Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2015 Volume 11 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2015 Volume 11 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance

  • Authors:
    • Jin Fang
    • Shui-Hong Zhou
    • Jun Fan
    • Sen-Xiang Yan
  • View Affiliations / Copyright

    Affiliations: Department of Otolaryngology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang 314000, P.R. China, Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China, Department of Radiotherapy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
  • Pages: 1573-1581
    |
    Published online on: November 6, 2014
       https://doi.org/10.3892/mmr.2014.2888
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The mechanisms underlying cancer radioresistance remain unclear. Several studies have found that increased glucose transporter‑1 (GLUT‑1) expression is associated with radioresistance. Recently, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway was reported to be involved in the control of GLUT‑1 trafficking and activity. Activation of the PI3K/Akt pathway may itself be associated with cancer radioresistance. Thus, increasing attention has been devoted to the effects of modifying the expression of GLUT‑1 and the PI3K/Akt pathway on the increase in the radiosensitivity of cancer cells. This review discusses the importance of the association between elevated expression of GLUT‑1 and activation of the PI3K/Akt pathway in the development of radioresistance in cancer.
View Figures

Figure 1

View References

1 

Jacobs SR, Herman CE, Maciver NJ, et al: Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol. 180:4476–4486. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Kubicek GJ, Champ C, Fogh S, et al: FDG-PET staging and importance of lymph node SUV in head and neck cancer. Head Neck Oncol. 2:192010. View Article : Google Scholar : PubMed/NCBI

3 

Peng NJ, Liou WS, Liu RS, Hu C, Tsay DG and Liu CB: Early detection of recurrent ovarian cancer in patients with low-level increases in serum CA-125 levels by 2-[F-18]fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. Cancer Biother Radiopharm. 26:175–181. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Masui T, Doi R, Ito T, et al: Diagnostic value of (18)F -fluorodeoxyglucose positron emission tomography for pancreatic neuroendocrine tumors with reference to the World Health Organization classification. Oncol Lett. 1:155–159. 2010.PubMed/NCBI

5 

Li LF, Zhou SH, Zhao K, et al: Clinical significance of FDG single-photon emission computed tomography: Computed tomography in the diagnosis of head and neck cancers and study of its mechanism. Cancer Biother Radiopharm. 23:701–714. 2008. View Article : Google Scholar

6 

Esen Akkas B, Gökaslan D, Güner L and Ilgin Karabacak N: FDG uptake in brown adipose tissue-a brief report on brown fat with FDG uptake mechanisms and quantitative analysis using dual-time-point FDG PET/CT. Rev Esp Med Nucl. 30:14–18. 2011. View Article : Google Scholar

7 

Ko BH, Paik JY, Jung KH and Lee KH: 17beta-estradiol augments 18F-FDG uptake and glycolysis of T47D breast cancer cells via membrane-initiated rapid PI3K-Akt activation. J Nucl Med. 51:1740–1747. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Prante O, Maschauer S, Fremont V, et al: Regulation of uptake of 18F-FDG by a follicular human thyroid cancer cell line with mutation-activated K-ras. J Nucl Med. 50:1364–1370. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Wood IS and Trayhurn P: Glucose transporters (Glut and SGLT): expanded families of sugar transport proteins. Br J Nutr. 89:3–9. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Sun L, Zeng X, Yan C, et al: Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature. 490:361–366. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Lastraioli E, Bencini L, Bianchini E, et al: hERG1 channels and Glut-1 as independent prognostic indicators of worse outcome in stage I and II colorectal cancer: A pilot study. Transl Oncol. 5:105–112. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Tong SY, Lee JM, Ki KD, et al: Correlation between FDG uptake by PET/CT and the expressions of glucose transporter type 1 and hexokinase II in cervical cancer. Int J Gynecol Cancer. 22:654–658. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Sasaki H, Shitara M, Yokota K, et al: Overexpression of GLUT1 correlates with Kras mutations in lung carcinomas. Mol Med Rep. 5:599–602. 2012.

