|
1
|
Mughal NA, Russell DA, Ponnambalam S and
Homer-Vanniasinkam S: Gene therapy in the treatment of peripheral
arterial disease. Br J Surg. 99:6–15. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Thijssen DH, Cable NT and Green DJ: Impact
of exercise training on arterial wall thickness in humans. Clin Sci
(Lond). 122:311–322. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fang J, Song XW, Tian J, Chen HY, Li DF,
Wang JF, Ren AJ, Yuan WJ and Lin L: Overexpression of microRNA-378
attenuates ischemia-induced apoptosis by inhibiting caspase-3
expression in cardiac myocytes. Apoptosis. 17:410–423. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Meister G: miRNAs get an early start on
translational silencing. Cell. 131:25–28. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Schier AF: The maternal-zygotic
transition: death and birth of RNAs. Science. 316:406–407. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Carrington JC and Ambros V: Role of
microRNAs in plant and animal development. Science. 301:336–338.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zampetaki A and Mayr M: MicroRNAs in
vascular and metabolic disease. Circ Res. 110:508–522. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shantikumar S, Caporali A and Emanueli C:
Role of microRNAs in diabetes and its cardiovascular complications.
Cardiovasc Res. 93:583–593. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Katare R, Riu F, Mitchell K, Gubernator M,
Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami
AP, Angelini G, Emanueli C and Madeddu P: Transplantation of human
pericyte progenitor cells improves the repair of infarcted heart
through activation of an angiogenic program involving
micro-RNA-132. Circ Res. 109:894–906. 2011. View Article : Google Scholar
|
|
10
|
Wang XQ, Nigro P, World C, Fujiwara K, Yan
C and Berk BC: Thioredoxin interacting protein promotes endothelial
cell inflammation in response to disturbed flow by increasing
leukocyte adhesion and repressing kruppel-like factor 2. Circ Res.
110:560–568. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zakkar M, Luong le A, Chaudhury H, et al:
Dexamethasone arterializes venous endothelial cells by inducing
mitogen-activated protein kinase phosphatase-1: a novel
antiinflammatory treatment for vein grafts? Circulation.
123:524–532. 2011. View Article : Google Scholar
|
|
12
|
Pall T, Pink A, Kasak L, Turkina M,
Anderson W, Valkna A and Kogerman P: Soluble CD44 interacts with
intermediate filament protein vimentin on endothelial cell surface.
PLoS One. 6:e293052011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Brouillet S, Hoffmann P, Benharouga M,
Salomon A, Schaal JP, Feige JJ and Alfaidy N: Molecular
characterization of EG-VEGF-mediated angiogenesis: differential
effects on microvascular and macrovascular endothelial cells. Mol
Biol Cell. 21:2832–2843. 2010. View Article : Google Scholar
|
|
14
|
Sabatel C, Malvaux L, Bovy N, Deroanne C,
Lambert V, Gonzalez ML, Colige A, Rakic JM, Noel A, Martial JA and
Struman I: MicroRNA-21 exhibits antiangiogenic function by
targeting RhoB expression in endothelial cells. PLoS One.
6:e169792011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Parikh VN, Jin RC, Rabello S, et al:
MicroRNA-21 integrates pathogenic signaling to control pulmonary
hypertension: results of a network bioinformatics approach.
Circulation. 125:1520–32. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhou J, Wang KC, Wu W, Subramaniam S, Shyy
JY, Chiu JJ, Li JY and Chien S: MicroRNA-21 targets peroxisome
proliferators-activated receptor-alpha in an autoregulatory loop to
modulate flow-induced endothelial inflammation. Proc Natl Acad Sci
USA. 108:10355–10360. 2011. View Article : Google Scholar
|
|
17
|
Weber M, Baker MB, Moore JP and Searles
CD: MiR-21 is induced in endothelial cells by shear stress and
modulates apoptosis and eNOS activity. Biochem Biophys Res Commun.
393:643–648. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Harris TA, Yamakuchi M, Ferlito M, Mendell
JT and Lowenstein CJ: MicroRNA-126 regulates endothelial expression
of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA.
105:1516–1521. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fish JE, Santoro MM, Morton SU, Yu S, Yeh
RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY and Srivastava D:
miR-126 regulates angiogenic signaling and vascular integrity. Dev
Cell. 15:272–284. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang S, Aurora AB, Johnson BA, Qi X,
McAnally J, Hill JA, Richardson JA, Bassel-Duby R and Olson EN: The
endothelial-specific microRNA miR-126 governs vascular integrity
and angiogenesis. Dev Cell. 15:261–271. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zernecke A, Bidzhekov K, Noels H, et al:
Delivery of microRNA-126 by apoptotic bodies induces
CXCL12-dependent vascular protection. Sci Signal. 2:ra812009.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Van Solingen C, Seghers L, Bijkerk R, et
al: Antagomir-mediated silencing of endothelial cell specific
microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med.
