|
1
|
Pycock CJ: Retinal neurotransmission. Surv
Ophthalmol. 29:355–365. 1985. View Article : Google Scholar
|
|
2
|
Marquardt T and Gruss P: Generating
neuronal diversity in the retina: one for nearly all. Trends
Neurosci. 25:32–38. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lipton SA and Tauck DL: Voltage-dependent
conductances of solitary ganglion cells dissociated from the rat
retina. J Physiol. 385:361–391. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Robinson DW and Chalupa LM: The intrinsic
temporal properties of alpha and beta retinal ganglion cells are
equivalent. Curr Biol. 7:366–374. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Augustine GJ: Regulation of transmitter
release at the squid giant synapse by presynaptic delayed rectifier
potassium current. J Physiol. 431:343–364. 1990. View Article : Google Scholar
|
|
6
|
Pollock NS, Ferguson SC and McFarlane S:
Expression of voltage-dependent potassium channels in the
developing visual system of Xenopus laevis. J Comp Neurol.
452:381–391. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rudy B: Diversity and ubiquity of K
channels. Neuroscience. 25:729–749. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Coetzee WA, Amarillo Y, Chiu J, Chow A,
Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D,
Saganich M, Vega-Saenz de Miera E and Rudy B: Molecular diversity
of K+ channels. Ann NY Acad Sci. 868:233–285. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Goldstein SA, Wang KW, Ilan N and Pausch
MH: Sequence and function of the two P domain potassium channels:
implications of an emerging superfamily. J Mol Med (Berl).
76:13–20. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lesage F, Guillemare E, Fink M, Duprat F,
Lazdunski M, Romey G and Barhanin J: TWIK-1, a ubiquitous human
weakly inward rectifying K+ channel with a novel
structure. EMBO J. 15:1004–1011. 1996.PubMed/NCBI
|
|
11
|
Honoré E: The neuronal background K2P
channels: focus on TREK1. Nat Rev Neurosci. 8:251–261.
2007.PubMed/NCBI
|
|
12
|
Mathie A: Neuronal two-pore-domain
potassium channels and their regulation by G protein-coupled
receptors. J Physiol. 578:377–385. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
O'Connell AD, Morton MJ and Hunter M:
Two-pore domain K+ channels-molecular sensors. Biochim
Biophys Acta. 1566:152–161. 2002. View Article : Google Scholar
|
|
14
|
Fink M, Lesage F, Duprat F, Heurteaux C,
Reyes R, Fosset M and Lazdunski M: A neuronal two P domain
K+ channel stimulated by arachidonic acid and
polyunsaturated fatty acids. EMBO J. 17:3297–3308. 1998.PubMed/NCBI
|
|
15
|
Hocking JC, Pollock NS, Johnston J, Wilson
RJ, Shankar A and McFarlane S: Neural activity and branching of
embryonic retinal ganglion cell dendrites. Mech Dev. 129:125–135.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen L, Yu YC, Zhao JW and Yang XL:
Inwardly rectifying potassium channels in rat retinal ganglion
cells. Eur J Neurosci. 20:956–964. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tian M, Chen L, Xie JX, Yang XL and Zhao
JW: Expression patterns of inwardly rectifying potassium channel
subunits in rat retina. Neurosci Lett. 345:9–12. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ettaiche M, Heurteaux C, Blondeau N,
Borsotto M, Tinal N and Lazdunski M: ATP-sensitive potassium
channels (K(ATP)) in retina: a key role for delayed ischemic
tolerance. Brain Res. 890:118–129. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang XM, Zhong YM and Yang XL: TASK-2 is
expressed in proximal neurons in the rat retina. Neuroreport.
20:946–950. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Koeberle PD, Wang Y and Schlichter LC:
Kv1.1 and Kv1.3 channels contribute to the degeneration of retinal
ganglion cells after optic nerve transection in vivo. Cell Death
Differ. 17:134–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jow GM and Jeng CJ: Differential
localization of rat Eag1 and Eag2 potassium channels in the retina.
Neurosci Lett. 431:12–16. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Clark BD, Kurth-Nelson ZL and Newman EA:
Adenosine-evoked hyperpolarization of retinal ganglion cells is
mediated by G-protein-coupled inwardly rectifying K+ and
small conductance Ca2+-activated K+ channel
activation. J Neurosci. 29:11237–11245. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Klöcker N, Oliver D, Ruppersberg JP, Knaus
HG and Fakler B: Developmental expression of the small-conductance
Ca(2+)-activated potassium channel SK2 in the rat retina. Mol Cell
Neurosci. 17:514–520. 2001.
|
|
24
|
McFarlane S and Pollock NS: A role for
voltage-gated potassium channels in the outgrowth of retinal axons
in the developing visual system. J Neurosci. 20:1020–1029.