14 

Liu TQ, Fan J, Zhou L and Zheng SS: Effects of suppressing glucose transporter-1 by an antisense oligodeoxynucleotide on the growth of human hepatocellular carcinoma cells. Hepatobiliary Pancreat Dis Int. 10:72–77. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Melstrom LG, Salabat MR, Ding XZ, et al: Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res. 167:173–181. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Fan J, Zhou JQ, Yu GR and Lu DD: Glucose transporter protein 1-targeted RNA interference inhibits growth and invasion of the osteosarcoma cell line MG63 in vitro. Cancer Biother Radiopharm. 25:521–527. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Rademakers SE, Lok J, van der Kogel AJ, Bussink J and Kaanders JH: Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer. 11:1672011. View Article : Google Scholar

18 

Eckert AW, Lautner MH, Taubert H, Schubert J and Bilkenroth U: Expression of Glut-1 is a prognostic marker for oral squamous cell carcinoma patients. Oncol Rep. 20:1381–1385. 2008.PubMed/NCBI

19 

Kunkel M, Reichert TE, Benz P, et al: Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer. 97:1015–1024. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Zhou S, Wang S, Wu Q, Fan J and Wang Q: Expression of glucose transporter-1 and -3 in the head and neck carcinoma - the correlation of the expression with the biological behaviors. ORL J Otorhinolaryngol Relat Spec. 70:189–194. 2008. View Article : Google Scholar

21 

Choi JW, Yoon DJ, Lee HW, Han DP and Ahn YH: Antisense GLUT1 RNA suppresses the transforming phenotypes of NIH 3T3 cells transformed by N-Ras. Yonsei Med J. 36:480–486. 1995. View Article : Google Scholar : PubMed/NCBI

22 

Chan JY, Kong SK, Choy YM, Lee CY and Fung KP: Inhibition of glucose transporter gene expression by antisense nucleic acids in HL-60 leukemia cells. Life Sci. 65:63–70. 1999. View Article : Google Scholar : PubMed/NCBI

23 

Ito S, Nemoto T, Satoh S, Sekihara H, Seyama Y and Kubota S: Human rhabdomyosarcoma cells retain insulin-regulated glucose transport activity through glucose transporter 1. Arch Biochem Biophys. 373:72–82. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Noguchi Y, Saito A, Miyagi Y, et al: Suppression of facilitative glucose transporter 1 mRNA can suppress tumor growth. Cancer Lett. 154:175–182. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Bussink J, van der Kogel AJ and Kaanders JH: Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol. 9:288–296. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Stuschke M and Thames HD: Fractionation sensitivities and dose-control relations of head and neck carcinomas: analysis of the randomized hyperfractionation trials. Radiother Oncol. 51:113–121. 1999. View Article : Google Scholar : PubMed/NCBI

27 

Denekamp J, Daşu A, Waites A and Littbrand B: Hyperfractionation as an effective way of overcoming radioresistance. Int J Radiat Oncol Biol Phys. 42:705–709. 1998. View Article : Google Scholar : PubMed/NCBI

28 

Hingorani M, Colley WP, Dixit S and Beavis AM: Hypofractionated radiotherapy for glioblastoma: strategy for poor-risk patients or hope for the future? Br J Radiol. 85:e770–e781. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Bollschweiler E, Hölscher AH and Metzger R: Histologic tumor type and the rate of complete response after neoadjuvant therapy for esophageal cancer. Future Oncol. 6:25–35. 2010. View Article : Google Scholar

30 

Sho M, Akahori T, Tanaka T, et al: Pathological and clinical impact of neoadjuvant chemoradiotherapy using full-dose gemcitabine and concurrent radiation for resectable pancreatic cancer. J Hepatobiliary Pancreat Sci. 20:197–205. 2013. View Article : Google Scholar

31 

Yamazaki H, Nakamura S, Nishimura T, et al: Hypofractionated stereotactic radiotherapy with the hypoxic sensitizer AK-2123 (sanazole) for reirradiation of brain metastases: a preliminary feasibility report. Anticancer Res. 33:1773–1776. 2013.PubMed/NCBI

32 

Chen FH, Chiang CS, Wang CC, et al: Vasculatures in tumors growing from preirradiated tissues: formed by vasculogenesis and resistant to radiation and antiangiogenic therapy. Int J Radiat Oncol Biol Phys. 80:1512–1521. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Saigusa S, Toiyama Y, Tanaka K, et al: Prognostic significance of glucose transporter-1 (GLUT1) gene expression in rectal cancer after preoperative chemoradiotherapy. Surg Today. 42:460–469. 2012. View Article : Google Scholar

