Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December 2013 Volume 8 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December 2013 Volume 8 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling

  • Authors:
    • Zhi-Yun Feng
    • Zhen-Nian He
    • Bin Zhang
    • Zhong Chen
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China, Department of Orthopedics, Beilun People's Hospital, Ningbo, Zhejiang 315806, P.R. China
  • Pages: 1669-1679
    |
    Published online on: October 8, 2013
       https://doi.org/10.3892/mmr.2013.1717
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The involvement of osteoprotegerin (OPG) in bone metabolism has previously been established; however, whether OPG regulates chondrocytes directly and exerts precise cellular and molecular effects on chondrocytes remains to be determined. Thus, the present study aimed to investigate the direct effect of OPG on the viability, proliferation and functional consequences of chondrocytes. Primary chondrocytes were isolated from the knee of Sprague‑Dawley rats. Passage 1 chondrocytes were identified by toluidine blue staining and used in the experiments. The cell proliferation induced by OPG at various concentrations was measured by a Cell Counting kit-8 (CCK‑8) assay. Following pretreatment with mitogen-activated/extracellular signal‑regulated kinase kinase (MEK) inhibitor U0126, extracellular signal‑regulated kinase (ERK) inhibitor PD098059, and P38 mitogen‑activated protein kinase (P38MAPK) inhibitor SB203580 for 30 min, chondrocytes were treated with OPG, and CCK‑8 was performed. The cellular signals of MAPKs, including ERK, P38MAPK and c‑Jun N‑terminal protein kinase (JNK), were investigated by western blot analysis following treatment with OPG. The functional consequences following treatment with soluble OPG were analyzed by qPCR and western blot analysis. OPG increased chondrocyte proliferation with maximal effect at 10 ng/ml, and induced the phosphorylation of MEK and ERK but not P38MAPK or JNK. Suppression of ERK activity via PD098095 inhibited OPG-induced chondrocyte proliferation. Administration of OPG significantly downregulated ADAMTS‑5 and upregulated tissue inhibitor of metalloproteinase (TIMP)‑4 production, but had no effect on the expression of TIMP‑1, ‑2 and ‑3, insulin‑like growth factor I, transforming growth factor‑β, basic fibroblast growth factor, bone morphogenetic protein‑2, collagen II, aggrecan and ADAMTS‑4. Suppression of ERK activity via PD098095 inhibited the alteration of ADAMTS‑5 and TIMP‑4 expression induced by OPG. OPG therefore regulated the proliferation of chondrocytes via MEK/ERK signaling, and directly affected chondrocytes by influencing the expression profile of ADAMTS‑5 and TIMP‑4.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Kobayashi-Sakamoto M, Isogai E and Holen I: Osteoprotegerin induces cytoskeletal reorganization and activates FAK, Src, and ERK signaling in endothelial cells. Eur J Haematol. 85:26–35. 2010.PubMed/NCBI

2 

Kadri A, Ea HK, Bazille C, Hannouche D, Lioté F and Cohen-Solal ME: Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum. 58:2379–2386. 2008. View Article : Google Scholar

3 

Komuro H, Olee T, Kühn K, et al: The osteoprotegerin/receptor activator of nuclear factor kappaB/receptor activator of nuclear factor kappaB ligand system in cartilage. Arthritis Rheum. 44:2768–2776. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Kong YY, Yoshida H, Sarosi I, et al: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 397:315–323. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Shimizu S, Asou Y, Itoh S, et al: Prevention of cartilage destruction with intraarticular osteoclastogenesis inhibitory factor/osteoprotegerin in a murine model of osteoarthritis. Arthritis Rheum. 56:3358–3365. 2007. View Article : Google Scholar

6 

Kong YY, Feige U, Sarosi I, et al: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 402:304–309. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Kwan Tat S, Pelletier JP, Lajeunesse D, Fahmi H, Lavigne M and Martel-Pelletier J: The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappaB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells. Clin Exp Rheumatol. 26:295–304. 2008.

8 

Kwan Tat S, Amiable N, Pelletier JP, et al: Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford). 48:1482–1490. 2009.PubMed/NCBI

9 

Yongchaitrakul T, Manokawinchoke J and Pavasant P: Osteoprotegerin induces osteopontin via syndecan-1 and phosphoinositol 3-kinase/Akt in human periodontal ligament cells. J Periodontal Res. 44:776–783. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Goldring MB and Marcu KB: Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 11:2242009. View Article : Google Scholar : PubMed/NCBI

11 

Lories RJ and Luyten FP: The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 7:43–49. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Verma P and Dalal K: ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem. 112:3507–3514. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Li X, Peng J, Wu M, et al: BMP2 promotes chondrocyte proliferation via the Wnt/β-catenin signaling pathway. Mol Med Rep. 4:621–626. 2011.PubMed/NCBI

