|
1
|
Krenn L and Kopp B: Bufadienolides from
animal and plant sources. Phytochemistry. 48:1–29. 1998.PubMed/NCBI
|
|
2
|
Qi F, Li A, Inagaki Y, Kokudo N, Tamura S,
Nakata M and Tang W: Antitumor activity of extracts and compounds
from the skin of the toad Bufo bufo gargarizans Cantor. Int
Immunopharmacol. 11:342–349. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Takai N, Kira N, Ishii T, Yoshida T,
Nishida M, Nishida Y, Nasu K and Narahara H: Bufalin, a traditional
oriental medicine, induces apoptosis in human cancer cells. Asian
Pac J Cancer Prev. 13:399–402. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang L, Nakaya K, Yoshida T and Kuroiwa
Y: Induction by bufalin of differentiation of human leukemia cells
HL60, U937, and ML1 toward macrophage/monocyte-like cells and its
potent synergistic effect on the differentiation of human leukemia
cells in combination with other inducers. Cancer Res. 52:4634–4641.
1992.
|
|
5
|
Chen A, Yu J, Zhang L, Sun Y, Zhang Y, Guo
H, Zhou Y, Mitchelson K and Cheng J: Microarray and biochemical
analysis of bufalin-induced apoptosis of HL-60 cells. Biotechnol
Lett. 31:487–494. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Huang C, Chen A, Guo M and Yu J: Membrane
dielectric responses of bufalin-induced apoptosis in HL-60 cells
detected by an electrorotation chip. Biotechnol Lett. 29:1307–1313.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Numazawa S, Shinoki MA, Ito H, Yoshida T
and Kuroiwa Y: Involvement of Na+, K(+)-ATPase inhibition in K562
cell differentiation induced by bufalin. J Cell Physiol.
160:113–210. 1994.
|
|
8
|
Kawazoe N, Aiuchi T, Masuda Y, Nakajo S
and Nakaya K: Induction of apoptosis by bufalin in human tumor
cells is associated with a change of intracellular concentration of
Na+ ions. J Biochem. 126:278–286. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Watabe M, Masuda Y, Nakajo S, Yoshida T,
Kuroiwa Y and Nakaya K: The cooperative interaction of two
different signaling pathways in response to bufalin induces
apoptosis in human leukemia U937 cells. J Biol Chem.
271:14067–14072. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Masuda Y, Kawazoe N, Nakajo S, Yoshida T,
Kuroiwa Y and Nakaya K: Bufalin induces apoptosis and influences
the expression of apoptosis-related genes in human leukemia cells.
Leuk Res. 19:549–556. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hashimoto S, Jing Y, Kawazoe N, Masuda Y,
Nakajo S, Yoshidaz T, et al: Bufalin reduces the level of
topoisomerase II in human leukemia cells and affects the
cytotoxicity of anticancer drugs. Leuk Res. 21:875–883. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Park IK, Qian D, Kiel M, et al: Bmi-1 is
required for maintenance of adult self-renewing haematopoietic stem
cells. Nature. 423:302–305. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dick JE: Stem cells: self-renewal writ in
blood. Nature. 423:231–233. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lessard J and Sauvageau G: Bmi-1
determines the proliferative capacity of normal and leukaemic stem
cells. Nature. 423:255–260. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Iwama A, Oguro H, Negishi M, et al:
Enhanced self-renewal of hematopoietic stem cells mediated by the
polycomb gene product Bmi-1. Immunity. 21:843–851. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Alkema MJ, Wiegant J, Raap AK, Berns A and
van Lohuizen M: Characterization and chromosomal localization of
the human proto-oncogene BMI-1. Hum Mol Genet. 2:1597–1603. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jacobs JJ, Kieboom K, Marino S, DePinho RA
and van Lohuizen M: The oncogene and polycomb-group gene bmi-1
regulates cell proliferation and senescence through the Ink4a
locus. Nature. 397:164–168. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Dhawan S, Tschen SI and Bhushan A: Bmi-1
regulates the Ink4a/Arf locus to control pancreatic beta-cell
proliferation. Genes Dev. 23:906–911. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Schuringa JJ and Vellenga E: Role of the
polycomb group gene BMI1 in normal and leukemic hematopoietic stem
and progenitor cells. Curr Opin Hematol. 17:294–299. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lessard J and Sauvageau G: Bmi-1
determines the proliferative capacity of normal and leukaemic stem
cells. Nature. 423:255–260. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Valk-Lingbeek ME, Bruggeman SW and van
Lohuizen M: Stem cells and cancer; the polycomb connection. Cell.