34 

Kunkel M, Moergel M, Stockinger M, et al: Overexpression of GLUT-1 is associated with resistance to radiotherapy and adverse prognosis in squamous cell carcinoma of the oral cavity. Oral Oncol. 43:796–803. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Doki Y, Takachi K, Ishikawa O, et al: Reduced tumor vessel density and high expression of glucose transporter 1 suggest tumor hypoxia of squamous cell carcinoma of the esophagus surviving after radiotherapy. Surgery. 137:536–544. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Pedersen MW, Holm S, Lund EL, Højgaard L and Kristjansen PE: Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro. Neoplasia. 3:80–87. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Korkeila E, Jaakkola PM, Syrjänen K, Pyrhönen S and Sundström J: Pronounced tumour regression after radiotherapy is associated with negative/weak glucose transporter-1 expression in rectal cancer. Anticancer Res. 31:311–315. 2011.PubMed/NCBI

38 

Korkeila EA, Sundström J, Pyrhönen S and Syrjänen K: Carbonic anhydrase IX, hypoxia-inducible factor-1α, ezrin and glucose transporter-1 as predictors of disease outcome in rectal cancer: multivariate Cox survival models following data reduction by principal component analysis of the clinicopathological predctors. Anticancer Res. 31:4529–4535. 2011.PubMed/NCBI

39 

Luo XM, Zhou SH and Fan J: Glucose transporter-1 as a new therapeutic target in laryngeal carcinoma. J Int Med Res. 38:1885–1892. 2010. View Article : Google Scholar

40 

Bai J, Guo XG and Bai XP: Epidermal growth factor receptor-related DNA repair and radiation-resistance regulatory mechanisms: a mini-review. Asian Pac J Cancer Prev. 13:4879–4881. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Theys J, Yahyanejad S, Habets R, et al: High NOTCH activity induces radiation resistance in non small cell lung cancer. Radiother Oncol. 108:440–445. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Yun J, Rago C, Cheong I, et al: Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 325:1555–1559. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Yasuda M, Miyazawa M, Fujita M, et al: Expression of hypoxia inducible factor-1alpha (HIF-1alpha) and glucose transporter-1 (GLUT-1) in ovarian adenocarcinomas: difference in hypoxic status depending on histological character. Oncol Rep. 19:111–116. 2008.

44 

Mayer A, Höckel M, Wree A and Vaupel P: Microregional expression of glucose transporter-1 and oxygenation status: lack of correlation in locally advanced cervical cancers. Clin Cancer Res. 11:2768–2773. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Ding XZ, Fehsenfeld DM, Murphy LO, Permert J and Adrian TE: Physiological concentrations of insulin augment pancreatic cancer cell proliferation and glucose utilization by activating MAP kinase, PI3 kinase and enhancing GLUT-1 expression. Pancreas. 21:310–320. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Sommermann TG, O’Neill K, Plas DR and Cahir-McFarland E: IKKβ and NF-κB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res. 71:7291–7300. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Wofford JA, Wieman HL, Jacobs SR, Zhao Y and Rathmell JC: IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood. 111:2101–2111. 2008. View Article : Google Scholar

48 

Wieman HL, Wofford JA and Rathmell JC: Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 18:1437–1446. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Melstrom LG, Salabat MR, Ding XZ, et al: Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-Kinase/Akt pathway in human pancreatic cancer cells. Pancreas. 37:426–431. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Schuurbiers OC, Kaanders JH, van der Heijden HF, Dekhuijzen RP, Oyen WJ and Bussink J: The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer. J Thorac Oncol. 4:761–767. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Söderlund K, Pérez-Tenorio G and Stål O: Activation of the phosphatidylinositol 3-kinase/Akt pathway prevents radiation-induced apoptosis in breast cancer cells. Int J Oncol. 26:25–32. 2005.