14 

Kotake S, Udagawa N, Hakoda M, et al: Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum. 44:1003–1012. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Rubinfeld H and Seger R: The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 31:151–174. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Dai Y, Rahmani M, Pei XY, et al: Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood. 105:1706–1716. 2005. View Article : Google Scholar

17 

Kimata M, Michigami T, Tachikawa K, et al: Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na+/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone. 47:938–947. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Feng JQ, Xing L, Zhang JH, et al: NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. J Biol Chem. 278:29130–29135. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Sun HZ, Yang TW, Zang WJ and Wu SF: Dehydroepiandrosterone-induced proliferation of prostatic epithelial cell is mediated by NFKB via PI3K/AKT signaling pathway. J Endocrinol. 204:311–318. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Liu S, Tan WY, Chen QR, et al: Daintain/AIF-1 promotes breast cancer proliferation via activation of the NF-kappaB/cyclin D1 pathway and facilitates tumor growth. Cancer Sci. 99:952–957. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Massoumi R, Chmielarska K, Hennecke K, Pfeifer A and Fässler R: Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell. 125:665–677. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Glasson SS, Askew R, Sheppard B, et al: Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 434:644–648. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Zhou Y, Millward-Sadler SJ, Lin H, et al: Evidence for JNK-dependent up-regulation of proteoglycan synthesis and for activation of JNK1 following cyclical mechanical stimulation in a human chondrocyte culture model. Osteoarthritis Cartilage. 15:884–893. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Kita K, Kimura T, Nakamura N, Yoshikawa H and Nakano T: PI3K/Akt signaling as a key regulatory pathway for chondrocyte terminal differentiation. Genes Cells. 13:839–850. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Bursell L, Woods A, James CG, Pala D, Leask A and Beier F: Src kinase inhibition promotes the chondrocyte phenotype. Arthritis Res Ther. 9:R1052007. View Article : Google Scholar : PubMed/NCBI

26 

Dong YF, Soung do Y, Chang Y, et al: Transforming growth factor-beta and Wnt signals regulate chondrocyte differentiation through Twist1 in a stage-specific manner. Mol Endocrinol. 21:2805–2820. 2007. View Article : Google Scholar

27 

Ryan JA, Eisner EA, DuRaine G, You Z and Reddi AH: Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine. J Tissue Eng Regen Med. 3:107–116. 2009. View Article : Google Scholar

28 

Yonekura A, Osaki M, Hirota Y, et al: Transforming growth factor-beta stimulates articular chondrocyte cell growth through p44/42 MAP kinase (ERK) activation. Endocr J. 46:545–553. 1999. View Article : Google Scholar : PubMed/NCBI

29 

Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T and Takigawa M: CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem. 268:6058–6065. 2001. View Article : Google Scholar

30 

Kobayashi-Sakamoto M, Isogai E, Hirose K and Chiba I: Role of alphav integrin in osteoprotegerin-induced endothelial cell migration and proliferation. Microvasc Res. 76:139–144. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Toffoli B, Bernardi S, Candido R, et al: Osteoprotegerin induces morphological and functional alterations in mouse pancreatic islets. Mol Cell Endocrinol. 331:136–142. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Candido R, Toffoli B, Corallini F, et al: Human full-length osteoprotegerin induces the proliferation of rodent vascular smooth muscle cells both in vitro and in vivo. J Vasc Res. 47:252–261. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Bradley EW and Drissi MH: WNT5A regulates chondrocyte differentiation through differential use of the CaN/NFAT and IKK/NF-kappaB pathways. Mol Endocrinol. 24:1581–1593. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Feng Z, He Z, Zhang B and Chen Z: Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling. Mol Med Rep 8: 1669-1679, 2013.
APA
Feng, Z., He, Z., Zhang, B., & Chen, Z. (2013). Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling. Molecular Medicine Reports, 8, 1669-1679. https://doi.org/10.3892/mmr.2013.1717
MLA
Feng, Z., He, Z., Zhang, B., Chen, Z."Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling". Molecular Medicine Reports 8.6 (2013): 1669-1679.
Chicago
Feng, Z., He, Z., Zhang, B., Chen, Z."Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling". Molecular Medicine Reports 8, no. 6 (2013): 1669-1679. https://doi.org/10.3892/mmr.2013.1717
Copy and paste a formatted citation
x
Spandidos Publications style
Feng Z, He Z, Zhang B and Chen Z: Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling. Mol Med Rep 8: 1669-1679, 2013.
APA
Feng, Z., He, Z., Zhang, B., & Chen, Z. (2013). Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling. Molecular Medicine Reports, 8, 1669-1679. https://doi.org/10.3892/mmr.2013.1717
MLA
Feng, Z., He, Z., Zhang, B., Chen, Z."Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling". Molecular Medicine Reports 8.6 (2013): 1669-1679.
Chicago
Feng, Z., He, Z., Zhang, B., Chen, Z."Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling". Molecular Medicine Reports 8, no. 6 (2013): 1669-1679. https://doi.org/10.3892/mmr.2013.1717
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team