|
1
|
Contreras F, Fouillioux C, Bolivar A, et
al: Dopamine, hypertension and obesity. J Hum Hypertens. 16(Suppl
1): S13–S17. 2002. View Article : Google Scholar
|
|
2
|
Skou JC: The influence of some cations on
an adenosine triphosphatase from peripheral nerves. Biochim Biophys
Acta. 23:394–401. 1957. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wright EM, Hirayama BA and Loo DF: Active
sugar transport in health and disease. J Intern Med. 261:32–43.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Namekata K, Harada C, Kohyama K, Matsumoto
Y and Harada T: Interleukin-1 stimulates glutamate uptake in glial
cells by accelerating membrane trafficking of
Na+/K+-ATPase via actin depolymerization. Mol
Cell Biol. 28:3273–3280. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Swift F, Birkeland JA, Tovsrud N, et al:
Altered Na+/Ca2+-exchanger activity due to
downregulation of Na+/K+-ATPase
alpha2-isoform in heart failure. Cardiovasc Res. 78:71–78.
2008.PubMed/NCBI
|
|
6
|
Blanco G, DeTomaso AW, Koster J, Xie ZJ
and Mercer RW: The alpha-subunit of the Na, K-ATPase has catalytic
activity independent of the beta-subunit. J Biol Chem.
269:23420–23425. 1994.PubMed/NCBI
|
|
7
|
Jaisser F, Jaunin P, Geering K, Rossier BC
and Horisberger JD: Modulation of the Na, K-pump function by beta
subunit isoforms. J Gen Physiol. 103:605–623. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Beguin P, Wang X, Firsov D, et al: The
gamma subunit is a specific component of the Na, K-ATPase and
modulates its transport function. EMBO J. 16:4250–4260. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shamraj OI and Lingrel JB: A putative
fourth Na+, K(+)-ATPase alpha-subunit gene is expressed
in testis. Proc Natl Acad Sci USA. 91:12952–12956. 1994.PubMed/NCBI
|
|
10
|
Barcroft LC, Moseley AE, Lingrel JB and
Watson AJ: Deletion of the Na/K-ATPase alpha1-subunit gene (Atp1a1)
does not prevent cavitation of the preimplantation mouse embryo.
Mech Dev. 121:417–426. 2004.PubMed/NCBI
|
|
11
|
James PF, Grupp IL, Grupp G, et al:
Identification of a specific role for the Na, K-ATPase alpha 2
isoform as a regulator of calcium in the heart. Mol Cell.
3:555–563. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ikeda K, Onimaru H, Yamada J, et al:
Malfunction of respiratory-related neuronal activity in
Na+, K+-ATPase alpha2 subunit-deficient mice
is attributable to abnormal Cl− homeostasis in brainstem
neurons. J Neurosci. 24:10693–10701. 2004.PubMed/NCBI
|
|
13
|
Dostanic I, Paul RJ, Lorenz JN, Theriault
S, Van Huysse JW and Lingrel JB: The alpha2-isoform of Na-K-ATPase
mediates ouabain-induced hypertension in mice and increased
vascular contractility in vitro. Am J Physiol Heart Circ Physiol.
288:H477–H485. 2005. View Article : Google Scholar
|
|
14
|
Dostanic I, Lorenz JN, Schultz Jel J, et
al: The alpha2 isoform of Na, K-ATPase mediates ouabain-induced
cardiac inotropy in mice. J Biol Chem. 278:53026–53034. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dostanic I, Schultz Jel J, Lorenz JN and
Lingrel JB: The alpha 1 isoform of Na, K-ATPase regulates cardiac
contractility and functionally interacts and co-localizes with the
Na/Ca exchanger in heart. J Biol Chem. 279:54053–54061. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pierre SV, Yang C, Yuan Z, et al: Ouabain
triggers preconditioning through activation of the Na+,
K+-ATPase signaling cascade in rat hearts. Cardiovasc
Res. 73:488–496. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Blair JE, Macarie C, Ruzyllo W, et al;
HORIZON-HF investigators. Rationale and design of the hemodynamic,
echocardiographic and neurohormonal effects of istaroxime, a novel
intravenous inotropic and lusitropic agent: a randomized controlled
trial in patients hospitalized with heart failure (HORIZON-HF)
trial. Am J Ther. 15:231–240. 2008. View Article : Google Scholar
|
|
18
|
Tian D, Dmitrieva RI, Doris PA, et al:
Protein kinase M zeta regulation of Na/K ATPase: a persistent
neuroprotective mechanism of ischemic preconditioning in
hippocampal slice cultures. Brain Res. 1213:127–139. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang L, Zhang Z, Guo H and Wang Y:
Na+/K+-ATPase-mediated signal transduction
and Na+/K+-ATPase regulation. Fundam Clin
Pharmacol. 22:615–621. 2008.
