|
1
|
Danièle N, Richard I and Bartoli M: Ins
and outs of therapy in limb girdle muscular dystrophies. Int J
Biochem Cell Biol. 39:1608–1624. 2007.PubMed/NCBI
|
|
2
|
Erb W: Dystrophia muscularis progressiva.
Dtsch Z Nervenheilkd. 1:13–94. 173–261. 1891.(In German).
|
|
3
|
Leyden E: Klinik Der
Rückenmarks-Krankheiten. 2. Hirschwald; Berlin: pp. 531–540. 1875,
(In German).
|
|
4
|
Möbius PJ: Ueber die hereditären
nervenkrankheiten. Samml Klin Votr 171. Breitkopf und Härtel;
Leipzig: pp. 1505–1531. 1879, (In German).
|
|
5
|
Bell J: On pseudohypertrophic and allied
types of progressive Muscular dystrophy. The Treasury of Human
Inheritance. Fischer RA: 4(Part 4)Cambridge University Press;
London: pp. 283–342. 1943
|
|
6
|
Walton JN and Nattrass FJ: On the
classification, natural history and treatment of the myopathies.
Brain. 77:169–231. 1954. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bushby KM and Gardner-Medwin D: The
clinical, genetic and dystrophin characteristics of Becker muscular
dystrophy. I. Natural history. J Neurol. 240:98–104. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bushby KM: Diagnostic criteria for the
limb-girdle muscular dystrophies: report of the ENMC Consortium on
Limb-Girdle Dystrophies. Neuromuscul Disord. 5:71–74. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hauser MA, Horrigan SK, Salmikangas P, et
al: Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum
Mol Genet. 9:2141–2147. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Muchir A, Bonne G, van der Kooi AJ, et al:
Identification of mutations in the gene encoding lamins A/C in
autosomal dominant limb girdle muscular dystrophy with
atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet.
9:1453–1459. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Minetti C, Sotgia F, Bruno C, et al:
Mutations in the caveolin-3 gene cause autosomal dominant
limb-girdle muscular dystrophy. Nat Genet. 18:365–368. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Greenberg SA, Salajegheh M, Judge DP, et
al: Etiology of limb girdle muscular dystrophy 1D/1E determined by
laser capture microdissection proteomics. Ann Neurol. 71:141–145.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Harms MB, Sommerville RB, Allred P, et al:
Exome sequencing reveals DNAJB6 mutations in dominantly-inherited
myopathy. Ann Neurol. 71:407–416. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sarparanta J, Jonson PH, Golzio C, et al:
Mutations affecting the cytoplasmic functions of the co-chaperone
DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet. 44:450–455.
2012. View
Article : Google Scholar : PubMed/NCBI
|
|
15
|
Palenzuela L, Andreu AL, Gàmez J, et al: A
novel autosomal dominant limb-girdle muscular dystrophy (LGMD 1F)
maps to 7q32.1-32.2. Neurology. 61:404–406. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Starling A, Kok F, Passos-Bueno MR,
Vainzof M and Zatz M: A new form of autosomal dominant limb-girdle
muscular dystrophy (LGMD1G) with progressive fingers and toes
flexion limitation maps to chromosome 4p21. Eur J Hum Genet.
12:1033–1040. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bisceglia L, Zoccolella S, Torraco A, et
al: A new locus on 3p23-p25 for an autosomal-dominant limb-girdle
muscular dystrophy, LGMD1H. Eur J Hum Genet. 18:636–641. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Richard I, Broux O, Allamand V, et al:
Mutations in the proteolytic enzyme calpain 3 cause limb-girdle
muscular dystrophy type 2A. Cell. 81:27–40. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liu J, Aoki M, Illa I, et al: Dysferlin, a
novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb
girdle muscular dystrophy. Nat Genet. 20:31–36. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Noguchi S, McNally EM, Ben Othmane K, et
al: Mutations in the dystrophin-associated protein
gamma-sarcoglycan in chromosome 13 muscular dystrophy. Science.
270:819–822. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Roberds SL, Leturcq F, Allamand V, et al:
Missense mutations in the adhalin gene linked to autosomal
recessive muscular dystrophy. Cell. 78:625–633. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lim LE, Duclos F, Broux O, et al:
Beta-sarcoglycan: characterization and role in limb-girdle muscular
dystrophy linked to 4q12. Nat Genet. 1:257–265. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nigro V, de Sá Moreira E, Piluso G, et al:
Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is
caused by a mutation in the delta-sarcoglycan gene. Nat Genet.
