Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October 2013 Volume 8 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October 2013 Volume 8 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells

  • Authors:
    • Jie Chen
    • Baomu Sun
    • Xiuhua Zhao
    • Dong Liang
    • Junxia Liu
    • Yong Huang
    • Wanke Lei
    • Maomao Chen
    • Weimin Sun
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China, Department of Integrated Chinese Traditional and Western Medicine, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200433, P.R. China, Department of Centre for Disease Prevention and Control, Chengdu Military Region, Chengdu, Sichuan 610021, P.R. China, Department of Stomatology, The People's Hospital of Mianzhu, Mianzhu, Sichuan 618200, P.R. China, National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, P.R. China
  • Pages: 1074-1078
    |
    Published online on: August 27, 2013
       https://doi.org/10.3892/mmr.2013.1653
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs) are important in the immune response. In vitro, DCs are derived from myeloid precursors by stimulation with granulocyte macrophage colony‑stimulating factor and interleukin‑4. Previous studies demonstrated that lipopolysaccharide (LPS) in combination with interferon‑γ inhibited DC development but enhanced MDSC functions. Monophosphoryl lipid A (MPL), derived from LPS, is a unique immunomodulatory Toll‑like receptor 4 agonist. In the present study, MPL was used to disturb DC differentiation from myeloid precursors and it was observed that prolonged stimulation with MPL led to the accumulation of MDSCs in vitro and in vivo. In conclusion, it was demonstrated that stimulation by MPL from the beginning of cell differentiation disturbed the development of DCs and led to the accumulation of MDSCs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Casella CR and Mitchell TC: Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 65:3231–3240. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Michaud JP, Hallé M, Lampron A, et al: Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci USA. 110:1941–1946. 2013.PubMed/NCBI

3 

Steinman RM: The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 9:271–296. 1991. View Article : Google Scholar : PubMed/NCBI

4 

Banchereau J and Steinman RM: Dendritic cells and the control of immunity. Nature. 392:245–252. 1998. View Article : Google Scholar

5 

Bronte V and Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Rodríguez PC and Ochoa AC: Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 222:180–191. 2008.PubMed/NCBI

7 

Youn JI, Nagaraj S, Collazo M and Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Kusmartsev S, Nefedova Y, Yoder D and Gabrilovich DI: Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 172:989–999. 2004.PubMed/NCBI

9 

Schmielau J and Finn OJ: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 61:4756–4760. 2001.

10 

Kusmartsev S, Nagaraj S and Gabrilovich DI: Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 175:4583–4592. 2005.PubMed/NCBI

11 

Szuster-Ciesielska A, Hryciuk-Umer E, Stepulak A, Kupisz K and Kandefer-Szerszeń M: Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncol. 43:252–258. 2004. View Article : Google Scholar

12 

Waris G and Ahsan H: Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 5:142006. View Article : Google Scholar : PubMed/NCBI

13 

Mantovani G, Macciò A, Madeddu C, et al: Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med (Berl). 81:664–673. 2003. View Article : Google Scholar

14 

Agostinelli E and Seiler N: Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications. Amino Acids. 31:341–355. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Yang R, Cai Z, Zhang Y, Yutzy WH, Roby KF and Roden RB: CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res. 66:6807–6815. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Huang B, Pan PY, Li Q, et al: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66:1123–1131. 2006.

17 

Lutz MB, Kukutsch NA, Menges M, Rössner S and Schuler G: Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol. 30:1048–1052. 2000. View Article : Google Scholar

18 

Greifenberg V, Ribechini E, Rössner S and Lutz MB: Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol. 39:2865–2876. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Liu C, Zhang C, Lu H, et al: Poly(I:C) induce bone marrow precursor cells into myeloid-derived suppressor cells. Mol Cell Biochem. 358:317–323. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Baldridge JR and Crane RT: Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods. 19:103–107. 1999. View Article : Google Scholar : PubMed/NCBI

21 

Ulrich JT and Myers KR: Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. Pharm Biotechnol. 6:495–524. 1995. View Article : Google Scholar : PubMed/NCBI

