1
|
Dorresteijn JA, Visseren FL and Spiering
W: Mechanisms linking obesity to hypertension. Obes Rev. 13:17–26.
2012. View Article : Google Scholar
|
2
|
Franssen R, Monajemi H, Stroes ES and
Kastelein JJ: Obesity and dyslipidemia. Med Clin North Am.
95:893–902. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rocha VZ and Libby P: Obesity,
inflammation and atherosclerosis. Nat Rev Cardiol. 6:399–409. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
McCarthy MI: Genomics, type 2 diabetes and
obesity. N Engl J Med. 363:2339–2350. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Speliotes EK: Genetics of common obesity
and nonalcoholic fatty liver disease. Gastroenterology.
136:1492–1495. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pischon N, Heng N, Bernimoulin JP, Kleber
BM, Willich SN and Pischon T: Obesity, infammation and periodontal
disease. J Dent Res. 86:400–409. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lloyd CM and Saglani S: Eosinophils in the
spotlight: Finding the link between obesity and asthma. Nat Med.
19:976–977. 2013. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Tzotzas T, Evangelou P and Kiortsis DN:
Obesity, weight loss and conditional cardiovascular risk factors.
Obes Rev. 12:e282–e289. 2011. View Article : Google Scholar
|
9
|
Thompson D and Wolf AM: The medical-care
cost burden of obesity. Obes Rev. 2:189–197. 2001. View Article : Google Scholar
|
10
|
Dalla Vecchia CF, Susin C, Rösing CK,
Oppermann RV and Albandar JM: Overweight and obesity as risk
indicators for periodontitis in adults. J Periodontol.
76:1721–1728. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zimmet P, Alberti KG and Shaw J: Global
and societal implications of the diabetes epidemic. Nature.
414:782–787. 2001. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Bray GA and Tartaglia LA: Medicinal
strategies in the treatment of obesity. Nature. 404:672–677.
2000.PubMed/NCBI
|
13
|
Tam CS, Lecoultre V and Ravussin E: Novel
strategy for the use of leptin for obesity therapy. Expert Opin
Biol Ther. 11:1677–1685. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rosen ED: The transcriptional basis of
adipocyte development. Prostaglandins Leukot Essent Fatty Acids.
73:31–34. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Soukas A, Socci ND, Saatkamp BD, Novelli S
and Friedman JM: Distinct transcriptional profiles of adipogenesis
in vivo and in vitro. J Biol Chem. 276:34167–34174. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Prusty D, Park BH, Davis KE and Farmer SR:
Activation of MEK/ERK signaling promotes adipogenesis by enhancing
peroxisome proliferator-activated receptor gamma (PPARgamma) and
C/EBPalpha gene expression during the differentiation of 3T3-L1
preadipocytes. J Biol Chem. 277:46226–46232. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rosen ED and MacDougald OA: Adipocyte
differentiation from the inside out. Nat Rev Mol Cell Biol.
7:885–896. 2006. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Smith PJ, Wise LS, Berkowitz R, Wan C and
Rubin CS: Insulin–like growth factor–I is an essential regulator of
the differentiation of 3T3-L1 adipocytes. J Biol Chem.
263:9402–9408. 1988.PubMed/NCBI
|
19
|
Bost F, Aouadi M, Caron L and Binétruy B:
The role of MAPKs in adipocyte differentiation and obesity.
Biochimie. 87:51–56. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Magun R, Burgering BM, Coffer PJ,
Pardasani D, Lin Y, Chabot J and Sorisky A: Expression of a
constitutively activated form of protein kinase B (c-Akt) in 3T3-L1
preadipose cells causes spontaneous differentiation. Endocrinology.