|
|
20
|
Hazelwood LA, Free RB, Cabrera DM,
Skinbjerg M and Sibley DR: Reciprocal modulation of function
between the D1 and D2 dopamine receptors and
the Na+, K+-ATPase. J Biol Chem.
283:36441–36453. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Carey RM: Theodore Cooper Lecture: Renal
dopamine system: paracrine regulator of sodium homeostasis and
blood pressure. Hypertension. 38:297–302. 2001. View Article : Google Scholar
|
|
22
|
Jose PA, Eisner GM and Felder RA:
Regulation of blood pressure by dopamine receptors. Nephron
Physiol. 95:p19–p27. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jose PA, Eisner GM and Felder RA: Renal
dopamine and sodium homeostasis. Curr Hypertens Rep. 2:174–183.
2000. View Article : Google Scholar
|
|
24
|
Felder RA, Felder CC, Eisner GM and Jose
PA: The dopamine receptor in adult and maturing kidney. Am J
Physiol. 257:F315–F327. 1989.PubMed/NCBI
|
|
25
|
Chibalin AV, Ogimoto G, Pedemonte CH, et
al: Dopamine- induced endocytosis of Na+,
K+-ATPase is initiated by phosphorylation of Ser-18 in
the rat alpha subunit and is responsible for the decreased activity
in epithelial cells. J Biol Chem. 274:1920–1927. 1999.PubMed/NCBI
|
|
26
|
Chibalin AV, Pedemonte CH, Katz AI,
Feraille E, Berggren PO and Bertorello AM: Phosphorylation of the
catalyic alpha-subunit constitutes a triggering signal for
Na+, K+-ATPase endocytosis. J Biol Chem.
273:8814–8819. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chibalin AV, Zierath JR, Katz AI, Berggren
PO and Bertorello AM: Phosphatidylinositol 3-kinase-mediated
endocytosis of renal Na+, K+-ATPase alpha
subunit in response to dopamine. Mol Biol Cell. 9:1209–1220. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen Z, Krmar RT, Dada L, et al:
Phosphorylation of adaptor protein-2 mu2 is essential for
Na+, K+-ATPase endocytosis in response to
either G protein-coupled receptor or reactive oxygen species. Am J
Respir Cell Mol Biol. 35:127–132. 2006.PubMed/NCBI
|
|
29
|
Ogimoto G, Yudowski GA, Barker CJ, et al:
G protein-coupled receptors regulate Na+,
K+-ATPase activity and endocytosis by modulating the
recruitment of adaptor protein 2 and clathrin. Proc Natl Acad Sci
USA. 97:3242–3247. 2000.PubMed/NCBI
|
|
30
|
Done SC, Leibiger IB, Efendiev R, et al:
Tyrosine 537 within the Na+, K+-ATPase
alpha-subunit is essential for AP-2 binding and clathrin-dependent
endocytosis. J Biol Chem. 277:17108–17111. 2002.PubMed/NCBI
|
|
31
|
Yudowski GA, Efendiev R, Pedemonte CH,
Katz AI, Berggren PO and Bertorello AM: Phosphoinositide-3 kinase
binds to a proline- rich motif in the Na+,
K+-ATPase alpha subunit and regulates its trafficking.