13:1577–1585. 2009.PubMed/NCBI
|
|
23
|
Zhu N, Zhang D, Chen S, Liu X, Lin L,
Huang X, Guo Z, Liu J, Wang Y, Yuan W and Qin Y: Endothelial
enriched microRNAs regulate angiotensin II-induced endothelial
inflammation and migration. Atherosclerosis. 215:286–293. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dentelli P, Rosso A, Orso F, Olgasi C,
Taverna D and Brizzi MF: microRNA-222 controls neovascularization
by regulating signal transducer and activator of transcription 5A
expression. Arterioscler Thromb Vasc Biol. 30:1562–1568. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fasanaro P, D’Alessandra Y, Di Stefano V,
Melchionna R, Romani S, Pompilio G, Capogrossi MC and Martelli F:
MicroRNA-210 modulates endothelial cell response to hypoxia and
inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol
Chem. 283:15878–15883. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Qin B, Xiao B, Liang D, Xia J, Li Y and
Yang H: MicroRNAs expression in ox-LDL treated HUVECs: MiR-365
modulates apoptosis and Bcl-2 expression. Biochem Biophys Res
Commun. 410:127–133. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ghosh G, Subramanian IV, Adhikari N, et
al: Hypoxia-induced microRNA-424 expression in human endothelial
cells regulates HIF-alpha isoforms and promotes angiogenesis. J
Clin Invest. 120:4141–4154. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ni CW, Qiu H and Jo H: MicroRNA-663
upregulated by oscillatory shear stress plays a role in
inflammatory response of endothelial cells. Am J Physiol Heart Circ
Physiol. 300:1762–1769. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Qin ZX, Yu P, Qian DH, et al:
Hydrogen-rich saline prevents neointima formation after carotid
balloon injury by suppressing ROS and the TNF-alpha/NF-kappaB
pathway. Atherosclerosis. 220:343–350. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fogelstrand P, Mellander S and Mattsson E:
Increased vascular injury reduces the degree of intimal hyperplasia
following angioplasty in rabbits. J Vasc Res. 48:307–315. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Davis BN, Hilyard AC, Nguyen PH, Lagna G
and Hata A: Induction of microRNA-221 by platelet-derived growth
factor signaling is critical for modulation of vascular smooth
muscle phenotype. J Biol Chem. 284:3728–3738. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen J, Yin H, Jiang Y, Radhakrishnan SK,
Huang ZP, Li J, Shi Z, Kilsdonk EP, Gui Y, Wang DZ and Zheng XL:
Induction of microRNA-1 by myocardin in smooth muscle cells
inhibits cell proliferation. Arterioscler Thromb Vasc Biol.
31:368–375. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xie C, Huang H, Sun X, Guo Y, Hamblin M,
Ritchie RP, Garcia-Barrio MT, Zhang J and Chen YE: MicroRNA-1
regulates smooth muscle cell differentiation by repressing
Kruppel-like factor 4. Stem Cells Dev. 20:205–210. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen
H, Dean DB and Zhang C: MicroRNAs are aberrantly expressed in
hypertrophic heart: do they play a role in cardiac hypertrophy? Am
J Pathol. 170:1831–1840. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen
H, Dean DB and Zhang C: MicroRNA expression signature and
antisense-mediated depletion reveal an essential role of MicroRNA
in vascular neointimal lesion formation. Circ Res. 100:1579–1588.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lin Y, Liu X, Cheng Y, Yang J, Huo Y and
Zhang C: Involvement of MicroRNAs in hydrogen peroxide-mediated
gene regulation and cellular injury response in vascular smooth
muscle cells. J Biol Chem. 284:7903–7913. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang X, Cheng Y, Liu X, Yang J, Munoz D
and Zhang C: Unexpected pro-injury effect of propofol on vascular
smooth muscle cells with increased oxidative stress. Crit Care Med.
39:738–745. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Boettger T, Beetz N, Kostin S, Schneider
J, Kruger M, Hein L and Braun T: Acquisition of the contractile
phenotype by murine arterial smooth muscle cells depends on the
Mir143/145 gene cluster. J Clin Invest. 119:2634–2647. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Quintavalle M, Elia L, Condorelli G and
Courtneidge SA: MicroRNA control of podosome formation in vascular
smooth muscle cells in vivo and in vitro. J Cell Biol. 189:13–22.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xin M, Small EM, Sutherland LB, Qi X,
McAnally J, Plato CF, Richardson JA, Bassel-Duby R and Olson EN:
MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and
responsiveness of smooth muscle cells to injury. Genes Dev.
23:2166–2178. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cordes KR, Sheehy NT, White MP, Berry EC,
Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN and Srivastava D:
miR-145 and miR-143 regulate smooth muscle cell fate and
plasticity. Nature. 460:705–710. 2009.PubMed/NCBI
|
|
42
|
Elia L, Quintavalle M, Zhang J, Contu R,
Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J,
Courtneidge SA and Condorelli G: The knockout of miR-143 and -145
alters smooth muscle cell maintenance and vascular homeostasis in
mice: correlates with human disease. Cell Death Differ.
