|
1
|
Rankin EB, Giaccia AJ and Schipani E: A
central role for hypoxic signaling in cartilage, bone and
hematopoiesis. Curr Osteoporos Rep. 9:46–52. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Loenarz C, Coleman ML, Boleininger A, et
al: The hypoxia-inducible transcription factor pathway regulates
oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO
Rep. 12:63–70. 2011. View Article : Google Scholar
|
|
3
|
Semenza GL: Hypoxia-inducible factors in
physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Greer SN, Metcalf JL, Wang Y and Ohh M:
The updated biology of hypoxia-inducible factor. EMBO J.
31:2448–2460. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Goda N and Kanai M: Hypoxia-inducible
factors and their roles in energy metabolism. Int J Hematol.
95:457–463. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ye J, Wu D, Wu P, Chen Z and Huang J: The
cancer stem cell niche: Cross talk between cancer stem cells and
their microenvironment. Tumour Biol. 35:3945–3951. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yang SL, Liu LP, Jiang JX, Xiong ZF, He QJ
and Wu C: The correlation of expression levels of HIF-1α and HIF-2α
in hepatocellular carcinoma with capsular invasion, portal vein
tumor thrombi and patients’ clinical outcome. Jpn J Clin Oncol.
44:159–167. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cao S, Yang S, Wu C, Wang Y, Jiang J and
Lu Z: Protein expression of hypoxia-inducible factor-1 alpha and
hepatocellular carcinoma: A systematic review with meta-analysis.
Clin Res Hepatol Gastroenterol. 38:598–603. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tsai YP and Wu KJ: Hypoxia-regulated
target genes implicated in tumor metastasis. J Biomed Sci.
19:1022012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Semenza GL and Wang GL: A nuclear factor
induced by hypoxia via de novo protein synthesis binds to the human
erythropoietin gene enhancer at a site required for transcriptional
activation. Mol Cell Biol. 12:5447–5454. 1992.PubMed/NCBI
|
|
11
|
Tian H, McKnight SL and Russell DW:
Endothelial PAS domain protein 1 (EPAS1), a transcription factor
selectively expressed in endothelial cells. Genes Dev. 11:72–82.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gu YZ, Moran SM, Hogenesch JB, Wartman L
and Bradfield CA: Molecular characterization and chromosomal
localization of a third alpha-class hypoxia inducible factor
subunit, HIF3alpha. Gene Expr. 7:205–213. 1998.PubMed/NCBI
|
|
13
|
Hara S, Hamada J, Kobayashi C, Kondo Y and
Imura N: Expression and characterization of hypoxia-inducible
factor (HIF)-3alpha in human kidney: Suppression of HIF-mediated
gene expression by HIF-3alpha. Biochem Biophys Res Commun.
287:808–813. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ku JH, Park YH, Myung JK, Moon KC, Kwak C
and Kim HH: Expression of hypoxia inducible factor-1α and 2α in
conventional renal cell carcinoma with or without sarcomatoid
differentiation. Urol Oncol. 29:731–737. 2011. View Article : Google Scholar
|
|
15
|
Luan Y, Gao C, Miao Y, Li Y, Wang Z and
Qiu X: Clinicopathological and prognostic significance of HIF-1α
and HIF-2α expression in small cell lung cancer. Pathol Res Pract.
209:184–189. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kroeger N, Seligson DB, Signoretti S, et
al: Poor prognosis and advanced clinicopathological features of
clear cell renal cell carcinoma (ccRCC) are associated with
cytoplasmic subcellular localisation of Hypoxia inducible
factor-2α. Eur J Cancer. 50:1531–1540. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gong L, Zhang W, Zhou J, et al: Prognostic
value of HIFs expression in head and neck cancer: A systematic
review. PLoS One. 8:e750942013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Augstein A, Poitz DM, Braun-Dullaeus RC,
Strasser RH and Schmeisser A: Cell-specific and hypoxia-dependent
regulation of human HIF-3α: Inhibition of the expression of HIF
target genes in vascular cells. Cell Mol Life Sci. 68:2627–2642.