52 

Florczak U, Toulany M, Kehlbach R and Peter Rodemann H: 2-Methoxyestradiol-induced radiosensitization is independent of SOD but depends on inhibition of Akt and DNA-PKcs activities. Radiother Oncol. 92:334–338. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Brophy S, Sheehan KM, McNamara DA, Deasy J, Bouchier-Hayes DJ and Kay EW: GLUT-1 expression and response to chemoradiotherapy in rectal cancer. Int J Cancer. 125:2778–2782. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Zhou SH, Fan J, Chen XM, Cheng KJ and Wang SQ: Inhibition of cell proliferation and glucose uptake in human laryngeal carcinoma cells by antisense oligonucleotides against glucose transporter-1. Head Neck. 31:1624–1633. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Yan SX, Luo XM, Zhou SH, et al: Effect of antisense oligodeoxynucleotides glucose transporter-1 on enhancement of radiosensitivity of laryngeal carcinoma. Int J Med Sci. 10:1375–1386. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Upadhyay M, Samal J, Kandpal M, Singh OV and Vivekanandan P: The Warburg effect: insights from the past decade. Pharmacol Ther. 137:318–330. 2013. View Article : Google Scholar

57 

Bensinger SJ and Christofk HR: New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 23:352–361. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Hirschhaeuser F, Sattler UG and Mueller-Klieser W: Lactate: a metabolic key player in cancer. Cancer Res. 71:6921–6925. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Krzeslak A, Wojcik-Krowiranda K, Forma E, et al: Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res. 18:721–728. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Sheehan JP, Shaffrey ME, Gupta B, Larner J, Rich JN and Park DM: Improving the radiosensitivity of radioresistant and hypoxic glioblastoma. Future Oncol. 6:1591–1601. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Overgaard J: Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck - a systematic review and meta-analysis. Radiother Oncol. 100:22–32. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Shimanishi M, Ogi K, Sogabe Y, et al: Silencing of GLUT-1 inhibits sensitization of oral cancer cells to cisplatin during hypoxia. J Oral Pathol Med. 42:382–388. 2013. View Article : Google Scholar

63 

Pez F, Dayan F, Durivault J, et al: The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res. 71:1647–1657. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Yasuda M, Miyazawa M, Fujita M, et al: Expression of hypoxia inducible factor-1alpha (HIF-1alpha) and glucose transporter-1 (GLUT-1) in ovarian adenocarcinomas: difference in hypoxic status depending on histological character. Oncol Rep. 19:111–116. 2008.

65 

Wu XH, Chen SP, Mao JY, Ji XX, Yao HT and Zhou SH: Expression and significance of hypoxia-inducible factor-1α and glucose transporter-1 in laryngeal carcinoma. Oncol Lett. 5:261–266. 2013.

66 

Evans A, Bates V, Troy H, et al: Glut-1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through COMPARE analysis and metabolomic studies. Cancer Chemother Pharmacol. 61:377–393. 2008. View Article : Google Scholar

67 

Ke CC, Liu RS, Yang AH, et al: CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy. Eur J Nucl Med Mol Imaging. 40:61–71. 2013. View Article : Google Scholar

68 

Piao LS, Hur W, Kim TK, et al: CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 315:129–137. 2012. View Article : Google Scholar

69 

Mai HM, Zheng JW, Wang YA, et al: CD133 selected stem cells from proliferating infantile hemangioma and establishment of an in vivo mice model of hemangioma. Chin Med J (Engl). 126:88–94. 2013.

70 

Chen XH, Bao YY, Zhou SH, Wang QY, Wei Y and Fan J: Glucose transporter-1 expression in CD133+ laryngeal carcinoma Hep-2 cells. Mol Med Rep. 8:1695–1700. 2013.PubMed/NCBI

71 

Stein I, Neeman M, Shweiki D, Itin A and Keshet E: Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol. 15:5363–5368. 1995.PubMed/NCBI

72 

Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD and Rao JS: Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett. 313:64–75. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Hematulin A, Meethang S, Ingkaninan K and Sagan D: Derris scandens Benth extract potentiates radioresistance of Hep-2 laryngeal cancer cells. Asian Pac J Cancer Prev. 13:1289–1295. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Young EF, Smilenov LB, Lieberman HB and Hall EJ: Combined haploinsufficiency and genetic control of the G2/M checkpoint in irradiated cells. Radiat Res. 177:743–750. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Zhou Q, Lui VW and Yeo W: Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol. 7:1149–1167. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Keck S, Glencer AC and Rugo HS: Everolimus and its role in hormone-resistant and trastuzumab-resistant metastatic breast cancer. Future Oncol. 8:1383–1396. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Webster L, Hodgkiss RJ and Wilson GD: Cell cycle distribution of hypoxia and progression of hypoxic tumour cells in vivo. Br J Cancer. 77:227–234. 1998. View Article : Google Scholar : PubMed/NCBI