2000.PubMed/NCBI
|
|
25
|
Lautermilch NJ and Spitzer NC: The KV4.3
Shal gene is developmentally upregulated in Xenopus embryos
and encodes a potassium current modulated by arachidonic acid. Soc
Neurosci Abstr. 23:17381997.
|
|
26
|
Yazulla S and Studholme KM:
Co-localization of Shaker A-type K+ channel (Kv1.4) and
AMPA-glutamate receptor (GluR4) immunoreactivities to dendrites of
OFF-bipolar cells of goldfish retina. J Neurocytol. 28:63–73. 1999.
View Article : Google Scholar
|
|
27
|
Henne J and Jeserich G: Maturation of
spiking activity in trout retinal ganglion cells coincides with
upregulation of Kv3.1- and BK-related potassium channels. J
Neurosci Res. 75:44–54. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rörig B and Grantyn R: Ligand- and
voltage-gated ion channels are expressed by embryonic mouse retinal
neurones. Neuroreport. 5:1197–1200. 1994.PubMed/NCBI
|
|
29
|
Pinto LH and Klumpp DJ: Localization of
potassium channels in the retina. Prog Retin Eye Res. 17:207–230.
1998.PubMed/NCBI
|
|
30
|
Qu J, Mulo I and Myhr KL: The development
of Kv4.2 expression in the retina. Neurosci Lett. 464:209–213.
2009. View Article : Google Scholar
|
|
31
|
Klumpp DJ, Song EJ and Pinto LH:
Identification and localization of K+ channels in the
mouse retina. Vis Neurosci. 12:1177–1190. 1995. View Article : Google Scholar
|
|
32
|
Koeberle PD and Schlichter LC: Targeting
K(V) channels rescues retinal ganglion cells in vivo directly and
by reducing inflammation. Channels (Austin). 4:337–346. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kuznetsov KI, Grygorov OO, Maslov VY,
Veselovsky NS and Fedulova SA: Kv3 channels modulate calcium
signals induced by fast firing patterns in the rat retinal ganglion
cells. Cell Calcium. 52:405–411. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Skaliora I, Robinson DW, Scobey RP and
Chalupa LM: Properties of K+ conductances in cat retinal
ganglion cells during the period of activity-mediated refinements
in retinofugal pathways. Eur J Neurosci. 7:1558–1568. 1995.
|
|
35
|
Frings S, Brüll N, Dzeja C, Angele A,
Hagen V, Kaupp UB and Baumann A: Characterization of ether-à-go-go
channels present in photoreceptors reveals similarity to IKx, a
K+ current in rod inner segments. J Gen Physiol.
111:583–599. 1998.
|
|
36
|
Wang GY, Robinson DW and Chalupa LM:
Calcium-activated potassium conductances in retinal ganglion cells
of the ferret. J Neurophysiol. 79:151–158. 1998.PubMed/NCBI
|
|
37
|
Nemargut JP, Zhu J, Savoie BT and Wang GY:
Differential effects of charybdotoxin on the activity of retinal
ganglion cells in the dark- and light-adapted mouse retina. Vision
Res. 49:388–397. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Isomoto S, Kondo C and Kurachi Y: Inwardly
rectifying potassium channels: their molecular heterogeneity and
function. Jpn J Physiol. 47:11–39. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nichols CG and Lopatin AN: Inward
rectifier potassium channels. Annu Rev Physiol. 59:171–191. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Neusch C, Weishaupt JH and Bähr M: Kir
channels in the CNS: emerging new roles and implications for
neurological diseases. Cell Tissue Res. 311:131–138.
2003.PubMed/NCBI
|
|
41
|
Tanaka S, Wu N, Hsaio CF, Turman J Jr and
Chandler SH: Development of inward rectification and control of
membrane excitability in mesencephalic v neurons. J Neurophysiol.
89:1288–1298. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pongs O: Molecular biology of
voltage-dependent potassium channels. Physiol Rev. 72(4 Suppl):
S69–S88. 1992.PubMed/NCBI
|
|
43
|
Kubo Y, Baldwin TJ, Jan YN and Jan LY:
Primary structure and functional expression of a mouse inward
rectifier potassium channel. Nature. 362:127–133. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jan LY and Jan YN: Voltage-gated and
inwardly rectifying potassium channels. J Physiol. 505:267.b1–282.
1997.PubMed/NCBI
|
|
45
|
Reimann F and Ashcroft FM: Inwardly
rectifying potassium channels. Curr Opin Cell Biol. 11:503–508.