2011. View Article : Google Scholar
|
|
19
|
Zhang P, Yao Q, Lu L, Li Y, Chen PJ and
Duan C: Hypoxia-inducible factor 3 is an oxygen-dependent
transcription activator and regulates a distinct transcriptional
response to hypoxia. Cell Reports. 6:1110–1121. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Semenza GL: Hypoxia-inducible factor 1:
Master regulator of O2 homeostasis. Curr Opin Genet Dev.
8:588–594. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pasanen A, Heikkila M, Rautavuoma K,
Hirsila M, Kivirikko KI and Myllyharju J: Hypoxia-inducible factor
(HIF)-3alpha is subject to extensive alternative splicing in human
tissues and cancer cells and is regulated by HIF-1 but not HIF-2.
Int J Biochem Cell Biol. 42:1189–1200. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Maynard MA, Qi H, Chung J, et al: Multiple
splice variants of the human HIF-3 alpha locus are targets of the
von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem.
278:11032–11040. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Huang LE, Arany Z, Livingston DM and Bunn
HF: Activation of hypoxia-inducible transcription factor depends
primarily upon redox-sensitive stabilization of its alpha subunit.
J Biol Chem. 271:32253–32259. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Whitelaw ML, Gustafsson JA and Poellinger
L: Identification of transactivation and repression functions of
the dioxin receptor and its basic helix-loop-helix/PAS partner
factor Arnt: inducible versus constitutive modes of regulation. Mol
Cell Biol. 14:8343–8355. 1994.PubMed/NCBI
|
|
25
|
Reyes H, Reisz-Porszasz S and Hankinson O:
Identification of the Ah receptor nuclear translocator protein
(Arnt) as a component of the DNA binding form of the Ah receptor.
Science. 256:1193–1195. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Makino Y, Kanopka A, Wilson WJ, Tanaka H
and Poellinger L: Inhibitory PAS domain protein (IPAS) is a
hypoxia-inducible splicing variant of the hypoxia-inducible
factor-3alpha locus. J Biol Chem. 277:32405–32408. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Makino Y, Cao R, Svensson K, et al:
Inhibitory PAS domain protein is a negative regulator of
hypoxia-inducible gene expression. Nature. 414:550–554. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yamashita T, Ohneda O, Nagano M, et al:
Abnormal heart development and lung remodeling in mice lacking the
hypoxia-inducible factor-related basic helix-loop-helix PAS protein
NEPAS. Mol Cell Biol. 28:1285–1297. 2008. View Article : Google Scholar :
|
|
29
|
Majmundar AJ, Wong WJ and Simon MC:
Hypoxia-inducible factors and the response to hypoxic stress. Mol
Cell. 40:294–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li QF, Wang XR, Yang YW and Lin H: Hypoxia
upregulates hypoxia inducible factor (HIF)-3alpha expression in
lung epithelial cells: Characterization and comparison with
HIF-1alpha. Cell Res. 16:548–558. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tanaka T, Wiesener M, Bernhardt W, Eckardt
KU and Warnecke C: The human HIF (hypoxia-inducible factor)-3alpha
gene is a HIF-1 target gene and may modulate hypoxic gene
induction. Biochem J. 424:143–151. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Heidbreder M, Frohlich F, Johren O,
Dendorfer A, Qadri F and Dominiak P: Hypoxia rapidly activates
HIF-3alpha mRNA expression. FASEB J. 17:1541–1543. 2003.PubMed/NCBI
|
|
33
|
Rajatapiti P, de Rooij JD, Beurskens LW,
et al: Effect of oxygen on the expression of hypoxia-inducible
factors in human fetal lung explants. Neonatology. 97:346–354.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li QF and Dai AG: Differential expression
of three hypoxia-inducible factor-alpha subunits in pulmonary
arteries of rat with hypoxia-induced hypertension. Acta Biochim
Biophys Sin (Shanghai). 37:665–672. 2005. View Article : Google Scholar
|
|
35
|
Zhang P, Lu L, Yao Q, et al: Molecular,
functional and gene expression analysis of zebrafish
hypoxia-inducible factor-3alpha. Am J Physiol Regul Integr Comp
Physiol. 303:R1165–R1174. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Makino Y, Uenishi R, Okamoto K, et al:
Transcriptional up-regulation of inhibitory PAS domain protein gene
expression by hypoxia-inducible factor 1 (HIF-1): a negative
feedback regulatory circuit in HIF-1-mediated signaling in hypoxic
cells. J Biol Chem. 282:14073–14082. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hatanaka M, Shimba S, Sakaue M, et al:
Hypoxia-inducible factor-3alpha functions as an accelerator of
3T3-L1 adipose differentiation. Biol Pharm Bull. 32:1166–1172.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Heidbreder M, Qadri F, Johren O, et al:
Non-hypoxic induction of HIF-3alpha by 2-deoxy-D-glucose and
insulin. Biochem Biophys Res Commun. 352:437–443. 2007. View Article : Google Scholar
|
|
39
|
Choueiri TK, Fay AP, Gagnon R, et al: The
role of aberrant VHL/HIF pathway elements in predicting clinical
outcome to pazopanib therapy in patients with metastatic clear-cell
renal cell carcinoma. Clin Cancer Res. 19:5218–5226. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kennedy BK: A new connection between VHL
and cancer threads through progerin. Cell Cycle. 12:2721–2722.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bausch B, Jilg C, Glasker S, et al: Renal
cancer in von Hippel-Lindau disease and related syndromes. Nat Rev
Nephrol. 9:529–538. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pientka FK, Hu J, Schindler SG, et al:
Oxygen sensing by the prolyl-4-hydroxylase PHD2 within the nuclear
compartment and the influence of compartmentalisation on HIF-1
signalling. J Cell Sci. 125:5168–5176. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Niecknig H, Tug S, Reyes BD, Kirsch M,
Fandrey J and Berchner-Pfannschmidt U: Role of reactive oxygen
species in the regulation of HIF-1 by prolyl hydroxylase 2 under
mild hypoxia. Free Radic Res. 46:705–717. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Groulx I and Lee S: Oxygen-dependent
ubiquitination and degradation of hypoxia-inducible factor requires
nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor
suppressor protein. Mol Cell Biol. 22:5319–5336. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ivan M, Kondo K, Yang H, et al: HIFalpha
targeted for VHL-mediated destruction by proline hydroxylation:
Implications for O2 sensing. Science. 292:464–468. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen YR, Dai AG, Hu RC and Jiang YL:
Differential and reciprocal regulation between hypoxia-inducible
factor-alpha subunits and their prolyl hydroxylases in pulmonary
arteries of rat with hypoxia-induced hypertension. Acta Biochim
Biophys Sin (Shanghai). 38:423–434. 2006. View Article : Google Scholar
|
|
47
|
Harvey AJ, Kind KL and Thompson JG:
Regulation of gene expression in bovine blastocysts in response to
oxygen and the iron chelator desferrioxamine. Biol Reprod.
77:93–101. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Woo KJ, Lee TJ, Park JW and Kwon TK:
Desferrioxamine, an iron chelator, enhances HIF-1alpha accumulation
via cyclooxygenase-2 signaling pathway. Biochem Biophys Res Commun.
343:8–14. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Triantafyllou A, Liakos P, Tsakalof A,
Georgatsou E, Simos G and Bonanou S: Cobalt induces
hypoxia-inducible factor-1alpha (HIF-1alpha) in HeLa cells by an
iron-independent, but ROS-, PI-3K- and MAPK-dependent mechanism.
Free Radic Res. 40:847–856. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yuan Y, Hilliard G, Ferguson T and
Millhorn DE: Cobalt inhibits the interaction between
hypoxia-inducible factor-alpha and von Hippel-Lindau protein by
direct binding to hypoxia-inducible factor-alpha. J Biol Chem.
278:15911–15916. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wu D, Zhang R, Zhao R, Chen G, Cai Y and
Jin J: A novel function of novobiocin: Disrupting the interaction
of HIF 1alpha and p300/CBP through direct binding to the HIF1alpha
C-terminal activation domain. PLoS One. 8:e620142013. View Article : Google Scholar
|
|
52
|
Mendonca DB, Mendonca G, Aragao FJ and
Cooper LF: NF-kappaB suppresses HIF-1alpha response by competing
for P300 binding. Biochem Biophys Res Commun. 404:997–1003. 2011.