118:409–418. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhu W, Huang L, Xu X, Qian H and Xu W:
Anti-proliferation effect of BMI-1 in U937 cells with siRNA. Int J
Mol Med. 25:889–895. 2010.PubMed/NCBI
|
|
23
|
Meng XX, Liu WH, Liu DD, Zhao XY and Su
BL: Construction of antisense Bmi-1 expression plasmid and its
inhibitory effect on K562 cells proliferation. Chin Med J (Engl).
118:1346–1350. 2005.PubMed/NCBI
|
|
24
|
Mehta RG, Murillo G, Naithani R and Peng
X: Cancer chemoprevention by natural products: how far have we
come? Pharm Res. 27:950–961. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Meng Z, Yang P, Shen Y, Bei W, Zhang Y, Ge
Y, Newman RA, Cohen L, Liu L, Thornton B, Chang DZ, Liao Z and
Kurzrock R: Pilot study of huachansu in patients with
hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic
cancer. Cancer. 115:5309–5318. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kawazoe N, Aiuchi T, Masuda Y, Nakajo S
and Nakaya K: Induction of apoptosis by bufalin in human tumor
cells is associated with a change of intracellular concentration of
Na+ ions. J Biochem. 126:278–286. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yu CH, Kan SF, Pu HF, Jea Chien E and Wang
PS: Apoptotic signaling in bufalin- and cinobufagin-treated
androgen-dependent and -independent human prostate cancer cells.
Cancer Sci. 99:2467–2476. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhu Z, Sun H, Ma G, Wang Z, Li E and Liu Y
and Liu Y: Bufalin induces lung cancer cell apoptosis via the
inhibition of PI3K/Akt pathway. Int J Mol Sci. 13:2025–2035. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sun L, Chen T, Wang X, Chen Y and Wei X:
Bufalin induces reactive oxygen species dependent bax translocation
and apoptosis in ASTC-a-1 cells. Evid Based Complement Alternat
Med. 2011:2490902011.PubMed/NCBI
|
|
30
|
Wang YL, Qian J, Lin J, Yao DM, Qian Z,
Zhu ZH and Li JY: Methylation status of DDIT3 gene in chronic
myeloid leukemia. J Exp Clin Cancer Res. 29:542010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Qian J, Chen Z, Lin J, Wang W and Cen J:
Decreased expression of CCAAT/enhancer binding protein zeta
(C/EBPzeta) in patients with different myeloid diseases. Leuk Res.
29:1435–1441. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Friedman AD: GADD153/CHOP, a DNA
damage-inducible protein, reduced CAAT/enhancer binding protein
activities and increased apoptosis in 32D c13 myeloid cells. Cancer
Res. 56:3250–3256. 1996.PubMed/NCBI
|
|
33
|
Matsumoto M, Minami M, Takeda K, Sakao Y
and Akira S: Ectopic expression of CHOP (GADD153) induces apoptosis
in M1 myeloblastic leukemia cells. FEBS Lett. 395:143–147. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lu M, Chen F, Wang Q, Wang K, Pan Q and
Zhang X: Downregulation of inhibitor of growth 3 is correlated with
tumorigenesis and progression of hepatocellular carcinoma. Oncol
Lett. 4:47–52. 2012.PubMed/NCBI
|
|
35
|
Ghosh AK, Steele R and Ray RB: Functional
domains of c-myc promoter binding protein 1 involved in
transcriptional repression and cell growth regulation. Mol Cell
Biol. 19:2880–2886. 1999.PubMed/NCBI
|
|
36
|
Ray R and Miller DM: Cloning and
characterization of a human c-myc promoter-binding protein. Mol
Cell Biol. 11:2154–2161. 1996.PubMed/NCBI
|
|
37
|
Chaudhary D and Miller DM: The c-myc
promoter binding protein (MBP-1) and TBP bind simultaneously in the
minor groove of the c-myc P2 promoter. Biochemistry. 34:3438–3445.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ray RB: Induction of cell death in murine
fibroblasts by a c-myc promoter binding protein. Cell Growth
Differ. 6:1089–1096. 1995.PubMed/NCBI
|
|
39
|
Ghosh AK, Steele R, Ryerse J and Ray RB:
Tumor-suppressive effects of MBP-1 in non-small cell lung cancer
cells. Cancer Res. 66:11907–11912. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kim MK, Jeon BN, Koh DI, Park SY, Yun CO
and Hur MW: Regulation of the cyclin-dependent kinase inhibitor 1A
gene (CDKNIA) by the repressor BOZF1 through inhibition of p53
acetylation and transcription factor Sp1 binding. J Biol Chem.