Proc Natl Acad Sci USA. 97:6556–6561. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chibalin AV, Katz AI, Berggren PO and
Bertorello AM: Receptor-mediated inhibition of renal
Na(+)-K(+)-ATPase is associated with endocytosis of its alpha- and
beta-subunits. Am J Physiol. 273:C1458–C1465. 1997.
|
|
33
|
Khundmiri SJ and Lederer E: PTH and DA
regulate Na-K ATPase through divergent pathways. Am J Physiol Renal
Physiol. 282:F512–F522. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Gomes P and Soares-Da-Silva P:
D2-like receptor-mediated inhibition of
Na+-K+-ATPase activity is dependent on the
opening of K+ channels. Am J Physiol Renal Physiol.
283:F114–F123. 2002.PubMed/NCBI
|
|
35
|
Salyer S, Lesousky N, Weinman EJ, Clark
BJ, Lederer ED and Khundmiri SJ: Dopamine regulation of
Na+-K+-ATPase requires the PDZ-2 domain of
sodium hydrogen regulatory factor-1 (NHERF-1) in opossum kidney
cells. Am J Physiol Cell Physiol. 300:C425–C434. 2011.PubMed/NCBI
|
|
36
|
Zhang YR and Yuan ZY: Dopamine-mediated
inhibition of renal Na+/K+-ATPase in HK-2
cells is reduced by ouabain. Clin Exp Pharmacol Physiol.
37:613–618. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gildea JJ, Israel JA, Johnson AK, Zhang J,
Jose PA and Felder RA: Caveolin-1 and dopamine-mediated
internalization of NaKATPase in human renal proximal tubule cells.
Hypertension. 54:1070–1076. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gildea JJ, Shah I, Weiss R, et al: HK-2
human renal proximal tubule cells as a model for G protein-coupled
receptor kinase type 4-mediated dopamine 1 receptor uncoupling.
Hypertension. 56:505–511. 2010. View Article : Google Scholar
|
|
39
|
Bertorello A and Aperia A: Inhibition of
proximal tubule Na(+)-K(+)-ATPase activity requires simultaneous
activation of DA1 and DA2 receptors. Am J Physiol. 259:F924–F928.
1990.
|
|
40
|
Felder CC, Campbell T, Albrecht F and Jose
PA: Dopamine inhibits Na(+)-H+ exchanger activity in renal BBMV by
stimulation of adenylate cyclase. Am J Physiol. 259:F297–F303.
1990.
|
|
41
|
Banday AA and Lokhandwala MF: Oxidative
stress reduces renal dopamine D1 receptor-Gq/11alpha G
protein-phospholipase C signaling involving G protein-coupled
receptor kinase 2. Am J Physiol Renal Physiol. 293:F306–F315.
2007.PubMed/NCBI
|
|
42
|
Shahedi M, Laborde K, Bussieres L, Dechaux
M and Sachs C: Protein kinase C activation causes inhibition of
Na/K-ATPase activity in Madin-Darby canine kidney epithelial (MDCK)
cells. Pflugers Arch. 420:269–274. 1992. View Article : Google Scholar
|
|
43
|
Nishi A, Eklof AC, Bertorello AM and
Aperia A: Dopamine regulation of renal Na+, K(+)-ATPase
activity is lacking in Dahl salt-sensitive rats. Hypertension.
21:767–771. 1993.
|
|
44
|
Banday AA, Lau YS and Lokhandwala MF:
Oxidative stress causes renal dopamine D1 receptor
dysfunction and salt-sensitive hypertension in Sprague-Dawley rats.
Hypertension. 51:367–375. 2008. View Article : Google Scholar
|
|
45
|
Gomes P and Soares-da-Silva P: Role of
cAMP-PKA-PLC signaling cascade on dopamine-induced PKC-mediated
inhibition of renal Na(+)-K(+)-ATPase activity. Am J Physiol Renal
Physiol. 282:F1084–F1096. 2002.PubMed/NCBI
|
|
46
|
Gomes P and Soares-da-Silva P:
Dopamine-induced inhibition of Na+-K+-ATPase
activity requires integrity of actin cytoskeleton in opossum kidney
cells. Acta Physiol Scand. 175:93–101. 2002.
|
|
47
|
Efendiev R, Bertorello AM and Pedemonte
CH: PKC-beta and PKC-zeta mediate opposing effects on proximal
tubule Na+, K+-ATPase activity. FEBS Lett.
456:45–48. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Huang H, Ren H, Chen C, et al:
D3 dopamine receptor regulation of D5
receptor expression and function in renal proximal tubule cells.
