Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2015 Volume 11 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2015 Volume 11 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease

  • Authors:
    • Yihang Guo
    • Xiaorong Li
    • Changwei Lin
    • Yi Zhang
    • Gui Hu
    • Jianyu Zhou
    • Juan Du
    • Kai Gao
    • Yi Gan
    • Hao Deng
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China, Department of General Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China, Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
  • Pages: 2805-2812
    |
    Published online on: December 10, 2014
       https://doi.org/10.3892/mmr.2014.3075
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Accumulating evidence indicates that dysregulation of microRNA‑133b (miR‑133b) is an important step in the development of certain types of human cancer and contributes to tumorigenesis. Altered expression of miR‑133b has been reported in colon carcinoma, but its association with clinical stage in colorectal cancer (CRC) has remained elusive. Connective tissue growth factor (CTGF), a potentially promising candidate gene for interaction with miR‑133b, was screened using microarray analysis. The expression of miR‑133b and CTGF was evaluated using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The regulatory effects of miR‑133b on CTGF were evaluated using a dual‑luciferase reporter assay. CTGF was identified as a functional target of miR‑133b. The results demonstrated low expression of miR‑133b in CRC specimens with poor cell differentiation (P=0.011), lymph node metastasis (P=0.037) and advanced clinical stages (stage III or IV vs. I or II; P=0.036). Furthermore, there was a significant association between a high level of expression of CTGF mRNA and an advanced clinical stage (stage III or IV vs. I or II; P=0.015) and lymph node metastasis (P=0.034). CTGF expression was negatively regulated by miR‑133b in the human colorectum, suggesting that miR‑133b and CTGF may be candidate therapeutic targets in colorectal cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Rossi S, Di Narzo AF, Mestdagh P, et al: microRNAs in colon cancer: a roadmap for discovery. FEBS Lett. 586:3000–3007. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Gansler T, Ganz PA, Grant M, et al: Sixty years of CA: a cancer journal for clinicians. CA Cancer J Clin. 60:345–350. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Lamy P, Andersen CL, Dyrskjøt L, Tørring N, Ørntoft T and Wiuf C: Are microRNAs located in genomic regions associated with cancer? Br J Cancer. 95:1415–1418. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Duisters RF, Tijsen AJ, Schroen B, et al: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 104:170–178. 6p2009. View Article : Google Scholar

5 

Wen D, Li S, Ji F, et al: miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol. 34:793–803. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Hu G, Chen D, Li X, Yang K, Wang H and Wu W: miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther. 10:190–197. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Chen CC and Lau LF: Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 41:771–783. 2009. View Article : Google Scholar :

8 

Chu CY, Chang CC, Prakash E and Kuo ML: Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci. 15:675–685. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Garcia P, Leal P, Ili C, Brebi P, Alvarez H and Roa JC: Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro. Int J Exp Pathol. 94:195–202. 2013.PubMed/NCBI

10 

Kang Y, Siegel PM, Shu W, et al: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 3:537–549. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Deng YZ, Chen PP, Wang Y, et al: Connective tissue growth factor is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenicity through beta-catenin-T-cell factor/Lef signaling. J Biol Chem. 282:36571–36581. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Wenger C, Ellenrieder V, Alber B, et al: Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene. 18:1073–1080. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Kubo M, Kikuchi K, Nashiro K, et al: Expression of fibrogenic cytokines in desmoplastic malignant melanoma. Br J Dermatol. 139:192–197. 1998. View Article : Google Scholar : PubMed/NCBI

14 

Shakunaga T, Ozaki T, Ohara N, et al: Expression of connective tissue growth factor in cartilaginous tumors. Cancer. 89:1466–1473. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Lee HK, Bier A, Cazacu S, et al: MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor. PLoS One. 8:e546522013. View Article : Google Scholar : PubMed/NCBI

16 

Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL and Trotti A: AJCC Cancer Staging Manual. 7th edition. Springer; New York, NY: 2010