14:195–198. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Moreira ES, Wiltshire TJ, Faulkner G, et
al: Limb-girdle muscular dystrophy type 2G is caused by mutations
in the gene encoding the sarcomeric protein telethonin. Nat Genet.
24:163–166. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
25
|
Frosk P, Weiler T, Nylen E, et al:
Limb-girdle muscular dystrophy type 2H associated with mutation in
TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet.
70:663–672. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
26
|
Brockington M, Yuva Y, Prandini P, et al:
Mutations in the fukutin-related protein gene (FKRP) identify limb
girdle muscular dystrophy 2I as a milder allelic variant of
congenital muscular dystrophy MDC1C. Hum Mol Genet. 10:2851–2859.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Haravuori H, Vihola A, Straub V, et al:
Secondary calpain3 deficiency in 2q-linked muscular dystrophy:
titin is the candidate gene. Neurology. 56:869–877. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Balci B, Uyanik G, Dincer P, et al: An
autosomal recessive limb girdle muscular dystrophy (LGMD2) with
mild mental retardation is allelic to Walker-Warburg syndrome (WWS)
caused by a mutation in the POMT1 gene. Neuromuscul Disord.
15:271–275. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bolduc V, Marlow G, Boycott KM, et al:
Recessive mutations in the putative calcium-activated chloride
channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular
dystrophies. Am J Hum Genet. 86:213–221. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Godfrey C, Escolar D, Brockington M, et
al: Fukutin gene mutations in steroid-responsive limb girdle
muscular dystrophy. Ann Neurol. 60:603–610. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Biancheri R, Falace A, Tessa A, et al:
POMT2 gene mutation in limb-girdle muscular dystrophy with
inflammatory changes. Biochem Biophys Res Commun. 363:1033–1037.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Clement EM, Godfrey C, Tan J, et al: Mild
POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy
variant. Arch Neurol. 65:137–141. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hara Y, Balci-Hayta B, Yoshida-Moriguchi
T, et al: A dystroglycan mutation associated with limb-girdle
muscular dystrophy. N Engl J Med. 364:939–946. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Nigro V, Aurino S and Piluso G: Limb
girdle muscular dystrophies: update on genetic diagnosis and
therapeutic approaches. Curr Opin Neurol. 24:429–436. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gundesli H, Talim B, Korkusuz P, et al:
Mutation in exon 1f of PLEC, leading to disruption of plectin
isoform 1f, causes autosomal-recessive limb-girdle muscular
dystrophy. Am J Hum Genet. 87:834–841. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
von Nandelstadh P, Grönholm M, Moza M,
Lamberg A, Savilahti H and Carpén O: Actin-organising properties of
the muscular dystrophy protein myotilin. Exp Cell Res. 310:131–139.
2005.PubMed/NCBI
|
|
37
|
Maraldi NM, Capanni C, Cenni V, Fini M and
Lattanzi G: Laminopathies and lamin-associated signaling pathways.
J Cell Biochem. 112:979–992. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gazzerro E, Sotgia F, Bruno C, Lisanti MP
and Minetti C: Caveolinopathies: from the biology of caveolin-3 to
human diseases. Eur J Hum Genet. 18:137–145. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Schröder R and Schoser B: Myofibrillar
myopathies: a clinical and myopathological guide. Brain Pathol.
19:483–492. 2009.
|
|
40
|
Ojima K, Ono Y, Ottenheijm C, et al:
Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in
skeletal muscles. J Mol Biol. 407:439–449. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ojima K, Kawabata Y, Nakao H, et al:
Dynamic distribution of muscle-specific calpain in mice has a key
role in physical-stress adaptation and is impaired in muscular
dystrophy. J Clin Invest. 120:2672–2683. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bansal D, Miyake K, Vogel SS, et al:
Defective membrane repair in dysferlin-deficient muscular
dystrophy. Nature. 423:168–172. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen YW, Zhao P, Borup R and Hoffman EP:
Expression profiling in the muscular dystrophies: identification of
novel aspects of molecular pathophysiology. J Cell Biol.
151:1321–1336. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zou P, Pinotsis N, Lange S, et al:
Palindromic assembly of the giant muscle protein titin in the
sarcomeric Z-disk. Nature. 439:229–233. 2006. View Article : Google Scholar
|
|
45
|
Shieh PB, Kudryashova E and Spencer MJ:
Limb-girdle muscular dystrophy 2H and the role of TRIM32. Handb
Clin Neurol. 101:125–133. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Brockington M, Blake DJ, Prandini P, et
al: Mutations in the fukutin-related protein gene (FKRP) cause a
form of congenital muscular dystrophy with secondary laminin alpha2
deficiency and abnormal glycosylation of alpha-dystroglycan. Am J
Hum Genet. 69:1198–1209. 2001. View
Article : Google Scholar
|
|
47
|
Isralewitz B, Gao M and Schulten K:
Steered molecular dynamics and mechanical functions of proteins.