Hypertens Res. 35:639–647. 2012.
|
|
49
|
Tsuchida H, Imai G, Shima Y, Satoh T and
Owada S: Mechanism of sodium load-induced hypertension in
non-insulin dependent diabetes mellitus model rats: defective
dopaminergic system to inhibit Na-K-ATPase activity in renal
epithelial cells. Hypertens Res. 24:127–135. 2001. View Article : Google Scholar
|
|
50
|
Aperia A: 2011 Homer Smith Award: To serve
and protect: classic and novel roles for Na+,
K+-adenosine triphosphatase. J Am Soc Nephrol.
23:1283–1290. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lecuona E, Garcia A and Sznajder JI: A
novel role for protein phosphatase 2A in the dopaminergic
regulation of Na, K-ATPase. FEBS Lett. 481:217–220. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lecuona E, Dada LA, Sun H, et al: Na,
K-ATPase alpha1-subunit dephosphorylation by protein phosphatase 2A
is necessary for its recruitment to the plasma membrane. FASEB J.
20:2618–2620. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Helms MN, Chen XJ, Ramosevac S, Eaton DC
and Jain L: Dopamine regulation of amiloride-sensitive sodium
channels in lung cells. Am J Physiol Lung Cell Mol Physiol.
290:L710–L722. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Adir Y, Azzam ZS, Lecuona E, et al:
Augmentation of endogenous dopamine production increases lung
liquid clearance. Am J Respir Crit Care Med. 169:757–763. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Olivera WG, Ridge KM and Sznajder JI: Lung
liquid clearance and Na, K-ATPase during acute hyperoxia and
recovery in rats. Am J Respir Crit Care Med. 152:1229–1234. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Saldias FJ, Lecuona E, Comellas AP, Ridge
KM and Sznajder JI: Dopamine restores lung ability to clear edema
in rats exposed to hyperoxia. Am J Respir Crit Care Med.
159:626–633. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Jaitovich A and Sznajder JI: Improving
survival by increasing lung edema clearance: is airspace delivery
of dopamine a solution? Crit Care. 12:1352008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Azzam ZS, Dumasius V, Saldias FJ, Adir Y,
Sznajder JI and Factor P: Na, K-ATPase overexpression improves
alveolar fluid clearance in a rat model of elevated left atrial
pressure. Circulation. 105:497–501. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ridge KM, Dada L, Lecuona E, et al:
Dopamine-induced exocytosis of Na, K-ATPase is dependent on
activation of protein kinase C-epsilon and -delta. Mol Biol Cell.
13:1381–1389. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guerrero C, Lecuona E, Pesce L, Ridge KM
and Sznajder JI: Dopamine regulates Na-K-ATPase in alveolar
epithelial cells via MAPK-ERK-dependent mechanisms. Am J Physiol
Lung Cell Mol Physiol. 281:L79–L85. 2001.PubMed/NCBI
|
|
61
|
Guerrero C, Pesce L, Lecuona E, Ridge KM
and Sznajder JI: Dopamine activates ERKs in alveolar epithelial
cells via Ras-PKC-dependent and Grb2/Sos-independent mechanisms. Am
J Physiol Lung Cell Mol Physiol. 282:L1099–L1107. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Vieira-Coelho MA, Teixeira VA, Finkel Y,
Soares-Da-Silva P and Bertorello AM: Dopamine-dependent inhibition
of jejunal Na+-K+-ATPase during high-salt
diet in young but not in adult rats. Am J Physiol. 275:G1317–G1323.
1998.PubMed/NCBI
|
|
63
|
Lucas-Teixeira VA, Hussain T, Serrao P,
Soares-da-Silva P and Lokhandwala MF: Intestinal dopaminergic
activity in obese and lean Zucker rats: response to high salt
intake. Clin Exp Hypertens. 24:383–396. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Vieira-Coelho MA, Serrao P, Hussain T,
Lokhandwala MF and Soares-da-Silva P: Salt intake and intestinal
dopaminergic activity in adult and old Fischer 344 rats. Life Sci.