288:7053–7064. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Laity JH, Lee BM and Wright PE: Zinc
finger proteins: new insights into structural and functional
diversity. Curr Opin Struct Biol. 11:39–46. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang Y, Medvid R, Melton C, Jaenisch R and
Blelloch R: DGCR8 is essential for microRNA biogenesis and
silencing of embryonic stem cell self-renewal. Nat Genet.
39:380–385. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
43
|
Morello LG, Coltri PP, Quaresma AJ,
Simabuco FM, Silva TC, Singh G, Nickerson JA, Oliveira CC, Moore MJ
and Zanchin NI: The human nucleolar protein FTSJ3 associates with
NIP7 and functions in pre-rRNA processing. PLoS One. 6:e291742011.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tsuneoka M, Koda Y, Soejima M, Teye K and
Kimura H: A novel myc target gene, mina53, that is involved in cell
proliferation. J Biol Chem. 277:35450–35459. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Eilbracht J, Kneissel S, Hofmann A and
Schmidt-Zachmann MS: Protein NO52-a constitutive nucleolar
component sharing high sequence homologies to protein NO66. Eur J
Cell Biol. 84:279–294. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tan XP, Zhang Q, Dong WG, Lei XW and Yang
ZR: Upregulated expression of Mina53 in cholangiocarcinoma and its
clinical significance. Oncol Lett. 3:1037–1041. 2012.PubMed/NCBI
|
|
47
|
Bedford MT and Clarke SG: Protein arginine
methylation in mammals: who, what, and why. Mol Cell. 33:1–13.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gu Z, Li Y, Lee P, Liu T, Wan C and Wang
Z: Protein arginine methyltransferase 5 functions in opposite ways
in the cytoplasm and nucleus of prostate cancer cells. PLoS One.
7:e440332012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bao X, Zhao S, Liu T, Liu Y, Liu Y and
Yang X: Overexpression of PRMT5 promotes tumor cell growth and is
associated with poor disease prognosis in epithelial ovarian
cancer. J Histochem Cytochem. 61:206–217. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gallant P: Control of transcription by
Pontin and Reptin. Trends Cell Biol. 17:187–192. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Huber O, Ménard L, Haurie V, Nicou A,
Taras D and Rosenbaum J: Pontin and reptin, two related ATPases
with multiple roles in cancer. Cancer Res. 68:6873–6876. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jha S and Dutta A: RVB1/RVB2: running
rings around molecular biology. Mol Cell. 34:521–533. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Taniue K, Oda T, Hayashi T, Okuno M and
Akiyama T: A member of the ETS family, EHF, and the ATPase RUVBL1
inhibit p53-mediated apoptosis. EMBO Rep. 12:682–689. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ito S, Ishii A, Kakusho N, Taniyama C,
Yamazaki S, Fukatsu R, Sakaue-Sawano A, Miyawaki A and Masai H:
Mechanism of cancer cell death induced by depletion of an essential
replication regulator. PLoS One. 7:e363722012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Montagnoli A, Tenca P, Sola F, Carpani D,
Brotherton D, Albanese C and Santocanale C: Cdc7 inhibition reveals
a p53-dependent replication checkpoint that is defective in cancer
cells. Cancer Res. 64:7110–7116. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tudzarova S, Trotter MW, Wollenschlaeger
A, Mulvey C, Godovac-Zimmermann J, Williams GH and Stoeber K:
Molecular architecture of the DNA replication origin activation
checkpoint. EMBO J. 29:3381–3394. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Im JS and Lee JK: ATR-dependent activation
of p38 MAP kinase is responsible for apoptotic cell death in cells
depleted of Cdc7. J Biol Chem. 283:25171–25177. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kim JM, Kakusho N, Yamada M, Kanoh Y,
Takemoto N and Masai H: Cdc7 kinase mediates Claspin
phosphorylation in DNA replication checkpoint. Oncogene.
27:3475–3482. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tan Y, Raychaudhuri P and Costa RH: Chk2
mediates stabilization of the FoxM1 transcription factor to
stimulate expression of DNA repair genes. Mol Cell Biol.
27:1007–1016. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Daily D, Vlamis-Gardikas A, Offen D,
Mittelman L, Melamed E, Holmgren A and Barzilai A: Glutaredoxin
protects cerebellar granule neurons from dopamine-induced apoptosis
by dual activation of the ras-phosphoinositide 3-kinase and jun
n-terminal kinase pathways. J Biol Chem. 276:21618–21626. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Enoksson M, Fernandes AP, Prast S, Lillig
CH, Holmgren A and Orrenius S: Overexpression of glutaredoxin 2
attenuates apoptosis by preventing cytochrome c release. Biochem
Biophys Res Commun. 327:774–779. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Diotte NM, Xiong Y, Gao J, Chua BH and Ho
YS: Attenuation of doxorubicin-induced cardiac injury by
mitochondrial glutaredoxin 2. Biochim Biophys Acta. 1793:427–438.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lillig CH, Lonn ME, Enoksson M, Fernandes
AP and Holmgren A: Short interfering RNA-mediated silencing of
glutaredoxin 2 increases the sensitivity of HeLa cells toward
doxorubicin and phenylarsine oxide. Proc Natl Acad Sci USA.