78 

Koritzinsky M, Wouters BG, Amellem O and Pettersen EO: Cell cycle progression and radiation survival following prolonged hypoxia and re-oxygenation. Int J Radiat Biol. 77:319–328. 2001. View Article : Google Scholar : PubMed/NCBI

79 

Kumareswaran R, Ludkovski O, Meng A, Sykes J, Pintilie M and Bristow RG: Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. J Cell Sci. 125:189–199. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Toustrup K, Sørensen BS, Nordsmark M, et al: Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 71:5923–5931. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Koumenis C: ER stress, hypoxia tolerance and tumor progression. Curr Mol Med. 6:55–69. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Kitagawa N, Kondo S, Wakisaka N, et al: Expression of seven-in-absentia homologue 1 and hypoxia-inducible factor 1 alpha: novel prognostic factors of nasopharyngeal carcinoma. Cancer Lett. 331:52–57. 2013. View Article : Google Scholar

83 

Pentheroudakis G, Nicolaou I, Kotoula V, et al: Prognostic utility of angiogenesis and hypoxia effectors in patients with operable squamous cell cancer of the larynx. Oral Oncol. 48:709–716. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Moeller BJ, Cao Y, Li CY and Dewhirst MW: Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 5:429–441. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Kim WY, Oh SH, Woo JK, Hong WK and Lee HY: Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res. 69:1624–1632. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Lee SM, Lee CT, Kim YW, Han SK, Shim YS and Yoo CG: Hypoxia confers protection against apoptosis via PI3K/Akt and ERK pathways in lung cancer cells. Cancer Lett. 242:231–238. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Edwards E, Geng L, Tan J, Onishko H, Donnelly E and Hallahan DE: Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res. 62:4671–4677. 2002.PubMed/NCBI

88 

Kumar P, Miller AI and Polverini PJ: p38 MAPK mediates gamma-irradiation-induced endothelial cell apoptosis and vascular endothelial growth factor protects endothelial cells through phosphoinositide 3-kinase-Akt-Bcl-2 pathway. J Biol Chem. 279:43352–43360. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Kumar P, Benedict R, Urzua F, Fischbach C, Mooney D and Polverini P: Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab Invest. 85:756–767. 2005. View Article : Google Scholar : PubMed/NCBI

90 

Wu J, Chen C and Zhao KN: Phosphatidylinositol 3-kinase signaling as a therapeutic target for cervical cancer. Curr Cancer Drug Targets. 13:143–156. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Shinohara ET and Maity A: Increasing sensitivity to radiotherapy and chemotherapy by using novel biological agents that alter the tumor microenvironment. Curr Mol Med. 9:1034–1045. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Fokas E, McKenna WG and Muschel RJ: The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies. Cancer Metastasis Rev. 31:823–842. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Zhan M and Han ZC: Phosphatidylinositide 3-kinase/AKT in radiation responses. Histol Histopathol. 19:915–923. 2004.PubMed/NCBI

94 

Park JK, Jung HY, Park SH, et al: Combination of PTEN and gamma-ionizing radiation enhances cell death and G(2)/M arrest through regulation of AKT activity and p21 induction in non-small-cell lung cancer cells. Int J Radiat Oncol Biol Phys. 70:1552–1560. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Kandel ES, Skeen J, Majewski N, et al: Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage. Mol Cell Biol. 22:7831–7841. 2002. View Article : Google Scholar : PubMed/NCBI

96 

Mukherjee B, Tomimatsu N, Amancherla K, Camacho CV, Pichamoorthy N and Burma S: The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM- and DNA-PKCs-mediated DNA damage responses. Neoplasia. 14:34–43. 2012.PubMed/NCBI

97 

Yang J, Xu X, Hao Y, et al: Expression of DNA-PKcs and BRCA1 as prognostic indicators in nasopharyngeal carcinoma following intensity-modulated radiation therapy. Oncol Lett. 5:1199–1204. 2013.PubMed/NCBI

