|
1
|
Crick FH, Barnett L, Brenner S and
Watts-Tobin RJ: General nature of the genetic code for proteins.
Nature. 192:1227–1232. 1961. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gutschner T and Diederichs S: The
hallmarks of cancer: a long non-coding RNA point of view. RNA Biol.
9:703–719. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kung JT, Colognori D and Lee JT: Long
noncoding RNAs: past, present, and future. Genetics. 193:651–669.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Atkinson SR, Marguerat S and Bähler J:
Exploring long non-coding RNAs through sequencing. Semin Cell Dev
Biol. 23:200–205. 2012. View Article : Google Scholar
|
|
5
|
Shi X, Sun M, Liu H, Yao Y and Song Y:
Long non-coding RNAs: a new frontier in the study of human
diseases. Cancer Lett. 339:159–166. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yoon JH, Abdelmohsen K and Gorospe M:
Posttranscriptional gene regulation by long noncoding RNA. J Mol
Biol. 425:3723–3730. 2013. View Article : Google Scholar :
|
|
7
|
Erdmann VA, Szymansk Mi, Hochberg A, Groot
ND and Barciszewski J: Non-coding, mRNA-like RNAs database Y2K.
Nucleic Acids Res. 28:197–200. 2000. View Article : Google Scholar
|
|
8
|
Mituyama T, Yamada K, Hattori E, et al:
The Functional RNA Database 3.0: databases to support mining and
annotation of functional RNAs. Nucleic Acids Res. 37:D89–D92. 2009.
View Article : Google Scholar :
|
|
9
|
Dinger ME, Pang KC, Mercer TR, Crowe ML,
Grimmond SM and Mattick JS: NRED: a database of long noncoding RNA
expression. Nucleic Acids Res. 37:D122–D126. 2009. View Article : Google Scholar :
|
|
10
|
Amaral PP, Clark MB, Gascoigne DK, Dinger
ME and Mattick JS: LncRNAdb: a reference database for long
noncoding RNAs. Nucleic Acids Res. 39:D146–D151. 2011. View Article : Google Scholar :
|
|
11
|
Liao Q, Xiao H, Bu DC, et al: ncFANs: a
web server for functional annotation of long non-coding RNAs.
Nucleic Acids Res. 39:W118–W124. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bu DC, Yu KT, Sun SL, et al: NONCODE v3.0:
integrative annotation of long noncoding RNAs. Nucleic Acids Res.
40:D210–D215. 2012. View Article : Google Scholar :
|
|
13
|
Yang JH, Li JH, Jiang S, Zhou H and Qu LH:
ChIPBase: a database for decoding the transcriptional regulation of
long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic
acids Res. 41:D177–D187. 2013. View Article : Google Scholar :
|
|
14
|
Volders PJ, Helsens K, Wang X, et al:
LNCipedia: a database for annotated human lncRNA transcript
sequences and structures. Nucleic acids Res. 41:D246–D251. 2013.
View Article : Google Scholar :
|
|
15
|
Paraskevopoulou MD, Georgakilas G,
Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM and Hatzigeorgiou
AG: DIANA-LncBase: experimentally verified and computationally
predicted microRNA targets on long non-coding RNAs. Nucleic Acids
Res. 41:D239–D245. 2013. View Article : Google Scholar :
|
|
16
|
Chen G, Wang ZY, Wang DQ, et al:
LncRNADisease: a database for long-non-coding RNA-associated
diseases. Nucleic Acids Res. 41:D983–D986. 2013. View Article : Google Scholar :
|
|
17
|
Bhartiya D, Pal K, Ghosh S, et al:
lncRNome: a comprehensive knowledgebase of human long noncoding
RNAs. Database (Oxford). 2013. pp. bat0342013, View Article : Google Scholar
|
|
18
|
Piao H and Ma L: Non-coding RNAs as
regulators of mammary development and breast cancer. J Mammary
Gland Biol Neoplasia. 17:33–42. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Geng YJ, Xie SL, Li Q, Ma J and Wang GY:
Large intervening non-coding RNA HOTAIR is associated with
hepatocellular carcinoma progression. J Int Med Res. 39:2119–2128.