101:13227–13232. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu H, Xing K and Lou MF: Glutaredoxin 2
prevents H(2)O(2)-induced cell apoptosis by protecting complex I
activity in the mitochondria. Biochim Biophys Acta. 1797:1705–1715.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Conde-Pérezprina JC, León-Galván MÁ and
Konigsberg M: DNA mismatch repair system: repercussions in cellular
homeostasis and relationship with aging. Oxid Med Cell Longev.
2012:7284302012.PubMed/NCBI
|
|
66
|
Sirivolu VR, Vernekar SK, Marchand C,
Naumova A, Chergui A, Renaud A, Stephen AG, Chen F, Sham YY,
Pommier Y and Wang Z: 5-Arylidenethioxothiazolidinones as
inhibitors of tyrosyl-DNA phosphodiesterase I. J Med Chem.
55:8671–8684. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Alagoz M, Gilbert DC, El-Khamisy S and
Chalmers AJ: DNA repair and resistance to topoisomerase I
inhibitors: mechanisms, biomarkers and therapeutic targets. Curr
Med Chem. 19:3874–3885. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Rizo A, Olthof S, Han L, Vellenga E, de
Haan G and Schuringa JJ: Repression of BMI1 in normal and leukemic
human CD34(+) cells impairs self-renewal and induces apoptosis.
Blood. 114:1498–1505. 2009.PubMed/NCBI
|
|
69
|
Bhattacharyya J, Mihara K, Yasunaga S,
Tanaka H, Hoshi M, Takihara Y and Kimura A: BMI-1 expression is
enhanced through transcriptional and posttranscriptional regulation
during the progression of chronic myeloid leukemia. Ann Hematol.
88:333–340. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Datta S, Hoenerhoff MJ, Bommi P, Sainger
R, Guo WJ, Dimri M, Band H, Band V, Green JE and Dimri GP: Bmi-1
cooperates with H-Ras to transform human mammary epithelial cells
via dysregulation of multiple growth-regulatory pathways. Cancer
Res. 67:10286–10295. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hoenerhoff MJ, Chu I, Barkan D, Liu ZY,
Datta S, Dimri GP and Green JE: BMI1 cooperates with H-RAS to
induce an aggressive breast cancer phenotype with brain metastases.
Oncogene. 28:3022–3032. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Merkerova M, Bruchova H, Kracmarova A,
Klamova H and Brdicka R: Bmi-1 over-expression plays a secondary
role in chronic myeloid leukemia transformation. Leuk Lymphoma.
48:793–801. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Danisz K and Blasiak J: Role of
anti-apoptotic pathways activated by BCR/ABL in the resistance of
chronic myeloid leukemia cells to tyrosine kinase inhibitors. Acta
Biochim Pol. 60:503–514. 2013.PubMed/NCBI
|
|
74
|
Yang J, Chai L, Liu F, Fink LM, Lin P,
Silberstein LE, Amin HM, Ward DC and Ma Y: Bmi-1 is a target gene
for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci
USA. 104:10494–10499. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Godlewski J, Nowicki MO, Bronisz A,
Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca
EA and Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal
factor by microRNA-128 inhibits glioma proliferation and
self-renewal. Cancer Res. 68:9125–9130. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wu XM, Liu X, Bu YQ, Sengupta J, Cui HJ,
Yi FP, Liu T, Yuan CF, Shi YY and Song FZ: RNAi-mediated silencing
of the Bmi-1 gene causes growth inhibition and enhances
doxorubicin-induced apoptosis in MCF-7 cells. Genet Mol Biol.
32:697–703. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Venkataraman S, Alimova I, Fan R, Harris
P, Foreman N and Vibhakar R: MicroRNA 128a increases intracellular
ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer
cell growth by promoting senescence. PLoS One. 5:e107482010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nowak K, Kerl K, Fehr D, Kramps C, Gessner
C, Killmer K, Samans B, Berwanger B, Christiansen H and Lutz W:
BMI1 is a target gene of E2F-1 and is strongly expressed in primary
neuroblastomas. Nucleic Acids Res. 34:1745–1754. 2006. View Article : Google Scholar : PubMed/NCBI
|