98 

Millet P, Granotier C, Etienne O and Boussin FD: Radiation-induced upregulation of telomerase activity escapes PI3-kinase inhibition in two malignant glioma cell lines. Int J Oncol. 43:375–382. 2013.PubMed/NCBI

99 

Qu YY, Hu SL, Xu XY, et al: Nimotuzumab enhances the radiosensitivity of cancer cells in vitro by inhibiting radiation-induced DNA damage repair. PLoS One. 8:e707272013. View Article : Google Scholar : PubMed/NCBI

100 

Zhang T, Cui GB, Zhang J, et al: Inhibition of PI3 kinases enhances the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Rep. 24:1683–1689. 2010.PubMed/NCBI

101 

Azad A, Jackson S, Cullinane C, et al: Inhibition of DNA-dependent protein kinase induces accelerated senescence in irradiated human cancer cells. Mol Cancer Res. 9:1696–1707. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Li HF, Kim JS and Waldman T: Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol. 4:432009. View Article : Google Scholar : PubMed/NCBI

103 

Minjgee M, Toulany M, Kehlbach R, Giehl K and Rodemann HP: K-RAS(V12) induces autocrine production of EGFR ligands and mediates radioresistance through EGFR-dependent Akt signaling and activation of DNA-PKcs. Int J Radiat Oncol Biol Phys. 81:1506–1514. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Petrás M, Lajtos T, Friedländer E, et al: Molecular interactions of ErbB1 (EGFR) and integrin-β1 in astrocytoma frozen sections predict clinical outcome and correlate with Akt-mediated in vitro radioresistance. Neuro Oncol. 15:1027–1040. 2013. View Article : Google Scholar

105 

Gautier EL, Westerterp M, Bhagwat N, et al: HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders. J Exp Med. 210:339–353. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Swainson L, Kinet S, Mongellaz C, Sourisseau M, Henriques T and Taylor N: IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood. 109:1034–1042. 2007. View Article : Google Scholar

107 

Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM and Thompson CB: Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol. 23:7315–7328. 2003. View Article : Google Scholar : PubMed/NCBI

108 

Zhao Y, Altman BJ, Coloff JL, et al: Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol. 27:4328–4339. 2007. View Article : Google Scholar : PubMed/NCBI

109 

Roberts MS, Woods AJ, Dale TC, Van Der Sluijs P and Norman JC: Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of alpha v beta 3 and alpha 5 beta 1 integrins. Mol Cell Biol. 24:1505–1515. 2004. View Article : Google Scholar : PubMed/NCBI

110 

Doughty CA, Bleiman BF, Wagner DJ, et al: Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood. 107:4458–4465. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Marko AJ, Miller RA, Kelman A and Frauwirth KA: Induction of glucose metabolism in stimulated T lymphocytes is regulated by mitogen-activated protein kinase signaling. PLoS One. 5:e154252010. View Article : Google Scholar : PubMed/NCBI

112 

Radhakrishnan P, Baraneedharan U, Veluchamy S, et al: Inhibition of rapamycin-induced AKT activation elicits differential antitumor response in head and neck cancers. Cancer Res. 73:1118–1127. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Samih N, Hovsepian S, Aouani A, Lombardo D and Fayet G: Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation. Endrocrinology. 141:4146–4155. 2000. View Article : Google Scholar

114 

Clarke JF, Young PW, Yonezawa K, Kasuga M and Holman GD: Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J. 300:631–635. 1994.PubMed/NCBI

115 

Golkar L, Salabat MR, Ding XZ, et al: Apigenin inhibits pancreatic cancer cell proliferation via down-regulation of the GLUT-1 glucose transporter through the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway (Abstract). Pancreas. 33:4642006. View Article : Google Scholar

116 

Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD and Maity A: Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol Cancer Res. 4:471–479. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Plas DR, Talapatra S, Edinger AL, Rathmell JC and Thompson CB: Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J Biol Chem. 276:12041–12048. 2001. View Article : Google Scholar : PubMed/NCBI

118 

Fang J, Bao YY, Zhou SH, et al: Recurrent prognostic factors and expression of GLUT-1, PI3K and p-Akt in adenoid cystic carcinomas of the head and neck: Clinicopathological features and biomarkers of adenoid cystic carcinoma. Oncol Lett. 4:1234–1240. 2012.PubMed/NCBI

