Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2014 Volume 9 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2014 Volume 9 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review)

  • Authors:
    • Omar A. Mahmood
    • Xin Mei Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
    Copyright: © Mahmood et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 1515-1532
    |
    Published online on: March 13, 2014
       https://doi.org/10.3892/mmr.2014.2048
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of disorders, which has led to certain investigators disputing its rationality. The mutual feature of LGMD is limb-girdle affection. Magnetic resonance imaging (MRI), perioral skin biopsies, blood-based assays, reverse‑protein arrays, proteomic analyses, gene chips and next generation sequencing are the leading diagnostic techniques for LGMD and gene, cell and pharmaceutical treatments are the mainstay therapies for these genetic disorders. Recently, more highlights have been shed on disease biomarkers to follow up disease progression and to monitor therapeutic responsiveness in future trials. In this study, we review LGMD from a variety of aspects, paying specific attention to newly evolving research, with the purpose of bringing this information into the clinical setting to aid the development of novel therapeutic strategies for this hereditary disease. In conclusion, substantial progress in our ability to diagnose and treat LGMD has been made in recent decades, however enhancing our understanding of the detailed pathophysiology of LGMD may enhance our ability to improve disease outcome in subsequent years.
View Figures

Figure 1

Figure 2

View References

1 

Danièle N, Richard I and Bartoli M: Ins and outs of therapy in limb girdle muscular dystrophies. Int J Biochem Cell Biol. 39:1608–1624. 2007.PubMed/NCBI

2 

Erb W: Dystrophia muscularis progressiva. Dtsch Z Nervenheilkd. 1:13–94. 173–261. 1891.(In German).

3 

Leyden E: Klinik Der Rückenmarks-Krankheiten. 2. Hirschwald; Berlin: pp. 531–540. 1875, (In German).

4 

Möbius PJ: Ueber die hereditären nervenkrankheiten. Samml Klin Votr 171. Breitkopf und Härtel; Leipzig: pp. 1505–1531. 1879, (In German).

5 

Bell J: On pseudohypertrophic and allied types of progressive Muscular dystrophy. The Treasury of Human Inheritance. Fischer RA: 4(Part 4)Cambridge University Press; London: pp. 283–342. 1943

6 

Walton JN and Nattrass FJ: On the classification, natural history and treatment of the myopathies. Brain. 77:169–231. 1954. View Article : Google Scholar : PubMed/NCBI

7 

Bushby KM and Gardner-Medwin D: The clinical, genetic and dystrophin characteristics of Becker muscular dystrophy. I. Natural history. J Neurol. 240:98–104. 1993. View Article : Google Scholar : PubMed/NCBI

8 

Bushby KM: Diagnostic criteria for the limb-girdle muscular dystrophies: report of the ENMC Consortium on Limb-Girdle Dystrophies. Neuromuscul Disord. 5:71–74. 1995. View Article : Google Scholar : PubMed/NCBI

9 

Hauser MA, Horrigan SK, Salmikangas P, et al: Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet. 9:2141–2147. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Muchir A, Bonne G, van der Kooi AJ, et al: Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet. 9:1453–1459. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Minetti C, Sotgia F, Bruno C, et al: Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet. 18:365–368. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Greenberg SA, Salajegheh M, Judge DP, et al: Etiology of limb girdle muscular dystrophy 1D/1E determined by laser capture microdissection proteomics. Ann Neurol. 71:141–145. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Harms MB, Sommerville RB, Allred P, et al: Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol. 71:407–416. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Sarparanta J, Jonson PH, Golzio C, et al: Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet. 44:450–455. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Palenzuela L, Andreu AL, Gàmez J, et al: A novel autosomal dominant limb-girdle muscular dystrophy (LGMD 1F) maps to 7q32.1-32.2. Neurology. 61:404–406. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Starling A, Kok F, Passos-Bueno MR, Vainzof M and Zatz M: A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21. Eur J Hum Genet. 12:1033–1040. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Bisceglia L, Zoccolella S, Torraco A, et al: A new locus on 3p23-p25 for an autosomal-dominant limb-girdle muscular dystrophy, LGMD1H. Eur J Hum Genet. 18:636–641. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Richard I, Broux O, Allamand V, et al: Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 81:27–40. 1995. View Article : Google Scholar : PubMed/NCBI

