Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2015 Volume 12 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2015 Volume 12 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells

  • Authors:
    • Jin‑Rong Xia
    • Ting‑Ting Chen
    • Wei‑Dong Li
    • Feng‑Lin Lu
    • Juan Liu
    • Xiao‑Gang Cai
    • Qin Lu
    • Cui-Ping Yang
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China, Department of Gastroenterology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China, Department of Gastroenterology, Shanghai First People's Hospital, Shanghai 200080, P.R. China
  • Pages: 569-574
    |
    Published online on: February 12, 2015
       https://doi.org/10.3892/mmr.2015.3342
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Specific small interfering RNAs (siRNAs) targeting receptor for advanced glycation end products (RAGE) inhibit the expression of RAGE, α‑smooth muscle actin and type I collagen in the T6 hepatic stellate cells (HSCs), indicating that RAGE is important for the activation of HSCs and the expression of collagen. The present study aimed to investigate the effect of specific siRNAs targeting RAGE on the development of hepatic fibrosis (HF), using primary rat HSCs, which were isolated and cultured in vitro. The expression vectors for specific siRNAs targeting RAGE were constructed and transfected into primary rat HSCs. Untreated and nonspecific siRNA‑transfected primary rat HSCs served as controls. The expression levels of RAGE, interleukin‑6 (IL‑6), tumor necrosis factor‑α (TNF‑α), transforming growth factor‑β1 (TGF‑β1), connective tissue growth factor (CTGF), laminin (LN), hyaluronic acid (HA) and N‑terminal procollagen III propeptide (PIIINP) in primary HSCs were detected by reverse transcription quantitative polymerase chain reaction and western blotting. The mRNA and 42 kD protein expression of RAGE in the pAKD‑GR126‑transfected primary HSCs were significantly downregulated compared with those in the untreated and the pAKD‑negative control (NC)‑transfected controls. The mRNA and protein expression levels of IL‑6, TNF‑α, TGF‑β1, CTGF, LN, HA and PIIINP in the pAKD‑GR126‑transfected primary HSCs were also markedly downregulated compared with those in the untreated and pAKD‑NC‑transfected controls. Therefore, RAGE‑specific siRNAs inhibited the expression of RAGE in primary rat HSCs and inhibited the development of HF.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Bierhaus A, Humpert PM, Morcos M, et al: Nawroth, Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 83:876–886. 2005. View Article : Google Scholar

2 

Hegab Z, Gibbons S, Neyses L and Mamas MA: Role of advanced glycation end products in cardiovascular disease. World J Cardiol. 4:90–102. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Yan SD, Bierhaus A, Nawroth PP and Stern DM: RAGE and Alzheimer’s disease: a progression factor for amyloid-beta-induced cellular perturbation? J Alzheimers Dis. 16:833–843. 2009.

4 

Oleniuc M, Secara I, Onofriescu M, Hogas S, et al: Consequences of advanced glycation end products accumulation in chronic kidney disease and clinical usefulness of their assessment using a non-invasive technique-skin autofluorescence. Maedica (Buchar). 6:298–307. 2011.

5 

Barlovic DP, Soro-Paavonen A and Jandeleit-Dahm KA: RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond). 211:43–55. 2011. View Article : Google Scholar

6 

Schwenger V, Morath C, Salava A, et al: Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. J Am Soc Nephrol. 17:199–207. 2006. View Article : Google Scholar

7 

Vlassara H, Striker LJ, Teichberg S, et al: Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci USA. 91:11704–11708. 1994. View Article : Google Scholar : PubMed/NCBI

8 

Fehrenbach H, Weiskirchen R, Kasper M and Gressner AM: Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts. Hepatology. 34:943–952. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Guimarães EL, Empsen C, Geerts A and van Grunsven LA: Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J Hepatol. 52:389–397. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Iwamoto K, Kanno K, Hyogo H, et al: Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. J Gastroenterol. 43:298–304. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Xia JR, Liu NF and Zhu NX: Specific siRNA targeting the receptor for advanced glycation end products inhibits experimental hepatic fibrosis in rats. Int J Mol Sci. 9:638–661. 2008. View Article : Google Scholar