2011. View Article : Google Scholar
|
|
20
|
Kogo R, Shimamura T, Mimori K, et al: Long
noncoding RNA HOTAIR regulates polycomb-dependent chromatin
modification and is associated with poor prognosis in colorectal
cancers. Cancer Res. 71:6320–6326. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nilsson J, Skog J, Nordstrand A, Baranov
V, Mincheva- Nilsson L, Breakefield XO and Widmark A: Prostate
cancer-derived urine exosomes: a novel approach to biomarkers for
prostate cancer. Br J Cancer. 100:1603–1607. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ng D, Toure O, Wei MH, et al:
Identification of a novel chromosome region, 13q21.33-q22.2, for
susceptibility genes in familial chronic lymphocytic leukemia.
Blood. 109:916–925. 2007. View Article : Google Scholar
|
|
23
|
Huarte M and Rinn JL: Large non-coding
RNAs: missing links in cancer? Hum Mol Genet. 19(R2): R152–R161.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Holdt LM and Teupser D: Recent studies of
the human chromosome 9p21 locus, which is associated with
atherosclerosis in human populations. Arterioscler Thromb Vasc
Biol. 32:196–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu Y, Sanoff HK, Cho H, et al: INK4/ARF
transcript expression is associated with chromosome 9p21 variants
linked to atherosclerosis. PLoS One. 4:e50272009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ishii N, Ozaki K, Sato H, et al:
Identification of a novel non-coding RNA, MIAT that confers risk of
myocardial infarction. J Hum Genet. 51:1087–1099. 2006. View Article : Google Scholar
|
|
27
|
Johnson R: Long non-coding RNAs in
Huntington’s disease neurodegeneration. Neurobiol Dis. 46:245–254.
2012. View Article : Google Scholar
|
|
28
|
Qureshi IA, Mattick JS and Mehler MF: Long
non-coding RNAs in nervous system function and disease. Brain Res.
1338:20–35. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Decourt B and Sabbagh MN: BACE1 as a
potential biomarker for Alzheimer’s disease. J Alzheimers Dis.
24(Suppl 2): 53–59. 2011.
|
|
30
|
Wang XS, Zhang Z, Wang HC, et al: Rapid
identification of UCA1 as a very sensitive and specific unique
marker for human bladder carcinoma. Clin Cancer Res. 12:4851–4858.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zoetis T and Hurtt ME: Species comparison
of lung development. Birth Defects Res B Dev Reprod Toxicol.
68:121–124. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lü J, Qian J, Chen F, Tang X, Li C and
Cardoso WV: Differential expression of components of the microRNA
machinery during mouse organogenesis. Biochem Biophys Res Commun.
334:319–323. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bhaskaran M, Wang Y, Zhang H, et al:
MicroRNA-127 modulates fetal lung development. Physiol Genomics.
37:268–278. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bishop NB, Stankiewicz P and Steinhorn RH:
Alveolar capillary dysplasia. Am J Respir Crit Care Med.
184:172–179. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stankiewicz P, Sen P, Bhatt SS, et al:
Genomic and genic deletions of the FOX gene cluster on 16q24.1 and
inactivating mutations of FOXF1 cause alveolar capillary dysplasia
and other malformations. Am J Hum Genet. 84:780–791. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Mahlapuu M, Enerbäck S and Carlsson P:
Haploinsufficiency of the Forkhead gene Foxf1, a target for sonic
hedgehog signaling, causes lung and foregut malformations.
Development. 128:2397–2406. 2001.PubMed/NCBI
|
|
37
|
Szafranski P, Dharmadhikari AV, Brosens E,
et al: Small noncoding differentially methylated copy-number
variants, including lncRNA genes, cause a lethal lung developmental
disorder. Genome Res. 23:23–33. 2013. View Article : Google Scholar :
|
|
38
|
Getz GS: Bridging the innate and adaptive
immune systems. J Lipid Res. 46:619–622. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Carpenter S, Aiello D, Atianand MK, et al:
A long noncoding RNA mediates both activation and repression of
immune response genes. Science. 341:789–792. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Rapicavoli NA, Qu K, Zhang JJ, Mikhail M,
Laberge RM and Chang HY: A mammalian pseudogene lncRNA at the
interface of inflammation and anti-inflammatory therapeutics.
