Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August 2013 Volume 8 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August 2013 Volume 8 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Potassium ion channels in retinal ganglion cells (Review)

  • Authors:
    • Yi‑Sheng Zhong
    • Jing Wang
    • Wang‑Min Liu
    • Yi‑Hua Zhu
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, P.R. China, Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
  • Pages: 311-319
    |
    Published online on: June 4, 2013
       https://doi.org/10.3892/mmr.2013.1508
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Retinal ganglion cells (RGCs) consolidate visual processing and constitute the last step prior to the transmission of signals to higher brain centers. RGC death is a major cause of visual impairment in optic neuropathies, including glaucoma, age‑related macular degeneration, diabetic retinopathy, uveoretinitis and vitreoretinopathy. Discharge patterns of RGCs are primarily determined by the presence of ion channels. As the most diverse group of ion channels, potassium (K+) channels play key roles in modulating the electrical properties of RGCs. Biochemical, molecular and pharmacological studies have identified a number of K+ channels in RGCs, including inwardly rectifying K+ (Kir), ATP‑sensitive K+ (KATP), tandem‑pore domain K+ (TASK), voltage‑gated K+ (Kv), ether‑à‑go‑go (Eag) and Ca2+‑activated K+ (KCa) channels. Kir channels are important in the maintenance of the resting membrane potential and controlling RGC excitability. KATP channels are involved in RGC survival and neuroprotection. TASK channels are hypothesized to contribute to the regulation of resting membrane potentials and firing patterns of RGCs. Kv channels are important regulators of cellular excitability, functioning to modulate the amplitude, duration and frequency of action potentials and subthreshold depolarizations, and are also important in RGC development and protection. Eag channels may contribute to dendritic repolarization during excitatory postsynaptic potentials and to the attenuation of the back propagation of action potentials. KCa channels have been observed to contribute to repetitive firing in RGCs. Considering these important roles of K+ channels in RGCs, the study of K+ channels may be beneficial in elucidating the pathophysiology of RGCs and exploring novel RGC protection strategies.
View Figures

Figure 1

View References

1 

Pycock CJ: Retinal neurotransmission. Surv Ophthalmol. 29:355–365. 1985. View Article : Google Scholar

2 

Marquardt T and Gruss P: Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci. 25:32–38. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Lipton SA and Tauck DL: Voltage-dependent conductances of solitary ganglion cells dissociated from the rat retina. J Physiol. 385:361–391. 1987. View Article : Google Scholar : PubMed/NCBI

4 

Robinson DW and Chalupa LM: The intrinsic temporal properties of alpha and beta retinal ganglion cells are equivalent. Curr Biol. 7:366–374. 1997. View Article : Google Scholar : PubMed/NCBI

5 

Augustine GJ: Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J Physiol. 431:343–364. 1990. View Article : Google Scholar

6 

Pollock NS, Ferguson SC and McFarlane S: Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis. J Comp Neurol. 452:381–391. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Rudy B: Diversity and ubiquity of K channels. Neuroscience. 25:729–749. 1988. View Article : Google Scholar : PubMed/NCBI

8 

Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E and Rudy B: Molecular diversity of K+ channels. Ann NY Acad Sci. 868:233–285. 1999. View Article : Google Scholar : PubMed/NCBI

9 

Goldstein SA, Wang KW, Ilan N and Pausch MH: Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J Mol Med (Berl). 76:13–20. 1998. View Article : Google Scholar : PubMed/NCBI

10 

Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G and Barhanin J: TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 15:1004–1011. 1996.PubMed/NCBI

11 

Honoré E: The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci. 8:251–261. 2007.PubMed/NCBI

12 

Mathie A: Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol. 578:377–385. 2007. View Article : Google Scholar : PubMed/NCBI

13 

O'Connell AD, Morton MJ and Hunter M: Two-pore domain K+ channels-molecular sensors. Biochim Biophys Acta. 1566:152–161. 2002. View Article : Google Scholar

14 

Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M and Lazdunski M: A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 17:3297–3308. 1998.PubMed/NCBI