Curr Opin Struct Biol. 11:224–230. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Akasaka-Manya K, Manya H, Nakajima A,
Kawakita M and Endo T: Physical and functional association of human
protein O-mannosyltransferases 1 and 2. J Biol Chem.
281:19339–19345. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yamamoto T, Shibata N, Saito Y, Osawa M
and Kobayashi M: Functions of fukutin, a gene responsible for
Fukuyama type congenital muscular dystrophy, in neuromuscular
system and other somatic organs. Cent Nerv Syst Agents Med Chem.
10:169–179. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yoshida A, Kobayashi K, Manya H, et al:
Muscular dystrophy and neuronal migration disorder caused by
mutations in a glycosyltransferase, POMGnT1. Dev Cell. 1:717–724.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Barresi R and Campbell KP: Dystroglycan:
from biosynthesis to pathogenesis of human disease. J Cell Sci.
119:199–207. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Moza M, Mologni L, Trokovic R, Faulkner G,
Partanen J and Carpén O: Targeted deletion of the muscular
dystrophy gene myotilin does not perturb muscle structure or
function in mice. Mol Cell Biol. 27:244–252. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Garvey SM, Liu Y, Miller SE and Hauser MA:
Myotilin overexpression enhances myopathology in the LGMD1A mouse
model. Muscle Nerve. 37:663–667. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Muchir A, Shan J, Bonne G, Lehnart SE and
Worman HJ: Inhibition of extracellular signal-regulated kinase
signaling to prevent cardiomyopathy caused by mutation in the gene
encoding A-type lamins. Hum Mol Genet. 18:241–247. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kawakami E, Kinouchi N, Adachi T, et al:
Atelocollagen-mediated systemic administration of
myostatin-targeting siRNA improves muscular atrophy in
caveolin-3-deficient mice. Dev Growth Differ. 53:48–54. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bartoli M, Poupiot J, Vulin A, et al:
AAV-mediated delivery of a mutated myostatin propeptide ameliorates
calpain 3 but not alpha-sarcoglycan deficiency. Gene Ther.
14:733–740. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Han R, Frett EM, Levy JR, et al: Genetic
ablation of complement C3 attenuates muscle pathology in
dysferlin-deficient mice. J Clin Invest. 120:4366–4374. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gallardo E, Rojas-García R, de Luna N, Pou
A, Brown RH Jr and Illa I: Inflammation in dysferlin myopathy:
immunohistochemical characterization of 13 patients. Neurology.
57:2136–2138. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ohsawa Y, Okada T, Nishimatsu S, et al: An
inhibitor of transforming growth factor beta type I receptor
ameliorates muscle atrophy in a mouse model of caveolin 3-deficient
muscular dystrophy. Lab Invest. 92:1100–1114. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bartoli M, Roudaut C, Martin S, et al:
Safety and efficacy of AAV-mediated calpain 3 gene transfer in a
mouse model of limb-girdle muscular dystrophy type 2A. Mol Ther.
13:250–259. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Albrecht DE, Rufibach LE, Williams BA,
Monnier N, Hwang E and Mittal P: 5th Annual Dysferlin Conference;
11–14, July 2011; Chicago, Illinois, USA. Neuromuscul Disord. 22.
pp. 471–477. 2012, View Article : Google Scholar
|
|
62
|
Albrecht DE, Garg N, Rufibach LE, et al:
3rd Annual Dysferlin Conference; 2–5 June, 2009; Boston,
Massachusetts, USA. Neuromuscul Disord. 19. pp. 867–873. 2009,
View Article : Google Scholar
|
|
63
|
Lostal W, Bartoli M, Bourg N, et al:
Efficient recovery of dysferlin deficiency by dual adeno-associated
vector-mediated gene transfer. Hum Mol Genet. 19:1897–1907. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kong KY, Ren J, Kraus M, Finklestein SP
and Brown RH Jr: Human umbilical cord blood cells differentiate
into muscle in sjl muscular dystrophy mice. Stem Cells. 22:981–993.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Potgieter M, Pretorius E, Van der Merwe
CF, et al: Histological assessment of SJL/J mice treated with the
antioxidants coenzyme Q10 and resveratrol. Micron. 42:275–282.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cordier L, Hack AA, Scott MO, et al:
Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with
adeno-associated virus-mediated gene transfer. Mol Ther. 1:119–129.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bogdanovich S, McNally EM and Khurana TS:
Myostatin blockade improves function but not histopathology in a
murine model of limb-girdle muscular dystrophy 2C. Muscle Nerve.