1999. View Article : Google Scholar
|
|
46
|
Torrecilla M, Marker CL, Cintora SC,
Stoffel M, Williams JT and Wickman K: G-protein-gated potassium
channels containing Kir3.2 and Kir3.3 subunits mediate the acute
inhibitory effects of opioids on locus ceruleus neurons. J
Neurosci. 22:4328–4334. 2002.
|
|
47
|
Sättler MB, Williams SK, Neusch C, Otto M,
Pehlke JR, Bähr M and Diem R: Flupirtine as neuroprotective add-on
therapy in autoimmune optic neuritis. Am J Pathol. 173:1496–1507.
2008.PubMed/NCBI
|
|
48
|
Szewczyk A and Marbán E: Mitochondria: a
new target for K channel openers? Trends Pharmacol Sci. 20:157–161.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Inagaki N, Gonoi T, Clement JP 4th, Namba
N, Inaza J, Gonzalez G, Aguilar-Bryan L, Seino S and Bryan J:
Reconstitution of IKATP: an inward rectifier subunit plus the
sulfonylurea receptor. Science. 270:1166–1170. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Inagaki N, Inazawa J and Seino S: cDNA
sequence, gene structure and chromosomal localization of the human
ATP-sensitive potassium channel, uKATP-1, gene (KCNJ8). Genomics.
30:102–104. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kicińska A, D bska G, Kunz W and Szewczyk
A: Mitochondrial potassium and chloride channels. Acta Biochim Pol.
47:541–551. 2000.
|
|
52
|
Yamauchi T, Kashii S, Yasuyoshi H, Zhang
S, Honda Y and Akaike A: Mitochondrial ATP-sensitive potassium
channel: a novel site for neuroprotection. Invest Ophthalmol Vis
Sci. 44:2750–2756. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sakamoto K, Yonoki Y, Kuwagata M, Saito M,
Nakahara T and Ishii K: Histological protection against
ischemia-reperfusion injury by early ischemic preconditioning in
rat retina. Brain Res. 1015:154–160. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kersten JR, Gross GJ, Pagel PS and
Warltier DC: Activation of adenosine triphosphate-regulated
potassium channels: mediation of cellular and organ protection.
Anesthesiology. 88:495–513. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rodrigo GC and Standen NB: ATP-sensitive
potassium channels. Curr Pharm Des. 11:1915–1940. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Choi A, Choi JS, Yoon YJ, Kim KA and Joo
CK: KR-31378, a potassium-channel opener, induces the protection of
retinal ganglion cells in rat retinal ischemic models. J Pharmacol
Sci. 109:511–517. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Pielen A, Kirsch M, Hofmann HD, Feuerstein
TJ and Lagrèze WA: Retinal ganglion cell survival is enhanced by
gabapentin-lactam in vitro: evidence for involvement of
mitochondrial KATP channels. Graefes Arch Clin Exp Ophthalmol.
242:240–244. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Heurteaux C, Bertaina V, Widmann C and
Lazdunski M: K+ channel openers prevent global
ischemia-induced expression of c-fos, c-jun, heat shock protein and
amyloid β-protein precursor genes and neuronal death in rat
hippocampus. Proc Natl Acad Sci USA. 90:9431–9435. 1993.
|
|
59
|
Heurteaux C, Lauritzen I, Widmann C and
Lazdunski M: Essential role of adenosine, adenosine A1 receptors
and ATP-sensitive K+ channels in cerebral ischemic
preconditioning. Proc Natl Acad Sci USA. 92:4666–4670. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu Y, Sato T, Seharaseyon J, Szewczyk A,
O'Rourke B and Marbán E: Mitochondrial ATP-dependent potassium
channels. Viable candidate effectors of ischemic preconditioning.
Ann NY Acad Sci. 874:27–37. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tanno M, Miura T, Tsuchida A, Miki T,
Nishino Y, Ohnuma Y and Shimamoto K: Contribution of both the
sarcolemmal K(ATP) and mitochondrial K(ATP) channels to infarct
size limitation by K(ATP) channel openers: differences from
preconditioning in the role of sarcolemmal K(ATP) channels. Naunyn
Schmiedebergs Arch Pharmacol. 364:226–232. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kvanta A, Seregard S, Sejersen S, Kull B
and Fredholm BB: Localization of adenosine receptor messenger RNAs
in the rat eye. Exp Eye Res. 65:595–602. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Roth S, Park SS, Sikorski CW, Osinski J,
Chan R and Loomis K: Concentrations of adenosine and its
metabolites in the rat retina/choroid during reperfusion after
ischemia. Curr Eye Res. 16:875–885. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Roth S, Rosenbaum PS, Osinski J, Park SS,
Toledano AY, Li B and Moshfeghi AA: Ischemia induces significant
changes in purine nucleoside concentration in the retina-choroid in
rats. Exp Eye Res. 65:771–779. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kurachi Y: G protein regulation of cardiac
muscarinic potassium channel. Am J Physiol. 269:C821–C830.