15 

Hocking JC, Pollock NS, Johnston J, Wilson RJ, Shankar A and McFarlane S: Neural activity and branching of embryonic retinal ganglion cell dendrites. Mech Dev. 129:125–135. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Chen L, Yu YC, Zhao JW and Yang XL: Inwardly rectifying potassium channels in rat retinal ganglion cells. Eur J Neurosci. 20:956–964. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Tian M, Chen L, Xie JX, Yang XL and Zhao JW: Expression patterns of inwardly rectifying potassium channel subunits in rat retina. Neurosci Lett. 345:9–12. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Ettaiche M, Heurteaux C, Blondeau N, Borsotto M, Tinal N and Lazdunski M: ATP-sensitive potassium channels (K(ATP)) in retina: a key role for delayed ischemic tolerance. Brain Res. 890:118–129. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Zhang XM, Zhong YM and Yang XL: TASK-2 is expressed in proximal neurons in the rat retina. Neuroreport. 20:946–950. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Koeberle PD, Wang Y and Schlichter LC: Kv1.1 and Kv1.3 channels contribute to the degeneration of retinal ganglion cells after optic nerve transection in vivo. Cell Death Differ. 17:134–144. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Jow GM and Jeng CJ: Differential localization of rat Eag1 and Eag2 potassium channels in the retina. Neurosci Lett. 431:12–16. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Clark BD, Kurth-Nelson ZL and Newman EA: Adenosine-evoked hyperpolarization of retinal ganglion cells is mediated by G-protein-coupled inwardly rectifying K+ and small conductance Ca2+-activated K+ channel activation. J Neurosci. 29:11237–11245. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Klöcker N, Oliver D, Ruppersberg JP, Knaus HG and Fakler B: Developmental expression of the small-conductance Ca(2+)-activated potassium channel SK2 in the rat retina. Mol Cell Neurosci. 17:514–520. 2001.

24 

McFarlane S and Pollock NS: A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system. J Neurosci. 20:1020–1029. 2000.PubMed/NCBI

25 

Lautermilch NJ and Spitzer NC: The KV4.3 Shal gene is developmentally upregulated in Xenopus embryos and encodes a potassium current modulated by arachidonic acid. Soc Neurosci Abstr. 23:17381997.

26 

Yazulla S and Studholme KM: Co-localization of Shaker A-type K+ channel (Kv1.4) and AMPA-glutamate receptor (GluR4) immunoreactivities to dendrites of OFF-bipolar cells of goldfish retina. J Neurocytol. 28:63–73. 1999. View Article : Google Scholar

27 

Henne J and Jeserich G: Maturation of spiking activity in trout retinal ganglion cells coincides with upregulation of Kv3.1- and BK-related potassium channels. J Neurosci Res. 75:44–54. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Rörig B and Grantyn R: Ligand- and voltage-gated ion channels are expressed by embryonic mouse retinal neurones. Neuroreport. 5:1197–1200. 1994.PubMed/NCBI

29 

Pinto LH and Klumpp DJ: Localization of potassium channels in the retina. Prog Retin Eye Res. 17:207–230. 1998.PubMed/NCBI

30 

Qu J, Mulo I and Myhr KL: The development of Kv4.2 expression in the retina. Neurosci Lett. 464:209–213. 2009. View Article : Google Scholar

31 

Klumpp DJ, Song EJ and Pinto LH: Identification and localization of K+ channels in the mouse retina. Vis Neurosci. 12:1177–1190. 1995. View Article : Google Scholar

32 

Koeberle PD and Schlichter LC: Targeting K(V) channels rescues retinal ganglion cells in vivo directly and by reducing inflammation. Channels (Austin). 4:337–346. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Kuznetsov KI, Grygorov OO, Maslov VY, Veselovsky NS and Fedulova SA: Kv3 channels modulate calcium signals induced by fast firing patterns in the rat retinal ganglion cells. Cell Calcium. 52:405–411. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Skaliora I, Robinson DW, Scobey RP and Chalupa LM: Properties of K+ conductances in cat retinal ganglion cells during the period of activity-mediated refinements in retinofugal pathways. Eur J Neurosci. 7:1558–1568. 1995.