37:308–316. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Allikian MJ, Hack AA, Mewborn S, Mayer U
and McNally EM: Genetic compensation for sarcoglycan loss by
integrin alpha7beta1 in muscle. J Cell Sci. 117:3821–3830. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Allamand V, Donahue KM, Straub V, Davisson
RL, Davidson BL and Campbell KP: Early adenovirus-mediated gene
transfer effectively prevents muscular dystrophy in
alpha-sarcoglycan-deficient mice. Gene Ther. 7:1385–1391. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Galvez BG, Sampaolesi M, Brunelli S, et
al: Complete repair of dystrophic skeletal muscle by
mesoangioblasts with enhanced migration ability. J Cell Biol.
174:231–243. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Minetti GC, Colussi C, Adami R, et al:
Functional and morphological recovery of dystrophic muscles in mice
treated with deacetylase inhibitors. Nat Med. 12:1147–1150. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dressman D, Araishi K, Imamura M, et al:
Delivery of alpha- and beta-sarcoglycan by recombinant
adeno-associated virus: efficient rescue of muscle, but
differential toxicity. Hum Gene Ther. 13:1631–1646. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hoshijima M, Hayashi T, Jeon YE, et al:
Delta-sarcoglycan gene therapy halts progression of cardiac
dysfunction, improves respiratory failure, and prolongs life in
myopathic hamsters. Circ Heart Fail. 4:89–97. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Iwata Y, Katanosaka Y, Shijun Z, et al:
Protective effects of Ca2+ handling drugs against abnormal Ca2+
homeostasis and cell damage in myopathic skeletal muscle cells.
Biochem Pharmacol. 70:740–751. 2005.
|
|
75
|
Zhu T, Zhou L, Mori S, et al: Sustained
whole-body functional rescue in congestive heart failure and
muscular dystrophy hamsters by systemic gene transfer. Circulation.
112:2650–2659. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Henning RJ, Aufman J, Shariff M, et al:
Human umbilical cord blood mononuclear cells decrease fibrosis and
increase cardiac function in cardiomyopathy. Regen Med. 5:45–54.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lapidos KA, Chen YE, Earley JU, et al:
Transplanted hematopoietic stem cells demonstrate impaired
sarcoglycan expression after engraftment into cardiac and skeletal
muscle. J Clin Invest. 114:1577–1585. 2004. View Article : Google Scholar
|
|
78
|
Nomura T, Ashihara E, Tateishi K, et al:
Skeletal myosphere-derived progenitor cell transplantation promotes
neovascularization in delta-sarcoglycan knockdown cardiomyopathy.
Biochem Biophys Res Commun. 352:668–674. 2007. View Article : Google Scholar
|
|
79
|
Parsons SA, Millay DP, Sargent MA, McNally
EM and Molkentin JD: Age-dependent effect of myostatin blockade on
disease severity in a murine model of limb-girdle muscular
dystrophy. Am J Pathol. 168:1975–1985. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Goehringer C, Rutschow D, Bauer R, et al:
Prevention of cardiomyopathy in delta-sarcoglycan knockout mice
after systemic transfer of targeted adeno-associated viral vectors.
Cardiovasc Res. 82:404–410. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Charton K, Danièle N, Vihola A, et al:
Removal of the calpain 3 protease reverses the myopathology in a
mouse model for titinopathies. Hum Mol Genet. 19:4608–4624. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Barresi R, Michele DE, Kanagawa M, et al:
LARGE can functionally bypass alpha-dystroglycan glycosylation
defects in distinct congenital muscular dystrophies. Nat Med.
10:696–703. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
83
|
Straub V, Donahue KM, Allamand V, Davisson
RL, Kim YR and Campbell KP: Contrast agent-enhanced magnetic
resonance imaging of skeletal muscle damage in animal models of
muscular dystrophy. Magn Reson Med. 44:655–659. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bartoli M, Poupiot J, Goyenvalle A, et al:
Noninvasive monitoring of therapeutic gene transfer in animal
models of muscular dystrophies. Gene Ther. 13:20–28. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mendell JR, Rodino-Klapac LR, Rosales XQ,
et al: Sustained alpha-sarcoglycan gene expression after gene
transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol.