137:3590–3593. 1996.PubMed/NCBI
|
21
|
Peng XD, Xu PZ, Chen ML, Hahn-Windgassen
A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman
KG and Hay N: Dwarfsm, impaired skin development, skeletal muscle
atrophy, delayed bone development and impeded adipogenesis in mice
lacking Akt1 and Akt2. Genes Dev. 17:1352–1365. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jo YS, Huong DT, Bae K, Lee MK and Kim YH:
Monoamine oxidase inhibitory coumarin from Zanthoxylum
schinifolium. Planta Med. 68:84–85. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Paik SY, Koh KH, Beak SM, Paek SH and Kim
JA: The essential oils from Zanthoxylum schinifolium pericarp
induce apoptosis of HepG2 human hepatoma cells through increased
production of reactive oxygen species. Biol Pharm Bull. 28:802–807.
2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tsai IL, Lin WY, Teng CM, Ishikawa T,
Doong SL, Huang MW, Chen YC and Chen IS: Coumarins and antiplatelet
constituents from the root bark of Zanthoxylum schinifolium. Planta
Med. 66:618–623. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen IS, Lin YC, Tsai IL, Teng CM, Ko FN,
Ishikawa T and Ishii H: Coumarins and anti-platelet aggregation
constituents from Zanthoxylum schinifolium. Phytochemistry.
39:1091–1097. 1995. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cao LH, Lee YJ, Kang DG, Kim JS and Lee
HS: Effect of Zanthoxylum schinifolium on TNF-alpha-induced
vascular inflammation in human umbilical vein endothelial cells.
Vascul Pharmacol. 50:200–207. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li W, Sun YN, Yan XT, Yang SY, Kim EJ,
Kang HK and Kim YH: Coumarins and lignans from Zanthoxylum
schinifolium and their anticancer activities. J Agric Food Chem.
61:10730–10740. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jun DY, Kim JS, Park HS, Han CR, Fang Z,
Woo MH, Rhee IK and Kim YH: Apoptogenic activity of auraptene of
Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells
is associated with ER stress-mediated caspase-8 activation that
stimulates mitochondria-dependent or -independent caspase cascade.
Carcinogenesis. 28:1303–1313. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim MY, Kim DH and Do MS:
B-cell-activating factor is a regulator of adipokines and a
possible mediator between adipocytes and macrophages. Exp Mol Med.
45:e42013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Rhyu J, Kim MS, You MK, Bang MA and Kim
HA: Pear pomace water extract inhibits adipogenesis and induces
apoptosis in 3T3-L1 adipocytes. Nutr Res Pract. 8:33–39. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kopelman PG: Obesity as a medical problem.
Nature. 404:635–643. 2000.PubMed/NCBI
|
32
|
Ntambi JM and Young-Cheul K: Adipocyte
differentiation and gene expression. J Nutr. 130:3122S–3126S.
2000.
|
33
|
Tong Q and Hotamisligil GS: Molecular
mechanisms of adipocyte differentiation. Rev Endocr Metab Disord.
2:349–355. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cornelius P, MacDougald OA and Lane MD:
Regulation of adipocyte development. Annu Rev Nutr. 14:99–129.
1994. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kohn AD, Summers SA, Birnbaum MJ and Roth
RA: Expression of a constitutively active Akt Ser/Thr kinase in
3T3-L1 adipocytes stimulates glucose uptake and glucose transporter
4 translocation. J Biol Chem. 271:31372–31378. 1996. View Article : Google Scholar : PubMed/NCBI
|
36
|
Uto-Kondo H, Ohmori R, Kiyose C, Kishimoto
Y, Saito H, Igarashi O and Kondo K: Tocotrienol suppresses
adipocyte differentiation and Akt phosphorylation in 3T3-L1
preadipocytes. J Nutr. 139:51–57. 2009. View Article : Google Scholar
|
37
|
Zhang HH, Huang J, Düvel K, Boback B, Wu
S, Squillace RM, Wu CL and Manning BD: Insulin stimulates
adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One.
4:e61892009. View Article : Google Scholar : PubMed/NCBI
|