35 

Frings S, Brüll N, Dzeja C, Angele A, Hagen V, Kaupp UB and Baumann A: Characterization of ether-à-go-go channels present in photoreceptors reveals similarity to IKx, a K+ current in rod inner segments. J Gen Physiol. 111:583–599. 1998.

36 

Wang GY, Robinson DW and Chalupa LM: Calcium-activated potassium conductances in retinal ganglion cells of the ferret. J Neurophysiol. 79:151–158. 1998.PubMed/NCBI

37 

Nemargut JP, Zhu J, Savoie BT and Wang GY: Differential effects of charybdotoxin on the activity of retinal ganglion cells in the dark- and light-adapted mouse retina. Vision Res. 49:388–397. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Isomoto S, Kondo C and Kurachi Y: Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol. 47:11–39. 1997. View Article : Google Scholar : PubMed/NCBI

39 

Nichols CG and Lopatin AN: Inward rectifier potassium channels. Annu Rev Physiol. 59:171–191. 1997. View Article : Google Scholar : PubMed/NCBI

40 

Neusch C, Weishaupt JH and Bähr M: Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res. 311:131–138. 2003.PubMed/NCBI

41 

Tanaka S, Wu N, Hsaio CF, Turman J Jr and Chandler SH: Development of inward rectification and control of membrane excitability in mesencephalic v neurons. J Neurophysiol. 89:1288–1298. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Pongs O: Molecular biology of voltage-dependent potassium channels. Physiol Rev. 72(4 Suppl): S69–S88. 1992.PubMed/NCBI

43 

Kubo Y, Baldwin TJ, Jan YN and Jan LY: Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 362:127–133. 1993. View Article : Google Scholar : PubMed/NCBI

44 

Jan LY and Jan YN: Voltage-gated and inwardly rectifying potassium channels. J Physiol. 505:267.b1–282. 1997.PubMed/NCBI

45 

Reimann F and Ashcroft FM: Inwardly rectifying potassium channels. Curr Opin Cell Biol. 11:503–508. 1999. View Article : Google Scholar

46 

Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT and Wickman K: G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J Neurosci. 22:4328–4334. 2002.

47 

Sättler MB, Williams SK, Neusch C, Otto M, Pehlke JR, Bähr M and Diem R: Flupirtine as neuroprotective add-on therapy in autoimmune optic neuritis. Am J Pathol. 173:1496–1507. 2008.PubMed/NCBI

48 

Szewczyk A and Marbán E: Mitochondria: a new target for K channel openers? Trends Pharmacol Sci. 20:157–161. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Inagaki N, Gonoi T, Clement JP 4th, Namba N, Inaza J, Gonzalez G, Aguilar-Bryan L, Seino S and Bryan J: Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 270:1166–1170. 1995. View Article : Google Scholar : PubMed/NCBI

50 

Inagaki N, Inazawa J and Seino S: cDNA sequence, gene structure and chromosomal localization of the human ATP-sensitive potassium channel, uKATP-1, gene (KCNJ8). Genomics. 30:102–104. 1995. View Article : Google Scholar : PubMed/NCBI

51 

Kicińska A, D bska G, Kunz W and Szewczyk A: Mitochondrial potassium and chloride channels. Acta Biochim Pol. 47:541–551. 2000.