68:629–638. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Norwood FL, Harling C, Chinnery PF, Eagle
M, Bushby K and Straub V: Prevalence of genetic muscle disease in
Northern England: in-depth analysis of a muscle clinic population.
Brain. 132:3175–3186. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gómez-Díaz B, Rosas-Vargas H,
Roque-Ramírez B, et al: Immunodetection analysis of muscular
dystrophies in Mexico. Muscle Nerve. 45:338–345. 2012.PubMed/NCBI
|
|
88
|
Diniz G, Eryaşar G, Türe S, et al: A
regional panorama of dysferlinopathies. Turk Patoloji Derg.
28:259–265. 2012.PubMed/NCBI
|
|
89
|
Magri F, Bo RD, D’Angelo MG, et al:
Frequency and characterisation of anoctamin 5 mutations in a cohort
of Italian limb-girdle muscular dystrophy patients. Neuromuscul
Disord. 22:934–943. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Guglieri M, Magri F, D’Angelo MG, et al:
Clinical, molecular, and protein correlations in a large sample of
genetically diagnosed Italian limb girdle muscular dystrophy
patients. Hum Mutat. 29:258–266. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Fanin M, Nascimbeni AC, Aurino S, et al:
Frequency of LGMD gene mutations in Italian patients with distinct
clinical phenotypes. Neurology. 72:1432–1435. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Urtasun M, Sáenz A, Roudaut C, et al:
Limb-girdle muscular dystrophy in Guipúzcoa (Basque Country,
Spain). Brain. 121:1735–1747. 1998.
|
|
93
|
Walter MC, Petersen JA, Stucka R, et al:
FKRP (826C>A) frequently causes limb-girdle muscular dystrophy
in German patients. J Med Genet. 41:e502004.
|
|
94
|
Hicks D, Sarkozy A, Muelas N, et al: A
founder mutation in Anoctamin 5 is a major cause of limb-girdle
muscular dystrophy. Brain. 134:171–182. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Stensland E, Lindal S, Jonsrud C, et al:
Prevalence, mutation spectrum and phenotypic variability in
Norwegian patients with Limb Girdle Muscular Dystrophy 2I.
Neuromuscul Disord. 21:41–46. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sveen ML, Schwartz M and Vissing J: High
prevalence and phenotype-genotype correlations of limb girdle
muscular dystrophy type 2I in Denmark. Ann Neurol. 59:808–815.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Penttila S, Palmio J, Suominen T, et al:
Eight new mutations and the expanding phenotype variability in
muscular dystrophy caused by ANO5. Neurology. 78:897–903. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lo HP, Cooper ST, Evesson FJ, et al:
Limb-girdle muscular dystrophy: diagnostic evaluation, frequency
and clues to pathogenesis. Neuromuscul Disord. 18:34–44. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Moore SA, Shilling CJ, Westra S, et al:
Limb-girdle muscular dystrophy in the United States. J Neuropathol
Exp Neurol. 65:995–1003. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Dinçer PP, Leturcq F, Richard I, et al: A
biochemical, genetic, and clinical survey of autosomal recessive
limb girdle muscular dystrophies in Turkey. Ann Neurol. 42:222–229.
1997.PubMed/NCBI
|
|
101
|
Pogoda TV, Krakhmaleva IN, Lipatova NA,
Shakhovskaya NI, Shishkin SS and Limborska SA: High incidence of
550delA mutation of CAPN3 in LGMD2 patients from Russia. Hum Mutat.
15:2952000. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zatz M, de Paula F, Starling A and Vainzof
M: The 10 autosomal recessive limb-girdle muscular dystrophies.
Neuromuscul Disord. 13:532–544. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chae J, Minami N, Jin Y, et al: Calpain 3
gene mutations: genetic and clinico-pathologic findings in
limb-girdle muscular dystrophy. Neuromuscul Disord. 11:547–555.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hayashi S, Ohsawa Y, Takahashi T, et al:
Rapid screening for Japanese dysferlinopathy by fluorescent primer
extension. Intern Med. 49:2693–2696. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Meena AK, Sreenivas D, Sundaram C, et al:
Sarcoglycanopathies: a clinico-pathological study. Neurol India.