ELife. 2:e007622013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Peng X, Gralinski L, Armour CD, et al:
Unique signatures of long noncoding RNA expression in response to
virus infection and altered innate immune signaling. mBio.
1:e00206–e00210. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Vigneau S, Rohrlich PS, Rahic MB and
Bureau JF: Tmevpg1, a candidate gene for the control of Theiler’s
virus persistence, could be implicated in the regulation of
interferon. J Virol. 77:5632–5638. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Collier SP, Collins PL, Williams CL,
Boothby MR and Aune TM: Cutting edge: influence of Tmevpg1, a long
intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J
Immunol. 189:2084–2088. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
GomeZ JA, Wapinski OL, Yang YW, et al: The
NeST long ncRNA controls microbial susceptibility and epigenetic
activation of the interferon-γ locus. Cell. 152:743–754. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pang KC, Dinger ME, Mercer TR, Malquori L,
Grimmond SM, Chen W and Mattick JS: Genome-wide identification of
long noncoding RNAs in CD8+ T cells. J Immunol. 182:7738–7748.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hu G, Tang Q, Sharma S, et al: Expression
and regulation of intergenic long noncoding RNAs during T cell
development and differentiation. Nat Immunol. 14:1190–1198. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Janeway CA Jr, Travers P, Walport M and
Shlomchik M: Principles of innate and adaptive immunity.
Immunobiology: The Immune System in Health and Disease. 5th.
Garland Science; New York, NY: 2001
|
|
48
|
Kawai T and Akira S: The role of
pattern-recognition receptors in innate immunity: update on
Toll-like receptors. Nature Immunol. 11:373–384. 2010. View Article : Google Scholar
|
|
49
|
Kawai T and Akira S: Toll-like receptor
and RIG-1-like receptor signaling. Ann NY Acad Sci. 1143:1–20.
2008. View Article : Google Scholar
|
|
50
|
Medzhitov R and Horng T: Transcriptional
control of the inflammatory response. Nat Rev Immunol. 9:692–703.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu SY, Sanchez DJ and Cheng G: New
developments in the induction and antiviral effectors of type I
interferon. Curr Opin Immunol. 23:57–64. 2011. View Article : Google Scholar
|
|
52
|
Hogan RJ, Gao G, Rowe T, et al: Resolution
of primary severe acute respiratory syndrome-associated coronavirus
infection requires Stat1. J Virol. 78:11416–11421. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rupani H, Sanchez-Elsner T and Howarth P:
MicroRNAs and respiratory diseases. Eur Respir J. 41:695–705. 2013.
View Article : Google Scholar
|
|
54
|
Thai P, Statt S, Chen CH, Liang E,
Campbell C and Wu R: Characterization of a novel long noncoding
RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer
cell lines. Am J Respir Cell Mol Biol. 49:204–211. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kaspar JW, Niture SK and Jaiswal AK:
Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biol
Med. 47:1304–1309. 2009. View Article : Google Scholar
|
|
56
|
Lustig O, Ariel I, Ilan J, Lev-Lehman E,
De-Groot N and Hochberg A: Expression of the imprinted gene H19 in
the human fetus. Mol Reprod Dev. 38:239–246. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gabory A, Jammes H and Dandolo L: The H19
locus: role of an imprinted non-coding RNA in growth and
development. Bioessays. 32:473–480. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Matouk IJ, DeGroot N, Mezan S, Ayesh S,
Abu-lail R, Hochberg A and Galun E: The H19 non-coding RNA is
essential for human tumor growth. PloS One. 2:e8452007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kaplan R, Luettich K, Heguy A, Hackett NR,
Harvey BG and Crystal RG: Monoallelic up-regulation of the
imprinted H19 gene in airway epithelium of phenotypically normal
cigarette smokers. Cancer Res. 63:1475–1482. 2003.PubMed/NCBI
|
|
60
|
Kondo M, Suzuki H, Ueda R, Osada H, Takagi
K and Takahashi T: Frequent loss of imprinting of the H19 gene is
often associated with its overexpression in human lung cancers.
