relates to age of
patient at diagnosis and not to radiation exposure. J Pathol.
205:558–564. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sapio MR, Posca D, Troncone G, Pettinato
G, Palombini L, Rossi G, Fenzi G and Vitale M: Detection of BRAF
mutation in thyroid papillary carcinomas by mutant allele-specific
PCR amplification (MASA). Eur J Endocrinol. 154:341–348. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Frasca F, Nucera C, Pellegriti G, Gangemi
P, Attard M, Stella M, Loda M, Vella V, Giordano C, Trimarchi F, et
al: BRAF(V600E) mutation and the biology of papillary thyroid
cancer. Endocr Relat Cancer. 15:191–205. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Cañadas Garre M, López de la Torre Casares
M, Becerra Massare P, López Nevot MÁ, Villar Del Moral J, Muñoz
Pérez N, Vílchez Joya R, Montes Ramírez R and Llamas Elvira JM:
BRAF(T1799A) mutation in the primary tumor as a marker of risk,
recurrence, or persistence of papillary thyroid carcinoma.
Endocrinol Nutr. 58:175–184. 2011.PubMed/NCBI
|
|
115
|
Chakraborty A, Narkar A, Mukhopadhyaya R,
Kane S, D’Cruz A and Rajan MG: BRAF (V600E) Mutation in papillary
phyroid carcinoma: significant association with node metastases and
extra thyroidal invasion. Endocr Pathol. 23:83–93. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Nam JK, Jung CK, Song BJ, Lim DJ, Chae BJ,
Lee NS, Park WC, Kim JS, Jung SS and Bae JS: Is the BRAF(V600E)
mutation useful as a predictor of preoperative risk in papillary
thyroid cancer? Am J Surg. 203:436–441. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kim SJ, Lee KE, Myong JP, Park JH, Jeon
YK, Min HS, Park SY, Jung KC, Koo do H and Youn YK: BRAF(V600E)
mutation is associated with tumor aggressiveness in papillary
thyroid cancer. Word J Surg. 36:310–317. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Begum S, Rosenbaum E, Henrique R, Cohen Y,
Sidransky D and Westra WH: BRAF mutations in anaplastic thyroid
carcinoma: implications for tumor origin, diagnosis and treatment.
Mod Pathol. 17:1359–1363. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Quiros RM, Ding HG, Gattuso P, Prinz RA
and Xu X: Evidence that one subset of anaplastic thyroid carcinomas
are derived from papillary carcinomas due to BRAF and p53
mutations. Cancer. 103:2261–2268. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Takano T, Ito Y, Hirokawa M, Yoshida H and
Miyauchi A: BRAF V600E mutation in anaplastic thyroid carcinomas
and their accompanying differentiated carcinomas. Br J Cancer.
96:1549–1553. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ito Y, Yoshida H, Maruo R, et al: BRAF
mutation in papillary thyroid carcinoma in a Japanese population:
its lack of correlation with high-risk clinicopathologic features
and disease-free survival of patients. Endocrine J. 56:89–97. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Howell GM, Carty SE, Armstrong MJ, Lebeau
SO, Hodak SP, Coyne C, Stang MT, McCoy KL, Nikiforova MN, Nikiforov
YE and Yip L: Both BRAF V600E mutation and older age (≥65 years)
are associated with recurrent papillary thyroid cancer. Ann Surg
Oncol. 18:3566–3571. 2011.
|
|
123
|
Ain KB: Management of undifferentiated
thyroid cancer. Baillieres Best Pract Res Clin Endocrinol Metab.
14:615–629. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Chung KW, Yang SK, Lee GK, Kim EY, Kwon S,
Lee SH, Park do J, Lee HS, Cho BY, Lee ES and Kim SW: Detection of
BRAFV600E mutation on fine needle aspiration specimens of thyroid
nodule refines cyto-pathology diagnosis, especially in BRAF600E
mutation-prevalent area. Clin Endocrinol (Oxf). 65:660–666. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Patel A, Klubo-Gwiezdzinska J, Hoperia V,
Larin A, Jensen K, Bauer A and Vasko V: BRAF(V600E) mutation
analysis from May-Grünwald Giemsa-stained cytological samples as an
adjunct in identification of high-risk papillary thyroid carcinoma.
Endocr Pathol. 22:195–199. 2011.
|
|
126
|
Rowe LR, Bentz BG and Bentz JS: Utility of
BRAF V600E mutation detection in cytologically indeterminate
thyroid nodules. Cytojournal. 3:102006. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Marchetti I, Lessi F, Mazzanti CM,
Bertacca G, Elisei R, Coscio GD, Pinchera A and Bevilacqua G: A
morpho-molecular diagnosis of papillary thyroid carcinoma: BRAF
V600E detection as an important tool in preoperative evaluation of
fine-needle aspirates. Thyroid. 19:837–842. 2009. View Article : Google Scholar
|
|
128
|
Colanta A, Lin O, Tafe L, Ghossein R, Nafa
K, Mitchell T, Ladanyi M and Arcila M: BRAF mutation analysis of
fine-needle aspiration biopsies of papillary thyroid carcinoma:
Impact on diagnosis and prognosis. Acta Cytol. 55:563–569. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Bollag G, Hirth P, Tsai J, et al: Clinical
efficacy of a RAF inhibitor needs broad target blockade in
BRAF-mutant melanoma. Nature. 467:596–569. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Nucera C, Porrello A, Antonello ZA, Mekel
M, Nehs MA, Giordano TJ, Gerald D, Benjamin LE, Priolo C, Puxeddu
E, et al: B-Raf(V600E) and thrombospondin-1 promote thyroid cancer
progression. Proc Natl Acad Sci USA. 107:10649–10654. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Nucera C, Nehs MA, Mekel M, Zhang X, Hodin
R, Lawler J, Nose V and Parangi S: A novel orthotopic mouse model
of human anaplastic thyroid carcinoma. Thyroid. 19:1077–1084. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liu D, Liu Z, Jiang D, Dackiw AP and Xing
M: Inhibitory effects of the mitogen-activated protein kinase
kinase inhibitor CI-1040 on the proliferation and tumor growth of
thyroid cancer cells with BRAF or RAS mutations. J Clin Endocrinol
Metab. 92:4686–4695. 2007. View Article : Google Scholar
|
|
133
|
Henderson YC, Fredrick MJ and Clayman GL:
Differential responses of human papillary thyroid cancer cell lines
carrying the RET/PTC1 rearrangement or a BRAF mutation to MEK1/2
inhibitors. Arch Otolaryngol Head Neck Surg. 133:810–815. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Wallace EM, Lyssikatos JP, Yeh T, Winkler
JD and Koch K: Progress towards therapeutic small molecule MEK
inhibitors for use in cancer therapy. Curr Top Med Chem. 5:215–229.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Wang D, Boerner SA, Winkler JD and LoRusso
PM: Clinical experience of MEK inhibitors in cancer therapy.
Biochim Biophys Acta. 1773:1248–1255. 2007. View Article : Google Scholar : PubMed/NCBI
|