55:117–121. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Pathak P, Sharma MC, Sarkar C, et al: Limb
girdle muscular dystrophy type 2A in India: a study based on
semi-quantitative protein analysis, with clinical and
histopathological correlation. Neurol India. 58:549–554. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Gayathri N, Alefia R, Nalini A, et al:
Dysferlinopathy: spectrum of pathological changes in skeletal
muscle tissue. Indian J Pathol Microbiol. 54:350–354. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hadj Salem I, Kamoun F, Louhichi N, Trigui
M, Triki C and Fakhfakh F: Impact of single-nucleotide
polymorphisms at the TP53-binding and responsive promoter region of
BCL2 gene in modulating the phenotypic variability of LGMD2C
patients. Mol Biol Rep. 39:7479–7486. 2012.PubMed/NCBI
|
|
109
|
Sinnreich M, Therrien C and Karpati G:
Lariat branch point mutation in the dysferlin gene with mild
limb-girdle muscular dystrophy. Neurology. 66:1114–1116. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tagawa K, Ogawa M, Kawabe K, et al:
Protein and gene analyses of dysferlinopathy in a large group of
Japanese muscular dystrophy patients. J Neurol Sci. 211:23–28.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Takahashi T, Aoki M, Tateyama M, et al:
Dysferlin mutations in Japanese Miyoshi myopathy: relationship to
phenotype. Neurology. 60:1799–1804. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Nagashima T, Chuma T, Mano Y, et al:
Dysferlinopathy associated with rigid spine syndrome.
Neuropathology. 24:341–346. 2004. View Article : Google Scholar
|
|
113
|
Saccone V, Palmieri M, Passamano L, et al:
Mutations that impair interaction properties of TRIM32 associated
with limb-girdle muscular dystrophy 2H. Hum Mutat. 29:240–247.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kondo-lida E, Kobayashi K, Watanabe M, et
al: Novel mutations and genotype-phenotype relationships in 107
families with Fukuyama-type congenital muscular dystrophy (FCMD).
Hum Mol Genet. 8:2303–2309. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Scharner J, Gnocchi VF, Ellis JA and
Zammit PS: Genotype-phenotype correlations in laminopathies: how
does fate translate? Biochem Soc Trans. 38:257–262. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang Y, Ye J, Chen D, et al: Differential
expression profiling between the relative normal and dystrophic
muscle tissues from the same LGMD patient. J Transl Med. 4:532006.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Godfrey C, Clement E, Mein R, et al:
Refining genotype phenotype correlations in muscular dystrophies
with defective glycosylation of dystroglycan. Brain. 130:2725–2735.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Klinge L, Dean AF, Kress W, et al: Late
onset in dysferlinopathy widens the clinical spectrum. Neuromuscul
Disord. 18:288–290. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Rosales XQ, Gastier-Foster JM, Lewis S, et
al: Novel diagnostic features of dysferlinopathies. Muscle Nerve.
42:14–21. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Broglio L, Tentorio M, Cotelli MS, et al:
Limb-girdle muscular dystrophy-associated protein diseases.
Neurologist. 16:340–352. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Mercuri E, Brockington M, Straub V, et al:
Phenotypic spectrum associated with mutations in the
fukutin-related protein gene. Ann Neurol. 53:537–542. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gáti I, Danielsson O, Gunnarsson C, et al:
Bent spine syndrome: a phenotype of dysferlinopathy or a
symptomatic DYSF gene mutation carrier. Eur Neurol. 67:300–302.
2012.PubMed/NCBI
|
|
123
|
Hermans MC, Pinto YM, Merkies IS, de
Die-Smulders CE, Crijns HJ and Faber CG: Hereditary muscular
dystrophies and the heart. Neuromuscul Disord. 20:479–492. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Filosto M, Tonin P, Vattemi G, et al:
Chronic ophthalmoparesis in limb girdle muscular dystrophy 1C. J
Neurol Neurosurg Psychiatry. 80:448–449. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Selcen D: Myofibrillar myopathies.
Neuromuscul Disord. 21:161–171. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Palmieri A, Manara R, Bello L, et al:
Cognitive profile and MRI findings in limb-girdle muscular
dystrophy 2I. J Neurol. 258:1312–1320. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhang Y, Huang JJ, Wang ZQ, Wang N and Wu
ZY: Value of muscle enzyme measurement in evaluating different
neuromuscular diseases. Clin Chim Acta. 413:520–524. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wattjes MP, Kley RA and Fischer D:
Neuromuscular imaging in inherited muscle diseases. Eur Radiol.
20:2447–2460. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Fischer D, Walter MC, Kesper K, et al:
Diagnostic value of muscle MRI in differentiating LGMD2I from other
LGMDs. J Neurol. 252:538–547. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Fischer D, Kley RA, Strach K, et al:
Distinct muscle imaging patterns in myofibrillar myopathies.