Oncogene. 10:1193–1198. 1955.
|
|
61
|
Kondo M and Takahashi T: Altered genomic
imprinting in the IGF2 and H19 genes in human lung cancer. Nihon
Rinsho. 54:492–496. 1996.In Japanese. PubMed/NCBI
|
|
62
|
Xu G, Chen J and Pan Q: Long noncoding RNA
expression profiles of lung adenocarcinoma ascertained by
microarray analysis. PLoS One. 9:e1040442014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
White NM, Cabanski CR, Silva-Fisher JM,
Dang HX, Govindan R and Maher CA: Transcriptome sequencing reveals
altered long intergenic non-coding RNAs in lung cancer. Genome
Biol. 13:4292014. View Article : Google Scholar
|
|
64
|
Jelinic P and Shaw P: Loss of imprinting
and cancer. J Pathol. 221:261–268. 2007. View Article : Google Scholar
|
|
65
|
Barsyte-Lovejoy D, Lau SK, Boutros PC, et
al: The c-Myc oncogene directly induces the H19 noncoding RNA by
allele-specific binding to potentiate tumorigenesis. Cancer Res.
66:5330–5337. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cai X and Cullen BR: The imprinted H19
noncoding RNA is a primary microRNA precursor. Rna. 13:313–316.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung
JJ and Kwok TT: Oncofetal H19-derived miR-675 regulates tumor
suppressor RB in human colorectal cancer. Carcinogenesis.
31:350–358. 2010. View Article : Google Scholar
|
|
68
|
Tim W and Feinberg AP: Cancer as a
dysregulated epigenome allowing cellular growth advantage at the
expense of the host. Nat Rev Cancer. 13:497–510. 2013. View Article : Google Scholar
|
|
69
|
Lu KH, Li W, Liu XH, et al: Long
non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces
apoptosis by affecting p53 expression. BMC Cancer. 13:4612013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gupta RA, Shah N, Wang KC, et al: Long
non-coding RNA HOTAIR reprograms chromatin state to promote cancer
metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yang Z, Zhou L, Wu LM, Lai MC, Xie HY,
Zhang F and Zheng SS: Overexpression of long noncoding RNA HOTAIR
predicts tumor recurrence in hepatocellular carcinoma patients
following liver transplantation. Ann Surg Oncol. 18:1243–1250.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kogo Shimamura T, Mimori K, et al: Long
noncoding RNA HOTAIR regulates polycomb-dependent chromatin
modification and is associated with poor prognosis in colorectal
cancers. Cancer Res. 71:6320–6326. 2011. View Article : Google Scholar
|
|
73
|
Egeblad M, Rasch MG and Weaver VM: Dynamic
interplay between the collagen scaffold and tumor evolution. Curr
Opin Cell Biol. 22:697–706. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhuang Y, Wang X, Nguyen H, et al:
Induction of long intergenic non-coding RNA HOTAIR in lung cancer
cells by type I collagen. J Hematol Oncol. 6:352013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ji P, Diederichs S, Wang W, et al:
MALAT-1, a novel noncoding RNA, and thymosin beta4 predict
metastasis and survival in early-stage non-small cell lung cancer.
Oncogene. 22:8031–8041. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tano K, Mizuno R, Okada T, et al: MALAT-1
enhances cell motility of lung adenocarcinoma cells by influencing
the expression of motility-related genes. FEBS Lett. 584:4575–4580.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Nakagawa T, Endo H, YoKoyama M, et al:
Large noncoding RNA HOTAIR enhances aggressive biological behavior
and is associated with short disease-free survival in human
non-small cell lung cancer. Biochem Biophys Res Commun.
436:319–324. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tsai MC, Manor O, Wan Y, et al: Chang,
Long noncoding RNA as modular scaffold of histone modification
complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Schmidt LH, Spieker T, Koschmieder S, et
al: The long noncoding MALAT-1 RNA indicates a poor prognosis in
non-small cell lung cancer and induces migration and tumor growth.