View Article : Google Scholar
|
|
53
|
Maynard MA, Evans AJ, Hosomi T, Hara S,
Jewett MA and Ohh M: Human HIF-3alpha4 is a dominant-negative
regulator of HIF-1 and is down-regulated in renal cell carcinoma.
FASEB J. 19:1396–1406. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Maynard MA, Evans AJ, Shi W, Kim WY, Liu
FF and Ohh M: Dominant-negative HIF-3 alpha 4 suppresses VHL-null
renal cell carcinoma progression. Cell Cycle. 6:2810–2816. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ando H, Natsume A, Iwami K, et al: A
hypoxia-inducible factor (HIF)-3alpha splicing variant, HIF-3alpha4
impairs angiogenesis in hypervascular malignant meningiomas with
epigenetically silenced HIF-3alpha4. Biochem Biophys Res Commun.
433:139–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shah YM and Xie L: Hypoxia-inducible
factors link iron homeostasis and erythropoiesis. Gastroenterology.
146:630–642. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Haase VH: Regulation of erythropoiesis by
hypoxia-inducible factors. Blood Rev. 27:41–53. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li H, Ge C, Zhao F, et al:
Hypoxia-inducible factor 1 alpha-activated angiopoietin-like
protein 4 contributes to tumor metastasis via vascular cell
adhesion molecule-1/integrin beta1 signaling in human
hepatocellular carcinoma. Hepatology. 54:910–919. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Imamura T, Kikuchi H, Herraiz MT, et al:
HIF-1alpha and HIF-2alpha have divergent roles in colon cancer. Int
J Cancer. 124:763–771. 2009. View Article : Google Scholar :
|
|
60
|
Marin-Hernandez A, Gallardo-Perez JC,
Ralph SJ, Rodriguez-Enriquez S and Moreno-Sanchez R: HIF-1alpha
modulates energy metabolism in cancer cells by inducing
over-expression of specific glycolytic isoforms. Mini Rev Med Chem.
9:1084–1101. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Airley RE and Mobasheri A: Hypoxic
regulation of glucose transport, anaerobic metabolism and
angiogenesis in cancer: Novel pathways and targets for anticancer
therapeutics. Chemotherapy. 53:233–256. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Heikkila M, Pasanen A, Kivirikko KI and
Myllyharju J: Roles of the human hypoxia-inducible factor
(HIF)-3alpha variants in the hypoxia response. Cell Mol Life Sci.
68:3885–3901. 2011. View Article : Google Scholar
|
|
63
|
Deshmukh AB, Patel JK, Prajapati AR and
Shah S: Perspective in chronic kidney disease: targeting
hypoxia-inducible factor (HIF) as potential therapeutic approach.
Ren Fail. 34:521–532. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kones R: Oxygen therapy for acute
myocardial infarction-then and now. A century of uncertainty. Am J
Med. 124:1000–1005. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Shi H: Hypoxia inducible factor 1 as a
therapeutic target in ischemic stroke. Curr Med Chem. 16:4593–4600.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lee SH, Wolf PL, Escudero R, Deutsch R,
Jamieson SW and Thistlethwaite PA: Early expression of angiogenesis
factors in acute myocardial ischemia and infarction. N Engl J Med.
342:626–633. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zolk O, Solbach TF, Eschenhagen T,
Weidemann A and Fromm MF: Activation of negative regulators of the
hypoxia-inducible factor (HIF) pathway in human end-stage heart
failure. Biochem Biophys Res Commun. 376:315–320. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yoshida T, Kuwahara M, Maita K and Harada
T: Immunohistochemical study on hypoxia in spontaneous poly-cystic
liver and kidney disease in rats. Exp Toxicol Pathol. 53:123–128.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fang HY, Lin CY, Chow KC, Huang HC and Ko
WJ: Microarray detection of gene overexpression in primary
spontaneous pneumothorax. Exp Lung Res. 36:323–330. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Drevytska T, Gavenauskas B, Drozdovska S,
Nosar V, Dosenko V and Mankovska I: HIF-3alpha mRNA expression
changes in different tissues and their role in adaptation to
intermittent hypoxia and physical exercise. Pathophysiology.
19:205–214. 2012. View Article : Google Scholar : PubMed/NCBI
|