52 

Yamauchi T, Kashii S, Yasuyoshi H, Zhang S, Honda Y and Akaike A: Mitochondrial ATP-sensitive potassium channel: a novel site for neuroprotection. Invest Ophthalmol Vis Sci. 44:2750–2756. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Sakamoto K, Yonoki Y, Kuwagata M, Saito M, Nakahara T and Ishii K: Histological protection against ischemia-reperfusion injury by early ischemic preconditioning in rat retina. Brain Res. 1015:154–160. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Kersten JR, Gross GJ, Pagel PS and Warltier DC: Activation of adenosine triphosphate-regulated potassium channels: mediation of cellular and organ protection. Anesthesiology. 88:495–513. 1998. View Article : Google Scholar : PubMed/NCBI

55 

Rodrigo GC and Standen NB: ATP-sensitive potassium channels. Curr Pharm Des. 11:1915–1940. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Choi A, Choi JS, Yoon YJ, Kim KA and Joo CK: KR-31378, a potassium-channel opener, induces the protection of retinal ganglion cells in rat retinal ischemic models. J Pharmacol Sci. 109:511–517. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Pielen A, Kirsch M, Hofmann HD, Feuerstein TJ and Lagrèze WA: Retinal ganglion cell survival is enhanced by gabapentin-lactam in vitro: evidence for involvement of mitochondrial KATP channels. Graefes Arch Clin Exp Ophthalmol. 242:240–244. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Heurteaux C, Bertaina V, Widmann C and Lazdunski M: K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein and amyloid β-protein precursor genes and neuronal death in rat hippocampus. Proc Natl Acad Sci USA. 90:9431–9435. 1993.

59 

Heurteaux C, Lauritzen I, Widmann C and Lazdunski M: Essential role of adenosine, adenosine A1 receptors and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA. 92:4666–4670. 1995. View Article : Google Scholar : PubMed/NCBI

60 

Liu Y, Sato T, Seharaseyon J, Szewczyk A, O'Rourke B and Marbán E: Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann NY Acad Sci. 874:27–37. 1999. View Article : Google Scholar : PubMed/NCBI

61 

Tanno M, Miura T, Tsuchida A, Miki T, Nishino Y, Ohnuma Y and Shimamoto K: Contribution of both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels to infarct size limitation by K(ATP) channel openers: differences from preconditioning in the role of sarcolemmal K(ATP) channels. Naunyn Schmiedebergs Arch Pharmacol. 364:226–232. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Kvanta A, Seregard S, Sejersen S, Kull B and Fredholm BB: Localization of adenosine receptor messenger RNAs in the rat eye. Exp Eye Res. 65:595–602. 1997. View Article : Google Scholar : PubMed/NCBI

63 

Roth S, Park SS, Sikorski CW, Osinski J, Chan R and Loomis K: Concentrations of adenosine and its metabolites in the rat retina/choroid during reperfusion after ischemia. Curr Eye Res. 16:875–885. 1997. View Article : Google Scholar : PubMed/NCBI

64 

Roth S, Rosenbaum PS, Osinski J, Park SS, Toledano AY, Li B and Moshfeghi AA: Ischemia induces significant changes in purine nucleoside concentration in the retina-choroid in rats. Exp Eye Res. 65:771–779. 1997. View Article : Google Scholar : PubMed/NCBI

65 

Kurachi Y: G protein regulation of cardiac muscarinic potassium channel. Am J Physiol. 269:C821–C830. 1995.PubMed/NCBI

66 

Serôdio P and Rudy B: Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. J Neurophysiol. 79:1081–1091. 1998.

67 

Yazulla S and Studholme KM: Differential distribution of Shaker-like and Shab-like K+-channel subunits in goldfish retina and retinal bipolar cells. J Comp Neurol. 396:131–140. 1998.PubMed/NCBI

68 

Dantzker JL and Callaway EM: The development of local, layer-specific visual cortical axons in the absence of extrinsic influences and intrinsic activity. J Neurosci. 18:4145–4154. 1998.PubMed/NCBI

69 

Ribera AB and Spitzer NC: Developmental regulation of potassium channels and the impact on neuronal differentiation. Ion Channels. 3:1–38. 1992. View Article : Google Scholar : PubMed/NCBI

70 

Jan LY and Jan YN: Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci. 20:91–123. 1997. View Article : Google Scholar : PubMed/NCBI

71 

Wei A, Jegla T and Salkoff L: Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology. 35:805–829. 1996. View Article : Google Scholar : PubMed/NCBI