69:1957–1968. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lucas-Teixeira V, Vieira-Coelho MA and
Soares-Da-Silva P: Food intake abolishes the response of rat
jejunal Na(+), K(+)-ATPase to dopamine. J Nutr. 130:877–881.
2000.PubMed/NCBI
|
|
66
|
Vieira-Coelho MA and Soares-da-Silva P:
Ontogenic aspects of D1 receptor coupling to G proteins
and regulation of rat jejunal Na+, K+ ATPase
activity and electrolyte transport. Br J Pharmacol. 129:573–581.
2000.
|
|
67
|
Vieira-Coelho MA, Serrao P, Guimaraes JT,
Pestana M and Soares-da-Silva P: Concerted action of dopamine on
renal and intestinal Na(+)-K(+)-ATPase in the rat remnant kidney.
Am J Physiol Renal Physiol. 279:F1033–F1044. 2000.PubMed/NCBI
|
|
68
|
Sampaio-Maia B, Serrao P, Moura M and
Pestana M: Jejunal dopamine and Na, K-ATPase activity in early
chronic renal insufficiency. Nephrology (Carlton). 11:63–67. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Blom H, Ronnlund D, Scott L, et al:
Nearest neighbor analysis of dopamine D1 receptors and
Na(+)-K(+)-ATPases in dendritic spines dissected by STED
microscopy. Microsc Res Tech. 75:220–228. 2012.
|
|
70
|
Bertorello AM, Hopfield JF, Aperia A and
Greengard P: Inhibition by dopamine of (Na(+)+K+)ATPase activity in
neostriatal neurons through D1 and D2
dopamine receptor synergism. Nature. 347:386–388. 1990.
|
|
71
|
Pinto Ferreira M, DeLucia R, Luiz
Aizenstein M, Glezer I and Scavone C: Fencamfamine modulates
sodium, potassium-ATPase through cyclic AMP and cyclic
AMP-dependent protein kinase in rat striatum. J Neural Transm.
105:549–560. 1998.PubMed/NCBI
|
|
72
|
Bagh MB, Maiti AK, Jana S, Banerjee K, Roy
A and Chakrabarti S: Quinone and oxyradical scavenging properties
of N-acetylcysteine prevent dopamine mediated inhibition of
Na+, K+-ATPase and mitochondrial electron
transport chain activity in rat brain: implications in the
neuroprotective therapy of Parkinson’s disease. Free Radic Res.
42:574–581. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yang ZJ, Torbey M, Li X, et al: Dopamine
receptor modulation of hypoxic-ischemic neuronal injury in striatum
of newborn piglets. J Cereb Blood Flow Metab. 27:1339–1351. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Park WS, Chang YS, Shim JW, et al: Effects
of dopamine infusion on cerebral blood flow, brain cell membrane
function and energy metabolism in experimental Escherichia
coli meningitis in the newborn piglet. J Korean Med Sci.
18:869–875. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zaitseva T, Shen J, Schears G, Creed J,
Wilson DF and Pastuszko A: Effect of catecholamines on activity of
Na(+), K(+)-ATPase in neonatal piglet brain during posthypoxic
reoxygenation. Comp Biochem Physiol A Mol Integr Physiol.
132:139–145. 2002.
|
|
76
|
Wu ZQ, Chen J, Chi ZQ and Liu JG:
Involvement of dopamine system in regulation of Na+,
K+-ATPase in the striatum upon activation of opioid
receptors by morphine. Mol Pharmacol. 71:519–530. 2007.PubMed/NCBI
|
|
77
|
Nakai Y, Dean WL, Hou Y and Delamere NA:
Genistein inhibits the regulation of active sodium-potassium
transport by dopaminergic agonists in nonpigmented ciliary
epithelium. Invest Ophthalmol Vis Sci. 40:1460–1466. 1999.
|
|
78
|
Rashed SM and Songu-Mize E: Regulation of
Na(+)-pump activity by dopamine in rat tail arteries. Eur J
Pharmacol. 284:289–297. 1995.
|
|
79
|
Rashed SM and Songu-Mize E: Regulation of
Na+, K(+)-ATPase activity by dopamine in cultured rat
aortic smooth muscle cells. Eur J Pharmacol. 305:223–230. 1996.
|
|
80
|
Cinelli AR, Efendiev R and Pedemonte CH:
Trafficking of Na-K-ATPase and dopamine receptor molecules induced
by changes in intracellular sodium concentration of renal
epithelial cells. Am J Physiol Renal Physiol. 295:F1117–F1125.