19 

Liu J, Aoki M, Illa I, et al: Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 20:31–36. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Noguchi S, McNally EM, Ben Othmane K, et al: Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome 13 muscular dystrophy. Science. 270:819–822. 1995. View Article : Google Scholar : PubMed/NCBI

21 

Roberds SL, Leturcq F, Allamand V, et al: Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell. 78:625–633. 1994. View Article : Google Scholar : PubMed/NCBI

22 

Lim LE, Duclos F, Broux O, et al: Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet. 1:257–265. 1995. View Article : Google Scholar : PubMed/NCBI

23 

Nigro V, de Sá Moreira E, Piluso G, et al: Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nat Genet. 14:195–198. 1996. View Article : Google Scholar : PubMed/NCBI

24 

Moreira ES, Wiltshire TJ, Faulkner G, et al: Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet. 24:163–166. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Frosk P, Weiler T, Nylen E, et al: Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet. 70:663–672. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Brockington M, Yuva Y, Prandini P, et al: Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet. 10:2851–2859. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Haravuori H, Vihola A, Straub V, et al: Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene. Neurology. 56:869–877. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Balci B, Uyanik G, Dincer P, et al: An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord. 15:271–275. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Bolduc V, Marlow G, Boycott KM, et al: Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet. 86:213–221. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Godfrey C, Escolar D, Brockington M, et al: Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy. Ann Neurol. 60:603–610. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Biancheri R, Falace A, Tessa A, et al: POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun. 363:1033–1037. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Clement EM, Godfrey C, Tan J, et al: Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol. 65:137–141. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, et al: A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med. 364:939–946. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Nigro V, Aurino S and Piluso G: Limb girdle muscular dystrophies: update on genetic diagnosis and therapeutic approaches. Curr Opin Neurol. 24:429–436. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Gundesli H, Talim B, Korkusuz P, et al: Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am J Hum Genet. 87:834–841. 2010. View Article : Google Scholar : PubMed/NCBI

36 

von Nandelstadh P, Grönholm M, Moza M, Lamberg A, Savilahti H and Carpén O: Actin-organising properties of the muscular dystrophy protein myotilin. Exp Cell Res. 310:131–139. 2005.PubMed/NCBI

37 

Maraldi NM, Capanni C, Cenni V, Fini M and Lattanzi G: Laminopathies and lamin-associated signaling pathways. J Cell Biochem. 112:979–992. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Gazzerro E, Sotgia F, Bruno C, Lisanti MP and Minetti C: Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet. 18:137–145. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Schröder R and Schoser B: Myofibrillar myopathies: a clinical and myopathological guide. Brain Pathol. 19:483–492. 2009.

40 

Ojima K, Ono Y, Ottenheijm C, et al: Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. J Mol Biol. 407:439–449. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Ojima K, Kawabata Y, Nakao H, et al: Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. J Clin Invest. 120:2672–2683. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Bansal D, Miyake K, Vogel SS, et al: Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 423:168–172. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Chen YW, Zhao P, Borup R and Hoffman EP: Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol. 151:1321–1336. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Zou P, Pinotsis N, Lange S, et al: Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature. 439:229–233. 2006. View Article : Google Scholar

45 

Shieh PB, Kudryashova E and Spencer MJ: Limb-girdle muscular dystrophy 2H and the role of TRIM32. Handb Clin Neurol. 101:125–133. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Brockington M, Blake DJ, Prandini P, et al: Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet. 69:1198–1209. 2001. View Article : Google Scholar