12 

Lohwasser C, Neureiter D, Popov Y, Bauer M and Schuppan D: Role of the receptor for advanced glycation end products in hepatic fibrosis. World J Gastroenterol. 15:5789–5798. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Friedman SL and Roll FJ: Isolation and culture of hepatic lipocytes, Kuper cells, and sinusoidal endothelial cells by density gradient centreifugation with Stractan. Anal Biochem. 161:207–218. 1987. View Article : Google Scholar : PubMed/NCBI

14 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PRC and the 2 (− Delta Delta C(T) method. Methods. 25:402–408. 2001. View Article : Google Scholar

15 

Xie X, Zhao R and Shen GX: Impact of cyanidin-3-glucoside on glycated LDL-induced NADPH oxidase activation, mitochondrial dysfunction and cell viability in cultured vascular endothelial cells. Int J Mol Sci. 13:15867–15880. 2012. View Article : Google Scholar

16 

Sangle GV, Zhao R, Mizuno TM and Shen GX: Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Endocrinology. 151:4455–4466. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Willems S, Verleden SE, Vanaudenaerde BM, et al: Multiplex protein profiling of bronchoalveolar lavage in idiopathic pulmonary fibrosis and hypersensitivity pneumonitis. Ann Thorac Med. 8:38–45. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Cheng A, Dong Y, Zhu F, et al: AGE-LDL activates Toll like receptor 4 pathway and promotes inflammatory cytokines production in renal tubular epithelial cells. Int J Biol Sci. 9:94–107. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Honsawek S, Vejchapipat P, Payungporn S, et al: Soluble receptor for advanced glycation end products and liver stiffness in postoperative biliary atresia. Clin Biochem. 46:214–218. 2013. View Article : Google Scholar

20 

Goodwin M, Herath C, Jia Z, et al: Advanced glycation end products augment experimental hepatic fibrosis. J Gastroenterol Hepatol. 28:369–376. 2013. View Article : Google Scholar

21 

Sebeková K, Kupcová V, Schinzel R and Heidland A: Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis-amelioration by liver transplantation. J Hepatol. 36:66–71. 2002. View Article : Google Scholar

22 

Ahmed N, Lüthen R, Häussinger D, et al: Increased protein glycation in cirrhosis and therapeutic strategies to prevent it. Ann N Y Acad Sci. 1043:718–724. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Yagmur E, Tacke F, Weiss C, et al: Elevation of Nepsilon-(carboxymethyl) lysine-modified advanced glycation end products in chronic liver disease is an indicator of liver cirrhosis. Clin Biochem. 39:39–45. 2006. View Article : Google Scholar

24 

Oldfield MD, Bach LA, Forbes JM, et al: Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest. 108:1853–1863. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Lin J, Tang Y, Kang Q, Feng Y and Chen A: Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br J Pharmacol. 166:2212–2227. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Reynaert H, Thompson MG, Thomas T and Geerts A: Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut. 50:571–581. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Shi GF and Li Q: Effects of oxymatrine on experimental hepatic fibrosis and its mechanism in vivo. World J Gastroenterol. 11:268–271. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Reeves HL and Friedman SL: Activation of hepatic stellate ceils-a key issue in liver fibrosis. Front Biosci. 7:d808–d826. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Campbell JS, Hughes SD, Gilbertson DG, et al: Pletelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA. 102:3389–3394. 2005. View Article : Google Scholar