J Thorac Oncol. 6:1984–1992. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gutschner T, Hämmerle M, Eissmann M, et
al: The noncoding RNA MALAT1 is a critical regulator of the
metastasis phenotype of lung cancer cells. Cancer Res.
73:1180–1189. 2013. View Article : Google Scholar :
|
|
81
|
Lee Y, Lee M and Kim S: Gas 6 induces
cancer cell migration and epithelial-mesenchymal transition through
upregulation of MAPK and Slug. Biochem Biophys Res Commun.
434:8–14. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Han L, Kong R, Yin DD, Zhang EB, Xu TP, De
W and Shu YQ: Low expression of long noncoding RNA GAS6-AS1
predicts a poor prognosis in patients with NSCLC. Med Oncol.
30:6942013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Brody H: Lung cancer. Nature. 513:S12014.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Takahashi K, Yan IK, Kogure T, Haga H and
Patel T: Extracellular vesicle-mediated transfer of long non-coding
RNA ROR modulates chemosensitivity in human hepatocellular cancer.
FEBS Open Bio. 4:458–467. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F
and Liu Y: Long non-coding RNA UCA1 increases chemoresistance of
bladder cancer cells by regulating Wnt signaling. FEBS J.
281:1750–1758. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Z, Sun M, Lu K, et al: The long
noncoding RNA HOTAIR contributes to cisplatin resistance of human
lung adenocarcinoma cells via downregualtion of p21 (WAF1/CIP1)
expression. PloS one. 8:e772932013. View Article : Google Scholar
|
|
87
|
Sing A, Boldin-Adamasky S, Thimmulappa RK,
et al: RNAi-mediated silencing of nuclear factor
erythroid-2-related factor 2 gene expression in non-small cell lung
cancer inhibits tumor growth and increases efficacy of
chemotherapy. Cancer Res. 68:7975–7984. 2008. View Article : Google Scholar
|
|
88
|
Oh S, Kim Y, Kim J, Kwon D and Lee E:
Elevated pressure, a novel cancer therapeutic tool for sensitizing
cisplatin-mediated apoptosis in A549. Biochem Biophys Res Commun.
399:91–97. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Voelkel NF, Gomez-Arroyo J, Abbate A,
Bogaard HJ and Nicolls MR: Pathobiology of pulmonary arterial
hypertension and right ventricular failure. Eur Respir J.
40:1555–1565. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Guignabert C and Dorfmuller P: Pathology
and pathobiology of pulmonary hypertension. Semin Respir Crit Care
Med. 34:551–559. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Caruso P, MacLean MR and Khanin R: Dynamic
changes in lung microRNA profiles during the development of
pulmonary hypertension due to chronic hypoxia and monocrotaline.
Arteriosclerosis Thromb Vasc Biol. 30:716–723. 2010. View Article : Google Scholar
|
|
92
|
Lüscher TF: Endothelial dysfunction: the
role and impact of the renin-angiotensin system. Heart. 84(Suppl
1): i20–i22. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shenoy V, Qi Y, Katovich MJ and Raizada
MK: ACE2, a promising therapeutic target for pulmonary
hypertension. Curr Opin Pharmacol. 11:150–155. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Leung A, Trac C, Jin W, et al: Novel long
noncoding RNAs are regulated by angiotensin II in vascular smooth
muscle cells. Circ Res. 113:266–278. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhu N, Zhang D, Chen S, et al: Endothelial
enriched microRNAs regulate angiotensin II-induced endothelial
inflammation and migration. Atherosclerosis. 215:286–293. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu X, Cheng Y, Zhang S, Lin Y, Yang J and
Zhang C: A necessary role of miR-221 and miR-222 in vascular smooth
muscle cell proliferation and neointimal hyperplasia. Circ Res.
104:476–487. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Noble PW and Homer RJ: Back to the future:
historical perspective on the pathogenesis of idiopathic pulmonary
fibrosis. Am J Respir Cell Mol Biol. 33:113–120. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cao G, Zhang J, Wang M, Song X, Liu W, Mao
C and Lv C: Differential expression of long non-coding RNAs in
bleomycin-induced lung fibrosis. Int J Mol Med. 32:355–364.
2013.PubMed/NCBI
|