72 

Van Wart A, Trimmer JS and Matthews G: Polarized distribution of ion channels within microdomains of the axon initial segment. J Comp Neurol. 500:339–352. 2007.PubMed/NCBI

73 

Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD and Chandy KG: Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5 and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 45:1227–1234. 1994.PubMed/NCBI

74 

McFarlane S: Attraction vs. repulsion: the growth cone decides. Biochem Cell Biol. 78:563–568. 2000. View Article : Google Scholar : PubMed/NCBI

75 

Pollock NS, Atkinson-Leadbeater K, Johnston J, Larouche M, Wildering WC and McFarlane S: Voltage-gated potassium channels regulate the response of retinal growth cones to axon extension and guidance cues. Eur J Neurosci. 22:569–578. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Goldberg DJ and Grabham PW: Braking news: calcium in the growth cone. Neuron. 22:423–425. 1999. View Article : Google Scholar : PubMed/NCBI

77 

Gomez TM and Spitzer NC: In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature. 397:350–355. 1999. View Article : Google Scholar : PubMed/NCBI

78 

Petersen OH and Cancela JM: Attraction or repulsion by local Ca(2+) signals. Curr Biol. 10:R311–R314. 2000.

79 

Maruoka ND, Steele DF, Au BP, Dan P, Zhang X, Moore ED and Fedida D: alpha-actinin-2 couples to cardiac Kv1.5 channels, regulating current density and channel localization in HEK cells. FEBS Lett. 473:188–194. 2000. View Article : Google Scholar : PubMed/NCBI

80 

Petrecca K, Miller DM and Shrier A: Localization and enhanced current density of the Kv4.2 potassium channel by interaction with the actin-binding protein filamin. J Neurosci. 20:8736–8744. 2000.PubMed/NCBI

81 

Lang F, Föller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A and Huber SM: Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 205:147–157. 2005. View Article : Google Scholar : PubMed/NCBI

82 

Bortner CD and Cidlowski JA: Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys. 462:176–188. 2007. View Article : Google Scholar : PubMed/NCBI

83 

Burg ED, Remillard CV and Yuan JX: Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol. 153(Suppl 1): S99–S111. 2008. View Article : Google Scholar : PubMed/NCBI

84 

Yu SP: Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol. 70:363–386. 2003. View Article : Google Scholar : PubMed/NCBI

85 

Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL and Choi DW: Mediation of neuronal apoptosis by enhancement of outward potassium current. Science. 278:114–117. 1997. View Article : Google Scholar : PubMed/NCBI

86 

Bortner CD, Hughes FM Jr and Cidlowski JA: A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem. 272:32436–32442. 1997.PubMed/NCBI

87 

Szabò I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E and Lang F: Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci USA. 95:6169–6174. 1998.PubMed/NCBI

88 

Chen L, Yang P and Kijlstra A: Distribution, markers and functions of retinal microglia. Ocul Immunol Inflamm. 10:27–39. 2002. View Article : Google Scholar : PubMed/NCBI

89 

Langmann T: Microglia activation in retinal degeneration. J Leukoc Biol. 81:1345–1351. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Schuetz E and Thanos S: Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases. Curr Drug Targets. 5:619–627. 2004. View Article : Google Scholar : PubMed/NCBI

91 

Fordyce CB, Jagasia R, Zhu X and Schlichter LC: Microglia KV1.3 channels contribute to their ability to kill neurons. J Neurosci. 25:7139–7149. 2005. View Article : Google Scholar : PubMed/NCBI

92 

Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA and Cahalan MD: K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci. 25:280–289. 2004.