Neurology. 71:758–765. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Starling A, de Paula F, Silva H, Vainzof M
and Zatz M: Calpainopathy: how broad is the spectrum of clinical
variability? J Mol Neurosci. 21:233–236. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Santoro L, Nolano M, Faraso S, et al:
Perioral skin biopsy to study skeletal muscle protein expression.
Muscle Nerve. 41:392–398. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Nagaraju K, Rawat R, Veszelovszky E, et
al: Dysferlin deficiency enhances monocyte phagocytosis: a model
for the inflammatory onset of limb-girdle muscular dystrophy 2B. Am
J Pathol. 172:774–785. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Brown RH Jr and Amato A: Calpainopathy and
eosinophilic myositis. Ann Neurol. 59:875–877. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Baumeister SK, Todorovic S, Milić-Rasić V,
Dekomien G, Lochmüller H and Walter MC: Eosinophilic myositis as
presenting symptom in gamma-sarcoglycanopathy. Neuromuscul Disord.
19:167–171. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Vinit J, Samson M Jr, Gaultier JB, et al:
Dysferlin deficiency treated like refractory polymyositis. Clin
Rheumatol. 29:103–106. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Claeys KG, Fardeau M, Schröder R, et al:
Electron microscopy in myofibrillar myopathies reveals clues to the
mutated gene. Neuromuscul Disord. 18:656–666. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Cacciottolo M, Numitone G, Aurino S, et
al: Muscular dystrophy with marked Dysferlin deficiency is
consistently caused by primary dysferlin gene mutations. Eur J Hum
Genet. 19:974–980. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Trabelsi M, Kavian N, Daoud F, et al:
Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum
Genet. 16:793–803. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Herrmann R, Straub V, Blank M, et al:
Dissociation of the dystroglycan complex in caveolin-3-deficient
limb girdle muscular dystrophy. Hum Mol Genet. 9:2335–2340. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Vainzof M, Moreira ES, Suzuki OT, et al:
Telethonin protein expression in neuromuscular disorders. Biochim
Biophys Acta. 1588:33–40. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Charlton R, Henderson M, Richards J, et
al: Immunohistochemical analysis of calpain 3: advantages and
limitations in diagnosing LGMD2A. Neuromuscul Disord. 19:449–457.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Fanin M, Nascimbeni AC, Fulizio L,
Trevisan CP, Meznaric-Petrusa M and Angelini C: Loss of calpain-3
autocatalytic activity in LGMD2A patients with normal protein
expression. Am J Pathol. 163:1929–1936. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Fanin M, Nascimbeni AC, Tasca E and
Angelini C: How to tackle the diagnosis of limb-girdle muscular
dystrophy 2A. Eur J Hum Genet. 17:598–603. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Sáenz A, Leturcq F, Cobo AM, et al:
LGMD2A: genotype-phenotype correlations based on a large mutational
survey on the calpain 3 gene. Brain. 128:732–742. 2005.PubMed/NCBI
|
|
146
|
Groen EJ, Charlton R, Barresi R, et al:
Analysis of the UK diagnostic strategy for limb girdle muscular
dystrophy 2A. Brain. 130:3237–3249. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Fanin M, Fulizio L, Nascimbeni AC, et al:
Molecular diagnosis in LGMD2A: mutation analysis or protein
testing? Hum Mutat. 24:52–62. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Hackman P, Vihola A, Haravuori H, et al:
Tibial muscular dystrophy is a titinopathy caused by mutations in
TTN, the gene encoding the giant skeletal-muscle protein titin. Am
J Hum Genet. 71:492–500. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
149
|
Borg K, Stucka R, Locke M, et al:
Intragenic deletion of TRIM32 in compound heterozygotes with
sarcotubular myopathy/LGMD2H. Hum Mutat. 30:E831–844. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Sewry CA: Muscular dystrophies: an update
on pathology and diagnosis. Acta Neuropathol. 120:343–358. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Ho M, Gallardo E, McKenna-Yasek D, De Luna
N, Illa I and Brown RH Jr: A novel, blood-based diagnostic assay
for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Ann
Neurol. 51:129–133. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Escher C, Lochmüller H, Fischer D, et al:
Reverse protein arrays as novel approach for protein quantification
in muscular dystrophies. Neuromuscul Disord. 20:302–309. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Blázquez L, Azpitarte M, Sáenz A, et al:
Characterization of novel CAPN3 isoforms in white blood cells: an
alternative approach for limb-girdle muscular dystrophy 2A
diagnosis. Neurogenetics. 9:173–182. 2008.PubMed/NCBI
|
|
154
|
De Luna N, Freixas A, Gallano P, et al:
Dysferlin expression in monocytes: a source of mRNA for mutation
analysis. Neuromuscul Disord. 17:69–76. 2007.PubMed/NCBI
|
|
155
|
Teer JK and Mullikin JC: Exome sequencing:
the sweet spot before whole genomes. Hum Mol Genet. 19:R145–151.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Balci B, Aurino S, Haliloglu G, et al:
Calpain-3 mutations in Turkey. Eur J Pediatr. 165:293–298. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Fanin M, Nascimbeni AC, Fulizio L and
Angelini C: The frequency of limb girdle muscular dystrophy 2A in
northeastern Italy. Neuromuscul Disord. 15:218–224. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Takahashi T, Aoki M, Suzuki N, et al:
Clinical features and a mutation with late onset of limb girdle
muscular dystrophy 2B. J Neurol Neurosurg Psychiatry. 84:433–440.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Park YE, Kim HS, Lee CH, Nam TS, Choi YC
and Kim DS: Two common mutations (p.Gln832X and c.663+1G>C)
account for about a third of the DYSF mutations in Korean patients
with dysferlinopathy. Neuromuscul Disord. 22:505–510.