17 

Xiang KM and Li XR: MiR-133b acts as a tumor suppressor and negatively regulates TBPL1 in colorectal cancer cells. Asian Pac J Cancer Prev. 15:3767–3772. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Lin CW, Li XR, Zhang Y, et al: TAp63 suppress metastasis via miR-133b in colon cancer cells. Br J Cancer. 110:2310–2320. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Wen D, Li S, Ji F, Cao H, Jiang W, Zhu J and Fang X: Mir-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol. 34:793–803. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, Marsh CB, Otterson GA and Nana-Sinkam SP: MicroRNA-133b targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun. 388:483–489. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, et al: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 125:345–352. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Duisters RF, Tijsen AJ, Schroen B, et al: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 104:170–178. 2009. View Article : Google Scholar

23 

Hofmeister V, Schrama D and Becker JC: Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother. 57:1–17. 2008. View Article : Google Scholar

24 

Wendt MK, Smith JA and Schiemann WP: Transforming growth factor-β-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene. 29:6485–6498. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, Saleem M, Goodall GJ, Twigg SM, Cooper ME and Kantharidis P: E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 59:1794–1802. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Secker GA, Shortt AJ, Sampson E, Schwarz QP, Schultz GS and Daniels JT: TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Exp Cell Res. 314:131–142. 2008. View Article : Google Scholar

27 

Babic AM, Chen CC and Lau LF: Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Bio. 19:2958–2966. 1999.

28 

Lau LF and Lam SC: The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res. 248:44–57. 1999. View Article : Google Scholar : PubMed/NCBI

29 

Dornhöfer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N, Wong C, Kaper F, Sutphin P, Nacamuli R, et al: Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 66:5816–5827. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo Y, Li X, Lin C, Zhang Y, Hu G, Zhou J, Du J, Gao K, Gan Y, Deng H, Deng H, et al: MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease. Mol Med Rep 11: 2805-2812, 2015.
APA
Guo, Y., Li, X., Lin, C., Zhang, Y., Hu, G., Zhou, J. ... Deng, H. (2015). MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease. Molecular Medicine Reports, 11, 2805-2812. https://doi.org/10.3892/mmr.2014.3075
MLA
Guo, Y., Li, X., Lin, C., Zhang, Y., Hu, G., Zhou, J., Du, J., Gao, K., Gan, Y., Deng, H."MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease". Molecular Medicine Reports 11.4 (2015): 2805-2812.
Chicago
Guo, Y., Li, X., Lin, C., Zhang, Y., Hu, G., Zhou, J., Du, J., Gao, K., Gan, Y., Deng, H."MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease". Molecular Medicine Reports 11, no. 4 (2015): 2805-2812. https://doi.org/10.3892/mmr.2014.3075
Copy and paste a formatted citation
x
Spandidos Publications style
Guo Y, Li X, Lin C, Zhang Y, Hu G, Zhou J, Du J, Gao K, Gan Y, Deng H, Deng H, et al: MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease. Mol Med Rep 11: 2805-2812, 2015.
APA
Guo, Y., Li, X., Lin, C., Zhang, Y., Hu, G., Zhou, J. ... Deng, H. (2015). MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease. Molecular Medicine Reports, 11, 2805-2812. https://doi.org/10.3892/mmr.2014.3075
MLA
Guo, Y., Li, X., Lin, C., Zhang, Y., Hu, G., Zhou, J., Du, J., Gao, K., Gan, Y., Deng, H."MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease". Molecular Medicine Reports 11.4 (2015): 2805-2812.
Chicago
Guo, Y., Li, X., Lin, C., Zhang, Y., Hu, G., Zhou, J., Du, J., Gao, K., Gan, Y., Deng, H."MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease". Molecular Medicine Reports 11, no. 4 (2015): 2805-2812. https://doi.org/10.3892/mmr.2014.3075
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team