47 

Isralewitz B, Gao M and Schulten K: Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol. 11:224–230. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Akasaka-Manya K, Manya H, Nakajima A, Kawakita M and Endo T: Physical and functional association of human protein O-mannosyltransferases 1 and 2. J Biol Chem. 281:19339–19345. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Yamamoto T, Shibata N, Saito Y, Osawa M and Kobayashi M: Functions of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in neuromuscular system and other somatic organs. Cent Nerv Syst Agents Med Chem. 10:169–179. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Yoshida A, Kobayashi K, Manya H, et al: Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 1:717–724. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Barresi R and Campbell KP: Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci. 119:199–207. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Moza M, Mologni L, Trokovic R, Faulkner G, Partanen J and Carpén O: Targeted deletion of the muscular dystrophy gene myotilin does not perturb muscle structure or function in mice. Mol Cell Biol. 27:244–252. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Garvey SM, Liu Y, Miller SE and Hauser MA: Myotilin overexpression enhances myopathology in the LGMD1A mouse model. Muscle Nerve. 37:663–667. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Muchir A, Shan J, Bonne G, Lehnart SE and Worman HJ: Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet. 18:241–247. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Kawakami E, Kinouchi N, Adachi T, et al: Atelocollagen-mediated systemic administration of myostatin-targeting siRNA improves muscular atrophy in caveolin-3-deficient mice. Dev Growth Differ. 53:48–54. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Bartoli M, Poupiot J, Vulin A, et al: AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. Gene Ther. 14:733–740. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Han R, Frett EM, Levy JR, et al: Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice. J Clin Invest. 120:4366–4374. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Gallardo E, Rojas-García R, de Luna N, Pou A, Brown RH Jr and Illa I: Inflammation in dysferlin myopathy: immunohistochemical characterization of 13 patients. Neurology. 57:2136–2138. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Ohsawa Y, Okada T, Nishimatsu S, et al: An inhibitor of transforming growth factor beta type I receptor ameliorates muscle atrophy in a mouse model of caveolin 3-deficient muscular dystrophy. Lab Invest. 92:1100–1114. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Bartoli M, Roudaut C, Martin S, et al: Safety and efficacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy type 2A. Mol Ther. 13:250–259. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Albrecht DE, Rufibach LE, Williams BA, Monnier N, Hwang E and Mittal P: 5th Annual Dysferlin Conference; 11–14, July 2011; Chicago, Illinois, USA. Neuromuscul Disord. 22. pp. 471–477. 2012, View Article : Google Scholar

62 

Albrecht DE, Garg N, Rufibach LE, et al: 3rd Annual Dysferlin Conference; 2–5 June, 2009; Boston, Massachusetts, USA. Neuromuscul Disord. 19. pp. 867–873. 2009, View Article : Google Scholar

63 

Lostal W, Bartoli M, Bourg N, et al: Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum Mol Genet. 19:1897–1907. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Kong KY, Ren J, Kraus M, Finklestein SP and Brown RH Jr: Human umbilical cord blood cells differentiate into muscle in sjl muscular dystrophy mice. Stem Cells. 22:981–993. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Potgieter M, Pretorius E, Van der Merwe CF, et al: Histological assessment of SJL/J mice treated with the antioxidants coenzyme Q10 and resveratrol. Micron. 42:275–282. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Cordier L, Hack AA, Scott MO, et al: Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer. Mol Ther. 1:119–129. 2000. View Article : Google Scholar : PubMed/NCBI

67 

Bogdanovich S, McNally EM and Khurana TS: Myostatin blockade improves function but not histopathology in a murine model of limb-girdle muscular dystrophy 2C. Muscle Nerve. 37:308–316. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Allikian MJ, Hack AA, Mewborn S, Mayer U and McNally EM: Genetic compensation for sarcoglycan loss by integrin alpha7beta1 in muscle. J Cell Sci. 117:3821–3830. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Allamand V, Donahue KM, Straub V, Davisson RL, Davidson BL and Campbell KP: Early adenovirus-mediated gene transfer effectively prevents muscular dystrophy in alpha-sarcoglycan-deficient mice. Gene Ther. 7:1385–1391. 2000. View Article : Google Scholar : PubMed/NCBI

70 

Galvez BG, Sampaolesi M, Brunelli S, et al: Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol. 174:231–243. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Minetti GC, Colussi C, Adami R, et al: Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med. 12:1147–1150. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Dressman D, Araishi K, Imamura M, et al: Delivery of alpha- and beta-sarcoglycan by recombinant adeno-associated virus: efficient rescue of muscle, but differential toxicity. Hum Gene Ther. 13:1631–1646. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Hoshijima M, Hayashi T, Jeon YE, et al: Delta-sarcoglycan gene therapy halts progression of cardiac dysfunction, improves respiratory failure, and prolongs life in myopathic hamsters. Circ Heart Fail. 4:89–97. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Iwata Y, Katanosaka Y, Shijun Z, et al: Protective effects of Ca2+ handling drugs against abnormal Ca2+ homeostasis and cell damage in myopathic skeletal muscle cells. Biochem Pharmacol. 70:740–751. 2005.