30 

Sakaida I, Hironaka K, Kimura T, et al: Herbal medicine sho-saiko-to(TJ-9) increases expression matrix metalloproteinases (MMPs) with reduced expression of tissue inhibitor of metalloproteinases (TIMPs) in rat stellate cell. Life Sci. 74:2251–2263. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Iredale JP: Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis. 21:427–436. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Benyon RC and Arthur MJ: Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis. 21:373–384. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Borkham-Kamphorst E, Herrmann J, Stoll D, et al: Dominent-negative solute PDGF-beta receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest. 84:766–777. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Novosyadlyy R, Tron K, Dudas J, Ramadori G and Scharf JG: Expression and regulation of the insulin-like growth factor axis components in rat liver myofibroblasts. J Cell Physiol. 199:388–398. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Simeonova PP, Gallucci RM, Hulderman T, et al: The role of tumor necrosis factor-alpha in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol Appl Pharmacol. 177:112–120. 2001. View Article : Google Scholar : PubMed/NCBI

36 

da Silva FM, Guimarães EL, Grivicich I, et al: Hepatic stellate cell activation in vitro: cell cycle arrest at G2/M and modification of cell motility. J Cell Biochem. 90:387–396. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Huang G and Brigstock DR: Integrin expression and function in the response of primary culture hepatic stellate cells to connective tissue growth factor (CCN2). J Cell Mol Med. 15:1087–1095. 2011. View Article : Google Scholar

38 

Galicia-Moreno M, Rodríguez-Rivera A, Reyes-Gordillo K, et al: Trolox down-regulates transforming growth factor-beta and prevents experimental cirrhosis. Basic Clin Pharmacol Toxicol. 103:476–481. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Chen A: Acetaldehyde stimulates the activation of latent transforming growth factor-betal and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells. Biochem J. 368:683–693. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Sedlaczek N, Jia JD, Bauer M, et al: Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat bilinry fibrosis. Am J Pathol. 158:1239–1244. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Faouzi S, Le Bail B, Neaud V, et al: Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J Hepatol. 30:275–284. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Friedman SL: Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 275:2247–2250. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Pinzani M and Marra F: Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis. 21:397–416. 2001. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xia JR, Chen TT, Li WD, Lu FL, Liu J, Cai XG, Lu Q and Yang C: Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells. Mol Med Rep 12: 569-574, 2015.
APA
Xia, J., Chen, T., Li, W., Lu, F., Liu, J., Cai, X. ... Yang, C. (2015). Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells. Molecular Medicine Reports, 12, 569-574. https://doi.org/10.3892/mmr.2015.3342
MLA
Xia, J., Chen, T., Li, W., Lu, F., Liu, J., Cai, X., Lu, Q., Yang, C."Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells". Molecular Medicine Reports 12.1 (2015): 569-574.
Chicago
Xia, J., Chen, T., Li, W., Lu, F., Liu, J., Cai, X., Lu, Q., Yang, C."Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells". Molecular Medicine Reports 12, no. 1 (2015): 569-574. https://doi.org/10.3892/mmr.2015.3342
Copy and paste a formatted citation
x
Spandidos Publications style
Xia JR, Chen TT, Li WD, Lu FL, Liu J, Cai XG, Lu Q and Yang C: Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells. Mol Med Rep 12: 569-574, 2015.
APA
Xia, J., Chen, T., Li, W., Lu, F., Liu, J., Cai, X. ... Yang, C. (2015). Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells. Molecular Medicine Reports, 12, 569-574. https://doi.org/10.3892/mmr.2015.3342
MLA
Xia, J., Chen, T., Li, W., Lu, F., Liu, J., Cai, X., Lu, Q., Yang, C."Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells". Molecular Medicine Reports 12.1 (2015): 569-574.
Chicago
Xia, J., Chen, T., Li, W., Lu, F., Liu, J., Cai, X., Lu, Q., Yang, C."Inhibitory effect of receptor for advanced glycation end product‑specific small interfering RNAs on the development of hepatic fibrosis in primary rat hepatic stellate cells". Molecular Medicine Reports 12, no. 1 (2015): 569-574. https://doi.org/10.3892/mmr.2015.3342
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team