119 

Shen WQ, Cheng KJ, Bao YY, Zhou SH and Yao HT: Expression of Glut-1, HIF-1α, PI3K and p-Akt in a case of ceruminous adenoma. Head Neck Oncol. 4:182012. View Article : Google Scholar

120 

Silva A, Gírio A, Cebola I, Santos CI, Antunes F and Barata JT: Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia. 25:960–967. 2011. View Article : Google Scholar : PubMed/NCBI

121 

Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA and Boussiotis VA: Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med. 200:659–669. 2004. View Article : Google Scholar : PubMed/NCBI

122 

Wahl H, Daudi S, Kshirsagar M, et al: Expression of metabolically targeted biomarkers in endometrial carcinoma. Gynecol Oncol. 116:21–27. 2010. View Article : Google Scholar

123 

Fumarola C, Caffarra C, La Monica S, et al: Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat. 141:67–78. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Ou J, Luan W, Deng J, Sa R and Liang H: αV integrin induces multicellular radioresistance in human nasopharyngeal carcinoma via activating SAPK/JNK pathway. Plos One. 7:e387372012. View Article : Google Scholar

125 

Xiao H, Zhang Q, Shen J, Bindokas V and Xing HR: Pharmacologic inactivation of kinase suppressor of Ras1 sensitizes epidermal growth factor receptor and oncogenic Ras-dependent tumors to ionizing radiation treatment. Mol Cancer Ther. 9:2724–2736. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Li P, Zhang Q, Torossian A, et al: Simultaneous inhibition of EGFR and PI3K enhances radiosensitivity in human breast cancer. Int J Radiat Oncol Biol Phys. 83:e391–e397. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Tan C, de Noronha RG, Roecker AJ, et al: Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res. 65:605–612. 2005.PubMed/NCBI

128 

Romeo Y and Roux PP: Paving the way for targeting RSK in cancer. Expert Opin Ther Targets. 15:5–9. 2011. View Article : Google Scholar

129 

Cataldi A, di Giacomo V, Rapino M, Genovesi D and Rana RA: Cyclic nucleotide Response Element Binding protein (CREB) activation promotes survival signal in human K562 erythroleukemia cells exposed to ionising radiation/etoposide combined treatment. J Radiat Res. 47:113–120. 2006. View Article : Google Scholar : PubMed/NCBI

130 

Moretti L, Yang ES, Kim KW and Lu B: Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist Updat. 10:135–143. 2007. View Article : Google Scholar : PubMed/NCBI

131 

Shinohara ET, Cao C, Niermann K, et al: Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene. 24:5414–5422. 2005. View Article : Google Scholar : PubMed/NCBI

132 

Hudes G, Carducci M, Tomczak P, et al: Temsirolimus, interferon alpha, or both for advanced renal-cell carcinoma. N Engl J Med. 356:2271–2281. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fang J, Zhou S, Fan J and Yan S: Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance. Mol Med Rep 11: 1573-1581, 2015.
APA
Fang, J., Zhou, S., Fan, J., & Yan, S. (2015). Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance. Molecular Medicine Reports, 11, 1573-1581. https://doi.org/10.3892/mmr.2014.2888
MLA
Fang, J., Zhou, S., Fan, J., Yan, S."Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance". Molecular Medicine Reports 11.3 (2015): 1573-1581.
Chicago
Fang, J., Zhou, S., Fan, J., Yan, S."Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance". Molecular Medicine Reports 11, no. 3 (2015): 1573-1581. https://doi.org/10.3892/mmr.2014.2888
Copy and paste a formatted citation
x
Spandidos Publications style
Fang J, Zhou S, Fan J and Yan S: Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance. Mol Med Rep 11: 1573-1581, 2015.
APA
Fang, J., Zhou, S., Fan, J., & Yan, S. (2015). Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance. Molecular Medicine Reports, 11, 1573-1581. https://doi.org/10.3892/mmr.2014.2888
MLA
Fang, J., Zhou, S., Fan, J., Yan, S."Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance". Molecular Medicine Reports 11.3 (2015): 1573-1581.
Chicago
Fang, J., Zhou, S., Fan, J., Yan, S."Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance". Molecular Medicine Reports 11, no. 3 (2015): 1573-1581. https://doi.org/10.3892/mmr.2014.2888
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team