75 

Zhu T, Zhou L, Mori S, et al: Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation. 112:2650–2659. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Henning RJ, Aufman J, Shariff M, et al: Human umbilical cord blood mononuclear cells decrease fibrosis and increase cardiac function in cardiomyopathy. Regen Med. 5:45–54. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Lapidos KA, Chen YE, Earley JU, et al: Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest. 114:1577–1585. 2004. View Article : Google Scholar

78 

Nomura T, Ashihara E, Tateishi K, et al: Skeletal myosphere-derived progenitor cell transplantation promotes neovascularization in delta-sarcoglycan knockdown cardiomyopathy. Biochem Biophys Res Commun. 352:668–674. 2007. View Article : Google Scholar

79 

Parsons SA, Millay DP, Sargent MA, McNally EM and Molkentin JD: Age-dependent effect of myostatin blockade on disease severity in a murine model of limb-girdle muscular dystrophy. Am J Pathol. 168:1975–1985. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Goehringer C, Rutschow D, Bauer R, et al: Prevention of cardiomyopathy in delta-sarcoglycan knockout mice after systemic transfer of targeted adeno-associated viral vectors. Cardiovasc Res. 82:404–410. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Charton K, Danièle N, Vihola A, et al: Removal of the calpain 3 protease reverses the myopathology in a mouse model for titinopathies. Hum Mol Genet. 19:4608–4624. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Barresi R, Michele DE, Kanagawa M, et al: LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med. 10:696–703. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Straub V, Donahue KM, Allamand V, Davisson RL, Kim YR and Campbell KP: Contrast agent-enhanced magnetic resonance imaging of skeletal muscle damage in animal models of muscular dystrophy. Magn Reson Med. 44:655–659. 2000. View Article : Google Scholar : PubMed/NCBI

84 

Bartoli M, Poupiot J, Goyenvalle A, et al: Noninvasive monitoring of therapeutic gene transfer in animal models of muscular dystrophies. Gene Ther. 13:20–28. 2006. View Article : Google Scholar : PubMed/NCBI

85 

Mendell JR, Rodino-Klapac LR, Rosales XQ, et al: Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol. 68:629–638. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Norwood FL, Harling C, Chinnery PF, Eagle M, Bushby K and Straub V: Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain. 132:3175–3186. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Gómez-Díaz B, Rosas-Vargas H, Roque-Ramírez B, et al: Immunodetection analysis of muscular dystrophies in Mexico. Muscle Nerve. 45:338–345. 2012.PubMed/NCBI

88 

Diniz G, Eryaşar G, Türe S, et al: A regional panorama of dysferlinopathies. Turk Patoloji Derg. 28:259–265. 2012.PubMed/NCBI

89 

Magri F, Bo RD, D’Angelo MG, et al: Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscul Disord. 22:934–943. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Guglieri M, Magri F, D’Angelo MG, et al: Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum Mutat. 29:258–266. 2008. View Article : Google Scholar : PubMed/NCBI

91 

Fanin M, Nascimbeni AC, Aurino S, et al: Frequency of LGMD gene mutations in Italian patients with distinct clinical phenotypes. Neurology. 72:1432–1435. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Urtasun M, Sáenz A, Roudaut C, et al: Limb-girdle muscular dystrophy in Guipúzcoa (Basque Country, Spain). Brain. 121:1735–1747. 1998.

93 

Walter MC, Petersen JA, Stucka R, et al: FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients. J Med Genet. 41:e502004.

94 

Hicks D, Sarkozy A, Muelas N, et al: A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain. 134:171–182. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Stensland E, Lindal S, Jonsrud C, et al: Prevalence, mutation spectrum and phenotypic variability in Norwegian patients with Limb Girdle Muscular Dystrophy 2I. Neuromuscul Disord. 21:41–46. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Sveen ML, Schwartz M and Vissing J: High prevalence and phenotype-genotype correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol. 59:808–815. 2006. View Article : Google Scholar : PubMed/NCBI

97 

Penttila S, Palmio J, Suominen T, et al: Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology. 78:897–903. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Lo HP, Cooper ST, Evesson FJ, et al: Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul Disord. 18:34–44. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Moore SA, Shilling CJ, Westra S, et al: Limb-girdle muscular dystrophy in the United States. J Neuropathol Exp Neurol. 65:995–1003. 2006. View Article : Google Scholar : PubMed/NCBI

100 

Dinçer PP, Leturcq F, Richard I, et al: A biochemical, genetic, and clinical survey of autosomal recessive limb girdle muscular dystrophies in Turkey. Ann Neurol. 42:222–229. 1997.PubMed/NCBI