16:1590–1598. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu
Q, Deitch EA, Huo Y, Delphin ES and Zhang C: MicroRNA-145, a novel
smooth muscle cell phenotypic marker and modulator, controls
vascular neointimal lesion formation. Circ Res. 105:158–166. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kishore R, Krishnamurthy P and Losordo DW:
Career moves: induced pluripotent cells from human aortic smooth
muscle cells can efficiently redifferentiate into parental
phenotype. Circ Res. 106:7–9. 2010. View Article : Google Scholar
|
|
45
|
Liu X, Cheng Y, Zhang S, Lin Y, Yang J and
Zhang C: A necessary role of miR-221 and miR-222 in vascular smooth
muscle cell proliferation and neointimal hyperplasia. Circ Res.
104:476–487. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu X, Cheng Y, Yang J, Xu L and Zhang C:
Cell-specific effects of miR-221/222 in vessels: molecular
mechanism and therapeutic application. J Mol Cell Cardiol.
52:245–255. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen KC, Wang YS, Hu CY, Chang WC, Liao
YC, Dai CY and Juo SH: OxLDL up-regulates microRNA-29b, leading to
epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism
for cardiovascular diseases. FASEB J. 25:1718–1728. 2011.
View Article : Google Scholar
|
|
48
|
Sun SG, Zheng B, Han M, Fang XM, Li HX,
Miao SB, Su M, Han Y, Shi HJ and Wen JK: miR-146a and Kruppel-like
factor 4 form a feedback loop to participate in vascular smooth
muscle cell proliferation. EMBO Rep. 12:56–62. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yu ML, Wang JF, Wang GK, You XH, Zhao XX,
Jing Q and Qin YW: Vascular smooth muscle cell proliferation is
influenced by let-7d microRNA and its interaction with KRAS. Circ
J. 75:703–709. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zampetaki A, Kiechl S, Drozdov I, Willeit
P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E,
Shah A, Willeit J and Mayr M: Plasma microRNA profiling reveals
loss of endothelial miR-126 and other microRNAs in type 2 diabetes.
Circ Res. 107:810–817. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang Y, Wang Y, Wang X, Eisner GM, Asico
LD, Jose PA and Zeng C: Insulin promotes vascular smooth muscle
cell proliferation via microRNA-208-mediated downregulation of p21.
J Hypertens. 29:1560–1568. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Su XL, Wang Y, Zhang W, Zhao LM, Li GR and
Deng XL: Insulin-mediated upregulation of K(Ca)3.1 channels
promotes cell migration and proliferation in rat vascular smooth
muscle. J Mol Cell Cardiol. 51:51–57. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Y, Song YH, Li F, Yang T, Lu YW and
Geng YJ: MicroRNA-221 regulates high glucose-induced endothelial
dysfunction. Biochem Biophys Res Commun. 381:81–83. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Togliatto G, Trombetta A, Dentelli P,
Rosso A and Brizzi MF: MIR221/MIR222-driven post-transcriptional
regulation of P27KIP1 and P57KIP2 is crucial for high-glucose- and
AGE-mediated vascular cell damage. Diabetologia. 54:1930–1940.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM
and Hu RM: MicroRNA-320 expression in myocardial microvascular
endothelial cells and its relationship with insulin-like growth
factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol.
36:181–188. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bonauer A, Carmona G, Iwasaki M, Mione M,
Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K,
Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM and Dimmeler S:
MicroRNA-92a controls angiogenesis and functional recovery of
ischemic tissues in mice. Science. 324:1710–1713. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Grundmann S, Hans FP, Kinniry S, Heinke J,
Helbing T, Bluhm F, Sluijter JP, Hoefer I, Pasterkamp G, Bode C and
Moser M: MicroRNA-100 regulates neovascularization by suppression
of mammalian target of rapamycin in endothelial and vascular smooth
muscle cells. Circulation. 123:999–1009. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang M, Li W, Chang GQ, Ye CS, Ou JS, Li
XX, Liu Y, Cheang TY, Huang XL and Wang SM: MicroRNA-21 regulates
vascular smooth muscle cell function via targeting tropomyosin 1 in
arteriosclerosis obliterans of lower extremities. Arterioscler
Thromb Vasc Biol. 31:2044–2053. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li T, Cao H, Zhuang J, Wan J, Guan M, Yu
B, Li X and Zhang W: Identification of miR-130a, miR-27b and
miR-210 as serum biomarkers for atherosclerosis obliterans. Clin
Chim Acta. 412:66–70. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fichtlscherer S, Zeiher AM and Dimmeler S:
Circulating microRNAs: biomarkers or mediators of cardiovascular
diseases? Arterioscler Thromb Vasc Biol. 31:2383–2390. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Caporali A, Meloni M, Vollenkle C, Bonci
D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH,
Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F and
Emanueli C: Deregulation of microRNA-503 contributes to diabetes
mellitus-induced impairment of endothelial function and reparative
angiogenesis after limb ischemia. Circulation. 123:282–291. 2011.
View Article : Google Scholar : PubMed/NCBI
|