22 

Tsujimoto H, Efron PA, Matsumoto T, et al: Maturation of murine bone marrow-derived dendritic cells with poly(I:C) produces altered TLR-9 expression and response to CpG DNA. Immunol Lett. 107:155–162. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Zhang M, Tang H, Guo Z, et al: Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol. 5:1124–1133. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Tang H, Guo Z, Zhang M, Wang J, Chen G and Cao X: Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood. 108:1189–1197. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Xia S, Guo Z, Xu X, Yi H, Wang Q and Cao X: Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood. 112:3175–3185. 2008. View Article : Google Scholar

26 

Li Q, Guo Z, Xu X, Xia S and Cao X: Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. Eur J Immunol. 38:2751–2761. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Sánchez-Sánchez N, Riol-Blanco L and Rodríguez-Fernández JL: The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol. 176:5153–5159. 2006.PubMed/NCBI

28 

Pan PY, Wang GX, Yin B, et al: Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood. 111:219–228. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Sinha P, Clements VK, Fulton AM and Ostrand-Rosenberg S: Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67:4507–4513. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Serafini P, Carbley R, Noonan KA, Tan G, Bronte V and Borrello I: High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64:6337–6343. 2004. View Article : Google Scholar

31 

Bunt SK, Yang L, Sinha P, Clements VK, Leips J and Ostrand-Rosenberg S: Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 67:10019–10026. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Gabrilovich D, Ishida T, Oyama T, et al: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 92:4150–4166. 1998.

33 

Kusmartsev S and Gabrilovich DI: STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol. 174:4880–4891. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Movahedi K, Guilliams M, Van den Bossche J, et al: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 111:4233–4244. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Terabe M, Matsui S, Park JM, et al: Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 198:1741–1752. 2003. View Article : Google Scholar

36 

Cluff CW: Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol. 667:111–123. 2010. View Article : Google Scholar

37 

Abdi K, Singh NJ and Matzinger P: Lipopolysaccharide-activated dendritic cells: ‘exhausted’ or alert and waiting? J Immunol. 188:5981–5989. 2012.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen J, Sun B, Zhao X, Liang D, Liu J, Huang Y, Lei W, Chen M and Sun W: Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells. Mol Med Rep 8: 1074-1078, 2013.
APA
Chen, J., Sun, B., Zhao, X., Liang, D., Liu, J., Huang, Y. ... Sun, W. (2013). Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells. Molecular Medicine Reports, 8, 1074-1078. https://doi.org/10.3892/mmr.2013.1653
MLA
Chen, J., Sun, B., Zhao, X., Liang, D., Liu, J., Huang, Y., Lei, W., Chen, M., Sun, W."Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells". Molecular Medicine Reports 8.4 (2013): 1074-1078.
Chicago
Chen, J., Sun, B., Zhao, X., Liang, D., Liu, J., Huang, Y., Lei, W., Chen, M., Sun, W."Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells". Molecular Medicine Reports 8, no. 4 (2013): 1074-1078. https://doi.org/10.3892/mmr.2013.1653
Copy and paste a formatted citation
x
Spandidos Publications style
Chen J, Sun B, Zhao X, Liang D, Liu J, Huang Y, Lei W, Chen M and Sun W: Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells. Mol Med Rep 8: 1074-1078, 2013.
APA
Chen, J., Sun, B., Zhao, X., Liang, D., Liu, J., Huang, Y. ... Sun, W. (2013). Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells. Molecular Medicine Reports, 8, 1074-1078. https://doi.org/10.3892/mmr.2013.1653
MLA
Chen, J., Sun, B., Zhao, X., Liang, D., Liu, J., Huang, Y., Lei, W., Chen, M., Sun, W."Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells". Molecular Medicine Reports 8.4 (2013): 1074-1078.
Chicago
Chen, J., Sun, B., Zhao, X., Liang, D., Liu, J., Huang, Y., Lei, W., Chen, M., Sun, W."Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells". Molecular Medicine Reports 8, no. 4 (2013): 1074-1078. https://doi.org/10.3892/mmr.2013.1653
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team