1995.PubMed/NCBI
|
|
66
|
Serôdio P and Rudy B: Differential
expression of Kv4 K+ channel subunits mediating
subthreshold transient K+ (A-type) currents in rat
brain. J Neurophysiol. 79:1081–1091. 1998.
|
|
67
|
Yazulla S and Studholme KM: Differential
distribution of Shaker-like and Shab-like K+-channel
subunits in goldfish retina and retinal bipolar cells. J Comp
Neurol. 396:131–140. 1998.PubMed/NCBI
|
|
68
|
Dantzker JL and Callaway EM: The
development of local, layer-specific visual cortical axons in the
absence of extrinsic influences and intrinsic activity. J Neurosci.
18:4145–4154. 1998.PubMed/NCBI
|
|
69
|
Ribera AB and Spitzer NC: Developmental
regulation of potassium channels and the impact on neuronal
differentiation. Ion Channels. 3:1–38. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Jan LY and Jan YN: Cloned potassium
channels from eukaryotes and prokaryotes. Annu Rev Neurosci.
20:91–123. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wei A, Jegla T and Salkoff L: Eight
potassium channel families revealed by the C. elegans genome
project. Neuropharmacology. 35:805–829. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Van Wart A, Trimmer JS and Matthews G:
Polarized distribution of ion channels within microdomains of the
axon initial segment. J Comp Neurol. 500:339–352. 2007.PubMed/NCBI
|
|
73
|
Grissmer S, Nguyen AN, Aiyar J, Hanson DC,
Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD and Chandy KG:
Pharmacological characterization of five cloned voltage-gated
K+ channels, types Kv1.1, 1.2, 1.3, 1.5 and 3.1, stably
expressed in mammalian cell lines. Mol Pharmacol. 45:1227–1234.
1994.PubMed/NCBI
|
|
74
|
McFarlane S: Attraction vs. repulsion: the
growth cone decides. Biochem Cell Biol. 78:563–568. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pollock NS, Atkinson-Leadbeater K,
Johnston J, Larouche M, Wildering WC and McFarlane S: Voltage-gated
potassium channels regulate the response of retinal growth cones to
axon extension and guidance cues. Eur J Neurosci. 22:569–578. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Goldberg DJ and Grabham PW: Braking news:
calcium in the growth cone. Neuron. 22:423–425. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gomez TM and Spitzer NC: In vivo
regulation of axon extension and pathfinding by growth-cone calcium
transients. Nature. 397:350–355. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
78
|
Petersen OH and Cancela JM: Attraction or
repulsion by local Ca(2+) signals. Curr Biol. 10:R311–R314.
2000.
|
|
79
|
Maruoka ND, Steele DF, Au BP, Dan P, Zhang
X, Moore ED and Fedida D: alpha-actinin-2 couples to cardiac Kv1.5
channels, regulating current density and channel localization in
HEK cells. FEBS Lett. 473:188–194. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Petrecca K, Miller DM and Shrier A:
Localization and enhanced current density of the Kv4.2 potassium
channel by interaction with the actin-binding protein filamin. J
Neurosci. 20:8736–8744. 2000.PubMed/NCBI
|
|
81
|
Lang F, Föller M, Lang KS, Lang PA, Ritter
M, Gulbins E, Vereninov A and Huber SM: Ion channels in cell
proliferation and apoptotic cell death. J Membr Biol. 205:147–157.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Bortner CD and Cidlowski JA: Cell
shrinkage and monovalent cation fluxes: role in apoptosis. Arch
Biochem Biophys. 462:176–188. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Burg ED, Remillard CV and Yuan JX:
Potassium channels in the regulation of pulmonary artery smooth
muscle cell proliferation and apoptosis: pharmacotherapeutic
implications. Br J Pharmacol. 153(Suppl 1): S99–S111. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yu SP: Regulation and critical role of
potassium homeostasis in apoptosis. Prog Neurobiol. 70:363–386.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yu SP, Yeh CH, Sensi SL, Gwag BJ,
Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL and Choi
DW: Mediation of neuronal apoptosis by enhancement of outward
potassium current. Science. 278:114–117. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bortner CD, Hughes FM Jr and Cidlowski JA:
A primary role for K+ and Na+ efflux in the
activation of apoptosis. J Biol Chem. 272:32436–32442.