101 

Pogoda TV, Krakhmaleva IN, Lipatova NA, Shakhovskaya NI, Shishkin SS and Limborska SA: High incidence of 550delA mutation of CAPN3 in LGMD2 patients from Russia. Hum Mutat. 15:2952000. View Article : Google Scholar : PubMed/NCBI

102 

Zatz M, de Paula F, Starling A and Vainzof M: The 10 autosomal recessive limb-girdle muscular dystrophies. Neuromuscul Disord. 13:532–544. 2003. View Article : Google Scholar : PubMed/NCBI

103 

Chae J, Minami N, Jin Y, et al: Calpain 3 gene mutations: genetic and clinico-pathologic findings in limb-girdle muscular dystrophy. Neuromuscul Disord. 11:547–555. 2001. View Article : Google Scholar : PubMed/NCBI

104 

Hayashi S, Ohsawa Y, Takahashi T, et al: Rapid screening for Japanese dysferlinopathy by fluorescent primer extension. Intern Med. 49:2693–2696. 2010. View Article : Google Scholar : PubMed/NCBI

105 

Meena AK, Sreenivas D, Sundaram C, et al: Sarcoglycanopathies: a clinico-pathological study. Neurol India. 55:117–121. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Pathak P, Sharma MC, Sarkar C, et al: Limb girdle muscular dystrophy type 2A in India: a study based on semi-quantitative protein analysis, with clinical and histopathological correlation. Neurol India. 58:549–554. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Gayathri N, Alefia R, Nalini A, et al: Dysferlinopathy: spectrum of pathological changes in skeletal muscle tissue. Indian J Pathol Microbiol. 54:350–354. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Hadj Salem I, Kamoun F, Louhichi N, Trigui M, Triki C and Fakhfakh F: Impact of single-nucleotide polymorphisms at the TP53-binding and responsive promoter region of BCL2 gene in modulating the phenotypic variability of LGMD2C patients. Mol Biol Rep. 39:7479–7486. 2012.PubMed/NCBI

109 

Sinnreich M, Therrien C and Karpati G: Lariat branch point mutation in the dysferlin gene with mild limb-girdle muscular dystrophy. Neurology. 66:1114–1116. 2006. View Article : Google Scholar : PubMed/NCBI

110 

Tagawa K, Ogawa M, Kawabe K, et al: Protein and gene analyses of dysferlinopathy in a large group of Japanese muscular dystrophy patients. J Neurol Sci. 211:23–28. 2003. View Article : Google Scholar : PubMed/NCBI

111 

Takahashi T, Aoki M, Tateyama M, et al: Dysferlin mutations in Japanese Miyoshi myopathy: relationship to phenotype. Neurology. 60:1799–1804. 2003. View Article : Google Scholar : PubMed/NCBI

112 

Nagashima T, Chuma T, Mano Y, et al: Dysferlinopathy associated with rigid spine syndrome. Neuropathology. 24:341–346. 2004. View Article : Google Scholar

113 

Saccone V, Palmieri M, Passamano L, et al: Mutations that impair interaction properties of TRIM32 associated with limb-girdle muscular dystrophy 2H. Hum Mutat. 29:240–247. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Kondo-lida E, Kobayashi K, Watanabe M, et al: Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet. 8:2303–2309. 1999. View Article : Google Scholar : PubMed/NCBI

115 

Scharner J, Gnocchi VF, Ellis JA and Zammit PS: Genotype-phenotype correlations in laminopathies: how does fate translate? Biochem Soc Trans. 38:257–262. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Zhang Y, Ye J, Chen D, et al: Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient. J Transl Med. 4:532006. View Article : Google Scholar : PubMed/NCBI

117 

Godfrey C, Clement E, Mein R, et al: Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 130:2725–2735. 2007. View Article : Google Scholar : PubMed/NCBI

118 

Klinge L, Dean AF, Kress W, et al: Late onset in dysferlinopathy widens the clinical spectrum. Neuromuscul Disord. 18:288–290. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Rosales XQ, Gastier-Foster JM, Lewis S, et al: Novel diagnostic features of dysferlinopathies. Muscle Nerve. 42:14–21. 2010. View Article : Google Scholar : PubMed/NCBI

120 

Broglio L, Tentorio M, Cotelli MS, et al: Limb-girdle muscular dystrophy-associated protein diseases. Neurologist. 16:340–352. 2010. View Article : Google Scholar : PubMed/NCBI