2008. View Article : Google Scholar
|
|
81
|
Steffens M and Feuerstein TJ:
Receptor-independent depression of DA and 5-HT uptake by
cannabinoids in rat neocortex - involvement of Na(+)/K(+)-ATPase.
Neurochem Int. 44:529–538. 2004.PubMed/NCBI
|
|
82
|
Kirchheimer C, Mendez CF, Acquier A and
Nowicki S: Role of 20-HETE in D1/D2 dopamine
receptor synergism resulting in the inhibition of
Na+-K+-ATPase activity in the proximal
tubule. Am J Physiol Renal Physiol. 292:F1435–F1442.
2007.PubMed/NCBI
|
|
83
|
Citarella MR, Choi MR, Gironacci MM,
Medici C, Correa AH and Fernandez BE: Urodilatin and dopamine: a
new interaction in the kidney. Regul Pept. 153:19–24. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Schoffelmeer AN, Vanderschuren LJ, De
Vries TJ, Hogenboom F, Wardeh G and Mulder AH: Synergistically
interacting dopamine D1 and NMDA receptors mediate
nonvesicular transporter-dependent GABA release from rat striatal
medium spiny neurons. J Neurosci. 20:3496–3503. 2000.PubMed/NCBI
|
|
85
|
Zhang Y, Fu C, Ren H, et al: Impaired
stimulatory effect of ETB receptor on D(3) receptor in immortalized
renal proximal tubule cells of spontaneously hypertensive rats.
Kidney Blood Press Res. 34:75–82. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yu C, Yang Z, Ren H, et al: D3
dopamine receptor regulation of ETB receptors in renal proximal
tubule cells from WKY and SHRs. Am J Hypertens. 22:877–883.
2009.
|
|
87
|
Yang J, Cui Z, He D, et al: Insulin
increases D5 dopamine receptor expression and function
in renal proximal tubule cells from Wistar-Kyoto rats. Am J
Hypertens. 22:770–776. 2009.
|
|
88
|
Soares-da-Silva P, Pinto-do OP and
Bertorello AM: Antagonistic actions of renal dopamine and
5-hydroxytryptamine: increase in Na+, K(+)-ATPase
activity in renal proximal tubules via activation of 5-HT1A
receptors. Br J Pharmacol. 117:1199–1203. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Khan F, Spicarova Z, Zelenin S, Holtback
U, Scott L and Aperia A: Negative reciprocity between angiotensin
II type 1 and dopamine D1 receptors in rat renal
proximal tubule cells. Am J Physiol Renal Physiol. 295:F1110–F1116.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Choi MR, Medici C, Gironacci MM, Correa AH
and Fernandez BE: Angiotensin II regulation of renal dopamine
uptake and Na(+), K(+)-ATPase activity. Nephron Physiol.
111:p53–p58. 2009.PubMed/NCBI
|
|
91
|
Aperia A, Holtback U, Syren ML, Svensson
LB, Fryckstedt J and Greengard P: Activation/deactivation of renal
Na+, K(+)-ATPase: a final common pathway for regulation
of natriuresis. FASEB J. 8:436–439. 1994.PubMed/NCBI
|
|
92
|
Banday AA, Fazili FR and Lokhandwala MF:
Insulin causes renal dopamine D1 receptor
desensitization via GRK2-mediated receptor phosphorylation
involving phosphatidylinositol 3-kinase and protein kinase C. Am J
Physiol Renal Physiol. 293:F877–F884. 2007.PubMed/NCBI
|
|
93
|
Banday AA, Asghar M, Hussain T and
Lokhandwala MF: Dopamine-mediated inhibition of renal Na, K-ATPase
is reduced by insulin. Hypertension. 41:1353–1358. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Correa AH, Choi MR, Gironacci M, Aprile F
and Fernandez BE: Atrial natriuretic factor decreases renal
dopamine turnover and catabolism without modifying its release.
Regul Pept. 146:238–242. 2008. View Article : Google Scholar : PubMed/NCBI
|