2012.PubMed/NCBI
|
|
160
|
Barthélémy F, Wein N, Krahn M, Lévy N and
Bartoli M: Translational research and therapeutic perspectives in
dysferlinopathies. Mol Med. 17:875–882. 2011.PubMed/NCBI
|
|
161
|
Hackman P, Juvonen V, Sarparanta J, et al:
Enrichment of the R77C alpha-sarcoglycan gene mutation in Finnish
LGMD2D patients. Muscle Nerve. 31:199–204. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Schoser BG, Frosk P, Engel AG, Klutzny U,
Lochmüller H and Wrogemann K: Commonality of TRIM32 mutation in
causing sarcotubular myopathy and LGMD2H. Ann Neurol. 57:591–595.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Kang PB, Feener CA, Estrella E, et al:
LGMD2I in a North American population. BMC Musculoskelet Disord.
8:1152007. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Norwood F, de Visser M, Eymard B,
Lochmüller H and Bushby K: EFNS guideline on diagnosis and
management of limb girdle muscular dystrophies. Eur J Neurol.
14:1305–1312. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Eagle M: Report on the muscular dystrophy
campaign workshop: exercise in neuromuscular diseases; Newcastle.
January 2002; Neuromuscul Disord. 12. pp. 975–983. 2002, View Article : Google Scholar
|
|
166
|
Miladi N, Bourguignon JP and Hentati F:
Cognitive and psychological profile of a Tunisian population of
limb girdle muscular dystrophy. Neuromuscul Disord. 9:352–354.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Wagner KR, Fleckenstein JL, Amato AA, et
al: A phase I/II trial of MYO-029 in adult subjects with muscular
dystrophy. Ann Neurol. 63:561–571. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Lerario A, Cogiamanian F, Marchesi C, et
al: Effects of rituximab in two patients with dysferlin-deficient
muscular dystrophy. BMC Musculoskelet Disord. 11:1572010.
View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Hattori H, Nagata E, Oya Y, et al: A novel
compound heterozygous dysferlin mutation in Miyoshi myopathy
siblings responding to dantrolene. Eur J Neurol. 14:1288–1291.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
Luna ND, Díaz-Manera J, Paradas C, et al:
1α,25(OH)(2)-Vitamin D3 increases dysferlin expression in vitro and
in a human clinical trial. Mol Ther. 20:1988–1997. 2012.
|
|
171
|
Walter MC, Reilich P, Thiele S, et al:
Treatment of dysferlinopathy with deflazacort: a double-blind,
placebo-controlled clinical trial. Orphanet J Rare Dis. 8:262013.
View Article : Google Scholar : PubMed/NCBI
|
|
172
|
Angelini C, Fanin M, Menegazzo E, Freda
MP, Duggan DJ and Hoffman EP: Homozygous alpha-sarcoglycan mutation
in two siblings: one asymptomatic and one steroid-responsive mild
limb-girdle muscular dystrophy patient. Muscle Nerve. 21:769–775.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
173
|
Darin N, Kroksmark AK, Ahlander AC,
Moslemi AR, Oldfors A and Tulinius M: Inflammation and response to
steroid treatment in limb-girdle muscular dystrophy 2I. Eur J
Paediatr Neurol. 11:353–357. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
174
|
Walter MC, Lochmüller H, Reilich P, et al:
Creatine monohydrate in muscular dystrophies: A double-blind,
placebo-controlled clinical study. Neurology. 54:1848–1850. 2000.
View Article : Google Scholar : PubMed/NCBI
|