1997.PubMed/NCBI
|
|
87
|
Szabò I, Lepple-Wienhues A, Kaba KN,
Zoratti M, Gulbins E and Lang F: Tyrosine kinase-dependent
activation of a chloride channel in CD95-induced apoptosis in T
lymphocytes. Proc Natl Acad Sci USA. 95:6169–6174. 1998.PubMed/NCBI
|
|
88
|
Chen L, Yang P and Kijlstra A:
Distribution, markers and functions of retinal microglia. Ocul
Immunol Inflamm. 10:27–39. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Langmann T: Microglia activation in
retinal degeneration. J Leukoc Biol. 81:1345–1351. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Schuetz E and Thanos S: Microglia-targeted
pharmacotherapy in retinal neurodegenerative diseases. Curr Drug
Targets. 5:619–627. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Fordyce CB, Jagasia R, Zhu X and
Schlichter LC: Microglia KV1.3 channels contribute to their ability
to kill neurons. J Neurosci. 25:7139–7149. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chandy KG, Wulff H, Beeton C, Pennington
M, Gutman GA and Cahalan MD: K+ channels as targets for
specific immunomodulation. Trends Pharmacol Sci. 25:280–289.
2004.
|
|
93
|
Warmke JW and Ganetzky B: A family of
potassium channel genes related to eag in Drosophila and
mammals. Proc Nat Acad Sci USA. 91:3438–3442. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ludwig J, Weseloh R, Karschin C, Liu Q,
Netzer R, Engeland B, Stansfeld C and Pongs O: Cloning and
functional expression of rat eag2, a new member of the
ether-à-go-go family of potassium channels and comparison of its
distribution with that of eag1. Mol Cell Neurosci. 16:59–70.
2000.PubMed/NCBI
|
|
95
|
Saganich MJ, Vega-Saenz de Miera E, Nadal
MS, Baker H, Coetzee WA and Rudy B: Cloning of components of a
novel subthreshold-activating K(+) channel with a unique pattern of
expression in the cerebral cortex. J Neurosci. 19:10789–10802.
1999.PubMed/NCBI
|
|
96
|
Schönherr R, Gessner G, Löber K and
Heinemann SH: Functional distinction of human EAG1 and EAG2
potassium channels. FEBS Lett. 514:204–208. 2002.
|
|
97
|
Blatz AL and Magleby KL: Calcium-activated
potassium channels. Trends in Neurosci. 10:463–467. 1987.
View Article : Google Scholar
|
|
98
|
Adams PR, Constanti A, Brown DA and Clark
RB: Intracellular Ca2+ activates a fast
voltage-sensitive K+ current in vertebrate sympathetic
neurons. Nature. 296:746–749. 1982.PubMed/NCBI
|
|
99
|
Lancaster B, Nicoll R and Perkel D:
Calcium activates two types of potassium channels in rat
hippocampal neurons in culture. J Neurosci. 11:23–30.
1991.PubMed/NCBI
|
|
100
|
Madison D and Nicoll R: Control of the
repetitive discharge of rat CA 1 pyramidal neurones in vitro. J
Physiol. 354:319–331. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Constanti A and Sim JA: Calcium-dependent
potassium conductance in guinea-pig olfactory cortex neurones in
vitro. J Physiol. 387:173–194. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lancaster B and Pennefather P: Potassium
currents evoked by brief depolarizations in bull-frog sympathetic
ganglion cells. J Physiol. 387:519–548. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Schwindt PC, Spain WJ, Foehring RC,
Stafstrom CE, Chubb MC and Crill WE: Multiple potassium
conductances and their functions in neurons from cat sensorimotor
cortex in vitro. J Neurophysiol. 59:424–449. 1988.PubMed/NCBI
|
|
104
|
Bourque CW: Transient calcium-dependent
potassium current in magnocellular neurosecretory cells of the rat
supraoptic nucleus. J Physiol. 397:331–347. 1988. View Article : Google Scholar
|
|
105
|
Rothe T, Jüttner R, Bähring R and Grantyn
R: Ion conductances related to development of repetitive firing in
mouse retinal ganglion neurons in situ. J Neurobiol. 38:191–206.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang GY, Olshausen BA and Chalupa LM:
Differential effects of apamin- and charybdotoxin-sensitive
K+ conductances on spontaneous discharge patterns of
developing retinal ganglion cells. J Neurosci. 19:2609–2618.
1999.PubMed/NCBI
|