121 

Mercuri E, Brockington M, Straub V, et al: Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann Neurol. 53:537–542. 2003. View Article : Google Scholar : PubMed/NCBI

122 

Gáti I, Danielsson O, Gunnarsson C, et al: Bent spine syndrome: a phenotype of dysferlinopathy or a symptomatic DYSF gene mutation carrier. Eur Neurol. 67:300–302. 2012.PubMed/NCBI

123 

Hermans MC, Pinto YM, Merkies IS, de Die-Smulders CE, Crijns HJ and Faber CG: Hereditary muscular dystrophies and the heart. Neuromuscul Disord. 20:479–492. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Filosto M, Tonin P, Vattemi G, et al: Chronic ophthalmoparesis in limb girdle muscular dystrophy 1C. J Neurol Neurosurg Psychiatry. 80:448–449. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Selcen D: Myofibrillar myopathies. Neuromuscul Disord. 21:161–171. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Palmieri A, Manara R, Bello L, et al: Cognitive profile and MRI findings in limb-girdle muscular dystrophy 2I. J Neurol. 258:1312–1320. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Zhang Y, Huang JJ, Wang ZQ, Wang N and Wu ZY: Value of muscle enzyme measurement in evaluating different neuromuscular diseases. Clin Chim Acta. 413:520–524. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Wattjes MP, Kley RA and Fischer D: Neuromuscular imaging in inherited muscle diseases. Eur Radiol. 20:2447–2460. 2010. View Article : Google Scholar : PubMed/NCBI

129 

Fischer D, Walter MC, Kesper K, et al: Diagnostic value of muscle MRI in differentiating LGMD2I from other LGMDs. J Neurol. 252:538–547. 2005. View Article : Google Scholar : PubMed/NCBI

130 

Fischer D, Kley RA, Strach K, et al: Distinct muscle imaging patterns in myofibrillar myopathies. Neurology. 71:758–765. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Starling A, de Paula F, Silva H, Vainzof M and Zatz M: Calpainopathy: how broad is the spectrum of clinical variability? J Mol Neurosci. 21:233–236. 2003. View Article : Google Scholar : PubMed/NCBI

132 

Santoro L, Nolano M, Faraso S, et al: Perioral skin biopsy to study skeletal muscle protein expression. Muscle Nerve. 41:392–398. 2010. View Article : Google Scholar : PubMed/NCBI

133 

Nagaraju K, Rawat R, Veszelovszky E, et al: Dysferlin deficiency enhances monocyte phagocytosis: a model for the inflammatory onset of limb-girdle muscular dystrophy 2B. Am J Pathol. 172:774–785. 2008. View Article : Google Scholar : PubMed/NCBI

134 

Brown RH Jr and Amato A: Calpainopathy and eosinophilic myositis. Ann Neurol. 59:875–877. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Baumeister SK, Todorovic S, Milić-Rasić V, Dekomien G, Lochmüller H and Walter MC: Eosinophilic myositis as presenting symptom in gamma-sarcoglycanopathy. Neuromuscul Disord. 19:167–171. 2009. View Article : Google Scholar : PubMed/NCBI

136 

Vinit J, Samson M Jr, Gaultier JB, et al: Dysferlin deficiency treated like refractory polymyositis. Clin Rheumatol. 29:103–106. 2010. View Article : Google Scholar : PubMed/NCBI

137 

Claeys KG, Fardeau M, Schröder R, et al: Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. Neuromuscul Disord. 18:656–666. 2008. View Article : Google Scholar : PubMed/NCBI

138 

Cacciottolo M, Numitone G, Aurino S, et al: Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur J Hum Genet. 19:974–980. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Trabelsi M, Kavian N, Daoud F, et al: Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet. 16:793–803. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Herrmann R, Straub V, Blank M, et al: Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum Mol Genet. 9:2335–2340. 2000. View Article : Google Scholar : PubMed/NCBI

141 

Vainzof M, Moreira ES, Suzuki OT, et al: Telethonin protein expression in neuromuscular disorders. Biochim Biophys Acta. 1588:33–40. 2002. View Article : Google Scholar : PubMed/NCBI

142 

Charlton R, Henderson M, Richards J, et al: Immunohistochemical analysis of calpain 3: advantages and limitations in diagnosing LGMD2A. Neuromuscul Disord. 19:449–457. 2009. View Article : Google Scholar : PubMed/NCBI