93 

Warmke JW and Ganetzky B: A family of potassium channel genes related to eag in Drosophila and mammals. Proc Nat Acad Sci USA. 91:3438–3442. 1994. View Article : Google Scholar : PubMed/NCBI

94 

Ludwig J, Weseloh R, Karschin C, Liu Q, Netzer R, Engeland B, Stansfeld C and Pongs O: Cloning and functional expression of rat eag2, a new member of the ether-à-go-go family of potassium channels and comparison of its distribution with that of eag1. Mol Cell Neurosci. 16:59–70. 2000.PubMed/NCBI

95 

Saganich MJ, Vega-Saenz de Miera E, Nadal MS, Baker H, Coetzee WA and Rudy B: Cloning of components of a novel subthreshold-activating K(+) channel with a unique pattern of expression in the cerebral cortex. J Neurosci. 19:10789–10802. 1999.PubMed/NCBI

96 

Schönherr R, Gessner G, Löber K and Heinemann SH: Functional distinction of human EAG1 and EAG2 potassium channels. FEBS Lett. 514:204–208. 2002.

97 

Blatz AL and Magleby KL: Calcium-activated potassium channels. Trends in Neurosci. 10:463–467. 1987. View Article : Google Scholar

98 

Adams PR, Constanti A, Brown DA and Clark RB: Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurons. Nature. 296:746–749. 1982.PubMed/NCBI

99 

Lancaster B, Nicoll R and Perkel D: Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J Neurosci. 11:23–30. 1991.PubMed/NCBI

100 

Madison D and Nicoll R: Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol. 354:319–331. 1984. View Article : Google Scholar : PubMed/NCBI

101 

Constanti A and Sim JA: Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro. J Physiol. 387:173–194. 1987. View Article : Google Scholar : PubMed/NCBI

102 

Lancaster B and Pennefather P: Potassium currents evoked by brief depolarizations in bull-frog sympathetic ganglion cells. J Physiol. 387:519–548. 1987. View Article : Google Scholar : PubMed/NCBI

103 

Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC and Crill WE: Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J Neurophysiol. 59:424–449. 1988.PubMed/NCBI

104 

Bourque CW: Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. J Physiol. 397:331–347. 1988. View Article : Google Scholar

105 

Rothe T, Jüttner R, Bähring R and Grantyn R: Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ. J Neurobiol. 38:191–206. 1999. View Article : Google Scholar : PubMed/NCBI

106 

Wang GY, Olshausen BA and Chalupa LM: Differential effects of apamin- and charybdotoxin-sensitive K+ conductances on spontaneous discharge patterns of developing retinal ganglion cells. J Neurosci. 19:2609–2618. 1999.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhong YS, Wang J, Liu WM and Zhu YH: Potassium ion channels in retinal ganglion cells (Review). Mol Med Rep 8: 311-319, 2013.
APA
Zhong, Y., Wang, J., Liu, W., & Zhu, Y. (2013). Potassium ion channels in retinal ganglion cells (Review). Molecular Medicine Reports, 8, 311-319. https://doi.org/10.3892/mmr.2013.1508
MLA
Zhong, Y., Wang, J., Liu, W., Zhu, Y."Potassium ion channels in retinal ganglion cells (Review)". Molecular Medicine Reports 8.2 (2013): 311-319.
Chicago
Zhong, Y., Wang, J., Liu, W., Zhu, Y."Potassium ion channels in retinal ganglion cells (Review)". Molecular Medicine Reports 8, no. 2 (2013): 311-319. https://doi.org/10.3892/mmr.2013.1508
Copy and paste a formatted citation
x
Spandidos Publications style
Zhong YS, Wang J, Liu WM and Zhu YH: Potassium ion channels in retinal ganglion cells (Review). Mol Med Rep 8: 311-319, 2013.
APA
Zhong, Y., Wang, J., Liu, W., & Zhu, Y. (2013). Potassium ion channels in retinal ganglion cells (Review). Molecular Medicine Reports, 8, 311-319. https://doi.org/10.3892/mmr.2013.1508
MLA
Zhong, Y., Wang, J., Liu, W., Zhu, Y."Potassium ion channels in retinal ganglion cells (Review)". Molecular Medicine Reports 8.2 (2013): 311-319.
Chicago
Zhong, Y., Wang, J., Liu, W., Zhu, Y."Potassium ion channels in retinal ganglion cells (Review)". Molecular Medicine Reports 8, no. 2 (2013): 311-319. https://doi.org/10.3892/mmr.2013.1508
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team