143 

Fanin M, Nascimbeni AC, Fulizio L, Trevisan CP, Meznaric-Petrusa M and Angelini C: Loss of calpain-3 autocatalytic activity in LGMD2A patients with normal protein expression. Am J Pathol. 163:1929–1936. 2003. View Article : Google Scholar : PubMed/NCBI

144 

Fanin M, Nascimbeni AC, Tasca E and Angelini C: How to tackle the diagnosis of limb-girdle muscular dystrophy 2A. Eur J Hum Genet. 17:598–603. 2009. View Article : Google Scholar : PubMed/NCBI

145 

Sáenz A, Leturcq F, Cobo AM, et al: LGMD2A: genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. Brain. 128:732–742. 2005.PubMed/NCBI

146 

Groen EJ, Charlton R, Barresi R, et al: Analysis of the UK diagnostic strategy for limb girdle muscular dystrophy 2A. Brain. 130:3237–3249. 2007. View Article : Google Scholar : PubMed/NCBI

147 

Fanin M, Fulizio L, Nascimbeni AC, et al: Molecular diagnosis in LGMD2A: mutation analysis or protein testing? Hum Mutat. 24:52–62. 2004. View Article : Google Scholar : PubMed/NCBI

148 

Hackman P, Vihola A, Haravuori H, et al: Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet. 71:492–500. 2002. View Article : Google Scholar : PubMed/NCBI

149 

Borg K, Stucka R, Locke M, et al: Intragenic deletion of TRIM32 in compound heterozygotes with sarcotubular myopathy/LGMD2H. Hum Mutat. 30:E831–844. 2009. View Article : Google Scholar : PubMed/NCBI

150 

Sewry CA: Muscular dystrophies: an update on pathology and diagnosis. Acta Neuropathol. 120:343–358. 2010. View Article : Google Scholar : PubMed/NCBI

151 

Ho M, Gallardo E, McKenna-Yasek D, De Luna N, Illa I and Brown RH Jr: A novel, blood-based diagnostic assay for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Ann Neurol. 51:129–133. 2002. View Article : Google Scholar : PubMed/NCBI

152 

Escher C, Lochmüller H, Fischer D, et al: Reverse protein arrays as novel approach for protein quantification in muscular dystrophies. Neuromuscul Disord. 20:302–309. 2010. View Article : Google Scholar : PubMed/NCBI

153 

Blázquez L, Azpitarte M, Sáenz A, et al: Characterization of novel CAPN3 isoforms in white blood cells: an alternative approach for limb-girdle muscular dystrophy 2A diagnosis. Neurogenetics. 9:173–182. 2008.PubMed/NCBI

154 

De Luna N, Freixas A, Gallano P, et al: Dysferlin expression in monocytes: a source of mRNA for mutation analysis. Neuromuscul Disord. 17:69–76. 2007.PubMed/NCBI

155 

Teer JK and Mullikin JC: Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet. 19:R145–151. 2010. View Article : Google Scholar : PubMed/NCBI

156 

Balci B, Aurino S, Haliloglu G, et al: Calpain-3 mutations in Turkey. Eur J Pediatr. 165:293–298. 2006. View Article : Google Scholar : PubMed/NCBI

157 

Fanin M, Nascimbeni AC, Fulizio L and Angelini C: The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord. 15:218–224. 2005. View Article : Google Scholar : PubMed/NCBI

158 

Takahashi T, Aoki M, Suzuki N, et al: Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B. J Neurol Neurosurg Psychiatry. 84:433–440. 2012. View Article : Google Scholar : PubMed/NCBI

159 

Park YE, Kim HS, Lee CH, Nam TS, Choi YC and Kim DS: Two common mutations (p.Gln832X and c.663+1G>C) account for about a third of the DYSF mutations in Korean patients with dysferlinopathy. Neuromuscul Disord. 22:505–510. 2012.PubMed/NCBI

160 

Barthélémy F, Wein N, Krahn M, Lévy N and Bartoli M: Translational research and therapeutic perspectives in dysferlinopathies. Mol Med. 17:875–882. 2011.PubMed/NCBI

161 

Hackman P, Juvonen V, Sarparanta J, et al: Enrichment of the R77C alpha-sarcoglycan gene mutation in Finnish LGMD2D patients. Muscle Nerve. 31:199–204. 2005. View Article : Google Scholar : PubMed/NCBI

162 

Schoser BG, Frosk P, Engel AG, Klutzny U, Lochmüller H and Wrogemann K: Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H. Ann Neurol. 57:591–595. 2005. View Article : Google Scholar : PubMed/NCBI

163 

Kang PB, Feener CA, Estrella E, et al: LGMD2I in a North American population. BMC Musculoskelet Disord. 8:1152007. View Article : Google Scholar : PubMed/NCBI

164 

Norwood F, de Visser M, Eymard B, Lochmüller H and Bushby K: EFNS guideline on diagnosis and management of limb girdle muscular dystrophies. Eur J Neurol. 14:1305–1312. 2007. View Article : Google Scholar : PubMed/NCBI

165 

Eagle M: Report on the muscular dystrophy campaign workshop: exercise in neuromuscular diseases; Newcastle. January 2002; Neuromuscul Disord. 12. pp. 975–983. 2002, View Article : Google Scholar

166 

Miladi N, Bourguignon JP and Hentati F: Cognitive and psychological profile of a Tunisian population of limb girdle muscular dystrophy. Neuromuscul Disord. 9:352–354. 1999. View Article : Google Scholar : PubMed/NCBI

167 

Wagner KR, Fleckenstein JL, Amato AA, et al: A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol. 63:561–571. 2008. View Article : Google Scholar : PubMed/NCBI

168 

Lerario A, Cogiamanian F, Marchesi C, et al: Effects of rituximab in two patients with dysferlin-deficient muscular dystrophy. BMC Musculoskelet Disord. 11:1572010. View Article : Google Scholar : PubMed/NCBI

169 

Hattori H, Nagata E, Oya Y, et al: A novel compound heterozygous dysferlin mutation in Miyoshi myopathy siblings responding to dantrolene. Eur J Neurol. 14:1288–1291. 2007. View Article : Google Scholar : PubMed/NCBI

170 

Luna ND, Díaz-Manera J, Paradas C, et al: 1α,25(OH)(2)-Vitamin D3 increases dysferlin expression in vitro and in a human clinical trial. Mol Ther. 20:1988–1997. 2012.

171 

Walter MC, Reilich P, Thiele S, et al: Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial. Orphanet J Rare Dis. 8:262013. View Article : Google Scholar : PubMed/NCBI

172 

Angelini C, Fanin M, Menegazzo E, Freda MP, Duggan DJ and Hoffman EP: Homozygous alpha-sarcoglycan mutation in two siblings: one asymptomatic and one steroid-responsive mild limb-girdle muscular dystrophy patient. Muscle Nerve. 21:769–775. 1998. View Article : Google Scholar : PubMed/NCBI

173 

Darin N, Kroksmark AK, Ahlander AC, Moslemi AR, Oldfors A and Tulinius M: Inflammation and response to steroid treatment in limb-girdle muscular dystrophy 2I. Eur J Paediatr Neurol. 11:353–357. 2007. View Article : Google Scholar : PubMed/NCBI

174 

Walter MC, Lochmüller H, Reilich P, et al: Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology. 54:1848–1850. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mahmood OA and Jiang XM: Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review). Mol Med Rep 9: 1515-1532, 2014.
APA
Mahmood, O.A., & Jiang, X.M. (2014). Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review). Molecular Medicine Reports, 9, 1515-1532. https://doi.org/10.3892/mmr.2014.2048
MLA
Mahmood, O. A., Jiang, X. M."Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review)". Molecular Medicine Reports 9.5 (2014): 1515-1532.
Chicago
Mahmood, O. A., Jiang, X. M."Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review)". Molecular Medicine Reports 9, no. 5 (2014): 1515-1532. https://doi.org/10.3892/mmr.2014.2048
Copy and paste a formatted citation
x
Spandidos Publications style
Mahmood OA and Jiang XM: Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review). Mol Med Rep 9: 1515-1532, 2014.
APA
Mahmood, O.A., & Jiang, X.M. (2014). Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review). Molecular Medicine Reports, 9, 1515-1532. https://doi.org/10.3892/mmr.2014.2048
MLA
Mahmood, O. A., Jiang, X. M."Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review)". Molecular Medicine Reports 9.5 (2014): 1515-1532.
Chicago
Mahmood, O. A., Jiang, X. M."Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review)". Molecular Medicine Reports 9, no. 5 (2014): 1515-1532. https://doi.org/10.3892/mmr.2014.2048
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team